CHAPTER

2

BASIC PRINCIPLES

2.1 INTRODUCTION

The concept of power is of central importance in electrical power systems and is
the main topic of this chapter. The typical student will already have studied much
of this material, and the review here will serve to reinforce the power concepts
encountered in the electric circuit theory.

In this chapter, the flow of energy in an ac circuit is investigated. By using
various trigonometric identities, the instantaneous power p(t) is resolved into two
components. A plot of these components is obtained using MATLAB to observe that
ac networks not only consume energy at an average rate, but also borrow and return
energy to its sources. This leads to the basic definitions of average power P and
reactive power (. The volt-ampere S, which is a mathematical formulation based
on the phasor forms of voltage and current, is introduced. Then the complex power
balance is demonstrated, and the transmission inefficiencies caused by loads with
low power factors are discussed and demonstrated by means of several examples.

Next, the transmission of complex power between two voltage sources is con-
sidered, and the dependency of real power on the voltage phase angle and the de-
pendency of reactive power on voltage magnitude is established. MATLAB is used
conveniently to demonstrate this idea graphically.

Finally, the balanced three-phase circuit is examined. An important property
of a balanced three-phase system is that it delivers constant power. That is, the
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2.2. POWER IN SINGLE-PHASE AC CIRCUITS 15

power delivered does not fluctuate with time as in a single-phase system. For the
purpose of analysis and modeling, the per-phase equivalent circuit is developed for
the three-phase system under balanced condition.

2.2 POWER IN SINGLE-PHASE AC CIRCUITS

Figure 2.1 shows a single-phase sinusoidal voltage supplying a load.

i)
o—
+
v(t)
o
FIGURE 2.1

Sinusoidal source supplying a load.
Let the instantaneous voltage be

v(t) = Vi cos(wt + 6,) ) 2.1)
ahd the instantaneous current be given by

i(t) = Iy, cos(wt + 6;) (2.2)

The instantaneous power p(t) delivered to the load is the product of voltage v(t)
and current i(t) given by

p(t) = v(t) i(t) = Vil cos(wt + 8,) cos(wt + 6;) (2.3)

In Example 2.1, MATLAB is used to plot the instantaneous power p(t), and the
result is shown in Figure 2.2. In studying Figure 2.2, we note that the frequency of
the instantaneous power is twice the source frequency. Also, note that it is possible
for the instantaneous power to be negative for a portion of each cycle. In a passive
network, negative power implies that energy that has been stored in inductors or
capacitors is now being extracted.

It is informative to write (2.3) in another form using the trigonometric identity

cos Acos B = —;— cos(A - B) + -;—cos(A + B) (2.4
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which results in
1
p(t) = EVmIm [cos(6y — 0;) + cos(2wt + 6, + 6;)]

= %VmIm{cos(Gv — 6;) + cos[2(wt + 9,,) — (6, — 6)]}

1
= EVmIm[cos(Gv —.0;) + cos 2(wt + 6,) cos(8, — 6;)
+sin 2(wt + 6,) sin(6, — 6;)]

The root-mean-square (rms) value of v(t) is |V| = Vi, /+/2 and the rms value of
i(t) is [I| = In/v/2 . Let @ = (6, — 6;). The above equation, in terms of the rms
values, is reduced to

p(t) = [V||I}cos 8[1 + cos 2(wt + 6,)] + |V||I| sin 8 sin 2(wt + Ov)

PR(®) Px () 2.5)
Energy flow into Energy borrowed and
the circuit returned by the circuit

where 6 is the angle between voltage and current, or the impedance angle. 0 is
positive if the load is inductive, (i.e., current is lagging the voltage) and 8 is negative
if the load is capacitive (i.e., current is leading the voltage).

The instantaneous power has been decomposed into two components. The
first component of (2.5) is

Pr(t) = V||| cos 8 + |V||T| cos 6 cos 2(wt + 6,)] (2.6)

The second term in (2.6), which has a frequency twice that of the source, accounts
for the sinusoidal variation in the absorption of power by the resistive portion of
the load. Since the average value of this sinusoidal function is zero, the average
power delivered to the load is given by

P =|V||I|cosf 2.7

This is the power absorbed by the resistive component of the load and is also re-
ferred to as the active power or real power. The product of the rms voltage value
and the rms current value |V||I] is called the apparent power and is measured in
units of volt ampere. The product of the apparent power and the cosine of the angle
between voltage and current yields the real power. Because cos § plays a key role in
the determination of the average power, it is called power factor. When the current
lags the voltage, the power factor is considered lagging. When the current leads the
voltage, the power factor is considered leading.
The second component of (2.5)

px(t) = |V||I|sin 0 sin 2(wt + 6,) 2.8
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pulsates with twice the frequency and has an average value of zero. This compo-
nent accounts for power oscillating into and out of the load because of its reactive
element (inductive or capacitive). The amplitude of this pulsating power is called
reactive power and is designated by Q.

Q= |V||I|sin8 (2.9)

Both P and @ have the same dimension. Howeyver, in order to distinguish between
the real and the reactive power, the term “var” is used for the reactive power (var is
an acronym for the phrase “volt-ampere reactive”). For an inductive load, current is
lagging the voltage, 8 = (8, — 6;) > 0 and Q) is positive; whereas, for a capacitive
load, current is leading the voltage, 8 = (6, — ;) < 0 and Q) is negative.

A careful study of Equations (2.6) and (2.8) reveals the following character-
istics of the instantaneous power. .

¢ For a pure resistor, the impedance angle is zero and the power factor is unity
(UPF), so that the apparent and real power are equal. The electric energy is
transformed into thermal energy.

o If the circuit is purely inductive, the current lags the voltage by 90° and the
average power is zero. Therefore, in a purely inductive circuit, there is no
transformation of energy from electrical to nonelectrical form. The instanta-
neous power at the terminal of a purely inductive circuit oscillates between
the circuit and the source. When p(t) is positive, energy is being stored in
the magnetic field associated with the inductive elements, and when p(t) is
negative, energy is being extracted from the magnetic fields of the inductive
elements.

o If the load is purely capacitive, the current leads the voltage by 90°, and the
average power is zero, so there is no transformation of energy from electri-
cal to nonelectrical form. In a purely capacitive circuit, the power oscillates
between the source and the electric field associated with the capacitive ele-
ments.

Example 2.1

The supply voltage in Figure 2.1 is given by v(t) = 100 coswt and the load is
inductive with impedance Z = 1.26/60° Q). Determine the expression for the
instantaneous current () and the instantaneous power p(t). Use MATLAB to plot
i(t), v(¢), p(t), pr(t), and px (t) over an interval of 0 to 2.

- 100£0°

Imas = 1o 7600 =804~ 60" A
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v(t) = Vi coswt, i(t) = I, cos(wt — 60)

p(t) = v()i(t)

100 6000
50 / 4000
0 / 2000 |
—50| 0
-1 I 1 _ |\/ L v
0000 200 300 20020156 200 360 200
wt, degree wt, degree
pr(t), Eq.2.6 \ px(t), Eq.2.8
4000 4000
3000 | A / 2000
2000 0
1000 - 2000 \/ v
00100 200 300 00 9% 100 200 300 400
wt, degree wt, degree
FIGURE 2.2

Instantaneous current, voltage, power, Egs. 2.6 and 2.8.

therefore
i(t) = 80 cos(wt — 60°) A
p(t) = v(t) i(t) = 8000 cos wt cos(wt — 60°) W

The following statements are used to plot the above instantaneous quantities and
the instantaneous terms given by (2.6) and (2.8).

Vm'= 100; thetav = O; % Voltage amplitude and phase angle

Z =1.25; gama = 60; % Impedance magnitude and phase angle
thetai = thetav - gama; % Current phase angle in degree
theta = (thetav - thetai)*pi/180; % Degree to radian
Im = Vm/Z; % Current amplitude
wt = 0:.05:2%pi; % wt from 0 to 2*pi

v = Vmxcos(wt); % Instantaneous voltage
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i = Imxcos(wt + thetai*pi/180); % Instantaneous current
p = v.*xi; % Instantaneous power
V = Vm/sqrt(2); I=Im/sqrt(2); % rms voltage and current
P = VxIxcos(theta); % Average power
Q = VsIxsin(theta); % Reactive power
S =P + j*Q % Complex power
pr = Px(1 + cos(2x(wt + thetav))); % Eq. (2.6)
px = Q*sin(2*(wt + thetav)); h Eq. (2.8)
PP = Pxones(1, length(wt));%Average power of length w for plot
xline = zeros(1l, length(wt)); %generates a zero vector
wt=180/pi*wt; % converting radian to degree

subplot(2,2,1), plot(wt, v, wt,i,wt, xline), grid
title([’v(t)=Vm coswt, i(t)=Im cos(wt+’,num2str(thetai), ?)’])
~xlabel(’wt, degree’)

subplot(2,2,2), plot(wt, p, wt, xline), grid
title(Cp(t)=v(t) i(t)’),xlabel(’wt, degree’)
subplot(2,2,3), plot(wt, pr, wt, PP,wt,xline), grid
title(’pr(t) Eq. 2.6’), xlabel(’wt, degree’)

subplot(2,2,4), plot(wt, px, wt, xline), grid
title(’px(t) Eq. 2.8’), xlabel(’wt, degree’), subplot(111)

2.3 COMPLEX POWER

The rms voltage phasor of (2.1) and the rms current phasor of (2.2) shown in Fig-
ure 2.3 are

V = V|0, and I = |I|/6;

The term V I* results in

P

FIGURE 2.3
Phasor diagram and power triangle for an inductive load (lagging PF).

VI* = |V||I|£6, — 6; = |V||T|L6

PSR
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= |V|}I|cos @ + j|V||I|sin @

The above equation defines a complex quantity where its real part is the average
(real) power P and its imaginary part is the reactive power Q. Thus, the complex
power designated by S is given by

S=VI*=P+jQ (2.10)

The magnitude of S, |S| = +/P? + @2, is the apparent power; its unit is volt-
amperes and the larger units are kVA or MVA. Apparent power gives a direct indi-
cation of heating and is used as a rating unit of power equipment. Apparent power
has practical significance for an electric utility company since a utility company
must supply both average and apparent power to consumers.

The reactive power () is positive when the phase angle 6 between voltage and
current (impedance angle) is positive (i.e., when the load impedance is inductive,
and [ lags V). Q is negative when 6 is negative (i.e., when the load impedance is
capacitive and I leads V') as shown in Figure 2.4.

In working with Equation (2.10 ) it is convenient to think of P, Q, and S as
forming the sides of a right triangle as shown in Figures 2.3 and 2.4.

P
4
Q
S
FIGURE 24
Phasor diagram and power triangle for a capacitive load (leading PF).
If the load impedance is Z then
V=21 (2.11)
substituting for V' into (2.10) yields
S=VI*=ZIT* = R|I)? + j X|I|? (2.12)

From (2.12) it is evident that complex power S and impedance Z have the same
angle. Because the power triangle and the impedance triangle are similar triangles,
the impedance angle is sometimes called the power angle.

Similarly, substituting for I from (2.11) into (2.10) yields

Vv [V
=VI = =L 2.1
S=VI =7 (2.13)

L
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From (2.13), the impedance of the complex power S is given by

P

VA
S*

(2.14)

2.4 THE COMPLEX POWER BALANCE

From the conservation of energy, it is clear that real power supplied by the source is
equal to the sum of real powers absorbed by the load. At the same time, a balance
between the reactive power must be maintained. Thus the total complex power
delivered to the loads in parallel is the sum of the complex powers delivered to
each. Proof of this is as follows:

FIGURE 2.5
Three loads in parallel.

For the three loads shown in Figure 2.5, the total complex power is given by

S=VI'=V[h+ L+ L=V} +VE+VI (2.15)

Example 2.2

In the above circuit V. = 1200£0° V, Z; = 60 + j0 2, Zs = 6 + j12 Q and
Z3 = 30 — 530 €. Find the power absorbed by each load and the total complex
power.

1200£0°

1200/0°

o= —— - — 9

9 6+ ;12 40 — 780 A
200/0° .

= 220020° _on 420 A

~ 30— 430
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Sy = VI§ =1200£0°(20 — j0) = 24,000 W + 50 var
Sg = VI3 = 1200£0°(40 + 580) = 48,000 W + 596,000 var
S3 = VI3 = 1200£0°(20 — j20) = 24,000 W — 524,000 var
The total load complex power adds up to
S =81+ 82+ 53 = 96,000 W + 572,000 var

Alternatively, the sum of complex power delivered to the load can be obtained by
first finding the total current.

I=1I+ I+ I3 = (20 + j0) + (40 — 780) + (20 + j20)
= 80 — 560 = 100/—36.87° A
and
S = VI* = (1200£0°)(100/36.87°) = 120,000/36.87° VA
= 96,000 W + §72,000 var

A final insight is contained in Figure 2.6, which shows the current phasor diagram
and the complex power vector representation.

Sa
S
I3
I 1 S 1
S3
I
I,
FIGURE 2.6

Current phasor diagram and power plane diagram.

The complex powers may also be obtained directly from (2.14)

V> (1200)*
Sy = Izl _ 6%0). = 24,000 W+ 0
1
2 2
< =6 ,
VP (1200)?

Ss = 24,000 W — 524, 000 var

Z3 30+ 430




2.5. POWER FACTOR CORRECTION 23

2.5 POWER FACTOR CORRECTION

It can be seen from (2.7) that the apparent power will be larger than P if the power
factor is less than 1. Thus the current I that must be supplied will be larger for
PF < 1 than it would be for PF' = 1, even though the average power P supplied
is the same in either case. A larger current cannot be supplied without additional
cost to the utility company. Thus, it is in the power company’s (and its customer’s)
best interest that major loads on the system have power factors as close to 1 as
possible. In order to maintain the power factor close to unity, power companies
install banks of capacitors throughout the network as needed. They also impose an
additional charge to industrial consumers who operate at low power factors. Since
industrial loads are inductive and have low lagging power factors, it is beneficial to
install capacitors to improve the power factor. This consideration is not important
for residential and small commercial customers because their power factors are
close to unity.

Example 2.3

Two loads Z; = 100 + j0 2 and Z3 = 10 + 520 2 are connected across a 200-V
rms, 60-Hz source as shown in Figure 2.7.

(a) Find the total real and reactive power, the power factor at the source, and the
total current.

I I I Y1,
100
200 V C_r) § 100 ¢
j200
I
]

FIGURE 2.7
Circuit for Example 2.3 and the power triangle.

200/0° .

L = 100 =2/0° A
20020° .

2~ 1042 1 A

Sy = VI} = 200£0°(2 — j0) = 400 W + 50 var
Sa = VI3 = 200£0°(4 + j8) = 800 W + 51600 var

e
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Total apparent power and current are

S = P+ jQ = 1200 + 51600 = 2000/53.13° VA

$*  2000/—53.13°
== Y 10/-53.13°
I==, 0070 0/-53.13° A

Power factor at the source is
PF = cos(53.13) = 0.6 lagging

(b) Find the capacitance of the capacitor connected across the loads to improve the
overall power factor to 0.8 lagging.

Total real power P = 1200 W at the new power factor 0.8 lagging. Therefore

' = cos™(0.8) = 36.87°
Q' = Ptan ¢’ = 1200tan(36.87°) = 900 var
Q. = 1600 — 900 = 700 var
V> _ (200)
TS T gm0 T
P
2m(60)(57.14)

—457.14 Q
= 46.42 uF

The total power and the new current are

S’ = 1200 + 5900 = 1500/36.87°
7= S _ 1500£—36.87°
’ | % 200£0°

Note the reduction in the supply current from 10 A to 7.5 A.

= 7.5/-36.87°

Example 2.4

Three loads are connected in parallel across a 1400-V rms, 60-Hz single-phase
supply as shown in Figure 2.8.

Load 1: Inductive load, 125 kVA at 0.28 power factor.
Load 2: Capacitive load, 10 kW and 40 kvar,
Load 3: Resistive load of 15 kW.

(a) Find the total kW, kvar, kVA, and the supply power factor,
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I I I I

1400 V <t> 1 2 3

FIGURE 2.8
Circuit for Example 2.4.

An inductive load has a lagging power factor, the capacitive load has a lead-
ing power factor, and the resistive load has a unity power factor.

For Load 1:
61 = cos~1(0.28) = 73.74° lagging
The load complex powers are

S1 =125/73.74 kVA = 35 kW + 5120 kvar
S9 = 10 kW — 540 kvar
S3 = 15 kW + 50 kvar

The total apparent power is

S=P+jQ=25 +8+53
= (35 + 7120) + (10 — j40) + (15 + 0)
= 60 kW + 780 kvar = 100/53.13 kVA

The total current is

S* _ 100,000/—53.13°
Vv 1400/0°

The supply power factor is

= 71.43/-53.13° A

PF = cos(53.13) = 0.6 lagging

(b) A capacitor of negligible resistance is connected in parallel with the above loads
to improve the power factor to 0.8 lagging. Determine the kvar rating of this ca-
pacitor and the capacitance in uF.

e i
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Total real power P = 60 kW at the new power factor of 0.8 lagging results in the
new reactive power Q’.

¢’ = cos™1(0.8) = 36.87°
Q' = 60tan(36.87°) = 45 kvar

Therefore, the required capacitor kvar is

Qc =80 —45 =35 kvar

and
V]2 14002 .
X, =YL — —j56 Q)
°= g T 35,000
108
= — 4737 4F
©= srte0yEe) ~ AT H

and the new current is

i _ 60,000 — 745,000
Ve 1400£0°
Note the reduction in the supply current from 71.43 A to 53.57 A.

r = 53.57/—-36.87° A

2.6 COMPLEX POWER FLOW

Consider two ideal voltage sources connected by a line of impedance Z = R +
JX € as shown in Figure 2.9.

Z=R+jX =|Z| Ly°
e AAA— YYD
I

'e or

FIGURE 2.9
Two interconnected voltage sources.

Let the phasor voltage be V; = |V;|/8; and V3 = |V,|/ 8. For the assumed direc-
tion of current
_ Wlé —Va|£8, WA

I L8 =y = 26y —
12 211y 121 " T T g
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The complex power S13 is given by

v Vil

512 = ‘/1.[12 = |V1|l(51 [IZI Z’)"—' 51 —— l—Z-"Z’Y b 52]
A ANA
= Ly — Ly + 61— 8y
|Z] |Z]

Thus, the real and reactive power at the sending end are

2
Py = %— cosy — IVTQ‘I&I cos(y + 61 — d2) (2.16)
il . ilval
Q12 = —5-siny — sin(y + d; — &, 2.17)
2= g R ama)

Power system transmission lines have small resistance compared to the reactance.
Assuming R = 0 (i.e., Z = X /90° ), the above equations become

P12 = %/2-' sin(51 - 52) (2.18)
Vi
Q12 = ITE"I“VII — |Va| cos(d; — 82) ] (2.19)

Since R = 0, there are no transmission line losses and the real power sent equals
the real power received.

From the above results, for a typical power system with small R/X ratio, the
following important observations are made :

1. Equation (2.18) shows that small changes in &; or 5 will have a significant
effect on the real power flow, while small changes in voltage magnitudes will
not have appreciable effect on the real power flow. Therefore, the flow of real
power on a transmission line is governed mainly by the angle difference of
the terminal voltages (i.e., P12 o sin § ), where § = §; — 0. If V] leads Vs,
d is positive and the real power flows from node 1 to node 2. If Vi lags Vo, 6
is negative and power flows from node 2 to node 1.

2. Assuming R = 0, the theoretical maximum power (static transmission ca-
pacity) occurs when § = 90° and the maximum power transfer is given by

VAN
Pma:z: = _I 1)(‘l‘l‘_2l

In Chapter 3 we learn that increasing 6 beyond the static transmission capac-
ity will result in loss of synchronism between the two machines.

(2.20)
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3. For maintaining transient stability, the power system is usually operated with
small load angle 4. Also, from (2.19) the reactive power flow is determined
by the magnitude difference of terminal voltages, (i.e., @ « |V1| — |Vz)).

Example 2.5

Two voltage sources V; = 120/—5V and V5 = 100/0 V are connected by a short
line of impedance Z = 1 + 572 as shown in Figure 2.9. Determine the real and
reactive power supplied or received by each source and the power loss in the line.

_Fko —_ 1 o]
Iy = 1204257 2 10040° _ 4 1o 110.02° A
1447

_100£0° — 120/ — 5°
- 1+ 47

S12 = ViI}, = 376.2/105.02° = —97.5 W + §363.3 var
So1 = VoI, = 313.5/—69.98° = 107.3 W — §294.5 var

Iy = 3.135/69.98° A

Line loss is given by
S =81+5,=98 W + ;j68.8 var

From the above results, since P, is negative and P, is positive, source 1 receives
97.5 W, and source 2 generates 107.3 W and the real power loss in the line is 9.8
W. The real power loss in the line can be checked by

Pp = R|I15]* = (1)(3.135)2 = 9.8 W

Also, since ()1 is positive and Q3 is negative, source 1 delivers 363.3 var and source
2 receives 294.5 var, and the reactive power loss in the line is 68.6 var. The reactive
power loss in the line can be checked by

Qr = X|I2)* = (7)(3.135)2 = 68.8 var

Example 2.6

This example concerns the direction of power flow between two voltage sources.
Write a MATLAB program for the system of Example 2.5 such that the phase an-
gle of source 1 is changed from its initial value by £30° in steps of 5°. Voltage
magnitudes of the two sources and the voltage phase angle of source 2 is to be kept
constant. Compute the complex power for each source and the line loss. Tabulate

the real power and plot P; , P,, and Py, versus voltage phase angle . The following
commands
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E1 = input(’Source # 1 Voltage Mag. = ’);

al = input(’Source# 1 Phase Angle = ’);

E2 = input(’Source # 2 Voltage Mag. = ’);

a2 = input(’Source # 2 Phase Angle = ’);

R = input(’Line Resistance = ’);

X = input(’Line Reactance = ’);

Z = R + j*X; % Line impedance
al = (-30+al1:5:30+al)’; % Change al by +/- 30, col. array

alr = al*pi/180;
k = length(al);
a2 = ones(k,1)*a2; % Create col. array of same length for a2
a2r = a2%pi/180; % Convert degree to radian
V1 = El.*cos(alr) + j*El.*sin(alr);

V2 = E2.%cos(a2r) + j*E2.*sin(a2r);

I12 = (Vi1 - V2)./Z; 121=-112;

% Convert degree to radian

S1 = Vi.*conj(I12); P1 = real(S1); Qi = imag(S1);
S2 = V2.%conj(I21); P2 = real(S2); Q2 = imag(S2);
SL = S1+82; PL = real(SL); QL = imag(SL);
Resulti = [al, P1, P2, PL];

disp(’ Delta 1 P-1 P-2 P-L )
disp(Resultl)

plot(al, P1, ai, P2, al,PL)
xlabel(’Source #1 Voltage Phase Angle’)
ylabel(’ P, Watts’),

text(-26, -550, ’P1’), text(-26, 600,’P2’),
text (-26, 100, ’PL’)

result in
Source # 1 Voltage Mag. = 120
Source # 1 Phase Angle = -5
Source # 2 Voltage Mag. = 100
Source # 2 Phase Angle = 0
Line Resistance = 1
Line Reactance = 7
Delta i P-1 pP-2 P-L
-35.0000 -872.2049 967.0119 94.8070
-30.0000 ~-759.8461 832.15639 72.3078
-25.0000 -639.5125 692.4848 52.9723
-20.0000 -512.1201 549.0676 36.9475

~-15.0000 -378.6382 402.9938 24 .3556
-10.0000 -240.0828 255.3751 15.2923
-5.0000 -97.5084 107.3349 9.8265

0 48.0000 -40.0000 8.0000
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5.0000  195.3349 -185.5084  9.8265
10.0000  343.3751 -328.0828  15.2023
15.0000  490.9938 -466.6382  24.3556
20.0000 637.0676 -600.1201 36.9475
25.0000  780.4848 -727.5125  52.9723
1000
800 f
600 | %)
400}
P 200 | Py
Watts 0
~200}
—400|
~600 | A
—800 |
%% H T S S 0 10 20 30

Source #1 Voltage Phase Angle

FIGURE 2.10
Real power versus voltage phase angle 4.

Examination of Figure 2.10 shows that the flow of real power along the intercon-
nection is determined by the angle difference of the terminal voltages. Problem 2.9
requires the development of a similar program for demonstrating the dependency
of reactive power on the magnitude difference of terminal voltages.

2.7 BALANCED THREE-PHASE CIRCUITS

The generation, transmission and distribution of electric power is accomplished by
means of three-phase circuits. At the generating station, three sinusoidal voltages
are generated having the same amplitude but displaced in phase by 120°. This is
called a balanced source. If the generated voltages reach their peak values in the
sequentjal order ABC, the generator is said to have a positive phase sequence,
shown in Figure 2.11(a). If the phase order is ACB, the generator is said to have a
negative phase sequence, as shown in Figure 2.11(b).
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ECn EBn,

EAn EAn
EBn (a) Ec, (b)
FIGURE 2.11

(a) Positive, or ABC, phase sequence. (b) Negative, or ACB, phase sequence.

In a three-phase system, the instantaneous power delivered to the external
loads is constant rather than pulsating as it is in a single-phase circuit. Also, three-
phase motors, having constant torque, start and run much better than single-phase
motors. This feature of three-phase power, coupled with the inherent efficiency of
its transmission compared to single-phase (less wire for the same delivered power),
accounts for its universal use.

A power system has Y-connected generators and usually includes both A-
and Y-connected loads. Generators are rarely A-connected, because if the voltages
are not perfectly balanced, there will be a net voltage, and consequently a circulat-
ing current, around the A. Also, the phase voltages are lower in the Y-connected
generator, and thus less insulation is required. Figure 2.12 shows a Y-connected
generator supplying balanced Y-connected loads through a three-phase line. As-
suming a positive phase sequence (phase order ABC) the generated voltages are:

Ean = |E,|L0°
Epn = |E,|/~120° (2.21)
Ecn = |Ep|{—240°

In power systems, great care is taken to ensure that the loads of transmission lines
are balanced. For balanced loads, the terminal voltages of the generator Va,, Vi,
and Vi, and the phase voltages V,,,, V3, and V., at the load terminals are balanced.
For “phase A,” these are given by

Van = Ean — Zgl, (2.22)
Van = Van — 211, (2.23)

R
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VAn 'ZL Van

FIGURE 2.12
A Y-connected generator supplying a Y-connected load.

2.8 Y-CONNECTED LOADS

To find the relationship between the line voltages (line-to-line voltages) and the
phase voltages (line-to-neutral voltages), we assume a positive, or ABC, sequence.
We arbitrarily choose the line-to-neutral voltage of the a-phase as the reference,
thus

Van = [Vp|£0°
Vin = |Vp|£—120° (2.24)
Ven = |Vpl£—240°

where |V}| represents the magnitude of the phase voltage (line-to-neutral voltage).
The line voltages at the load terminals in terms of the phase voltages are found
by the application of Kirchhoff’s voltage law

Vab = Van — Vin = [Vp[(1£0° — 1£-120°) = v/3|V,|£30°
Voe = Von — Ven = [Vp|(1£—120° — 1/-240°) = V3|V, |/—90°  (2.25)
Vea = Ven — Van = [Vp|(1£~240° — 1£0°) = /3|V,|£150°

The voltage phasor diagram of the Y-connected loads of Figure 2.12 is shown
in Figure 2.13. The relationship between the line voltages and phase voltages is
demonstrated graphically.
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Vca Vcn _ _Vab
/ /
/ /
/ /

30°

Van
Vin
Ve
FIGURE 2.13

Phasor diagram showing phase and line voltages.

If the rms value of any of the line voltages is denoted by V, then one of the
important characteristics of the Y-connected three-phase load may be expressed as

Vi = V3|V,|/30° (2.26)

Thus in the case of Y-connected loads, the magnitude of the line voltage is
+/3 times the magnitude of the phase voltage, and for a positive phase sequence,
the set of line voltages leads the set of phase voltages by 30°.

The three-phase currents in Figure 2.12 also possess three-phase symmetry
and are given by

Vi
I = Z: =|L|L-6
— ‘/bn — o
Iy = 2 = || £—120° — 6 2.27)
ZP
v

L= 2 = |L|L—240° — @
(64 Zp ¥4

where 8 is the impedance phase angle.

The currents in lines are also the phase currents (the current carried by the
phase impedances). Thus

I=1, (2.28)
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2.9 A-CONNECTED LOADS

A balanced A-connected load (with equal phase impedances) is shown in Fig-
ure 2.14.

"
B
g L
FIGURE 2.14

A A-connected load.

It is clear from the inspection of the circuit that the line voltages are the same
as phase voltages.

V=V, (2.29)

Consider the phasor diagram shown in Figure 2.15, where the phase current I, is
arbitrarily chosen as reference. we have

Iy = ]Ip|40° '
Ipe = |Ip|Z~120° (2.30)
I = |L,|£—-240°

where [Ip[ represents the magnitude of the phase current.

I,

I

Ibc

FIGURE 2.15
Phasor diagram showing phase and line currents.
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The relationship between phase and line currents can be obtained by applying
Kirchhoff’s current law at the corners of A.

I = Inp — Ieq = || (1£0° — 1£—240°) = /3|I,|£—30°
Iy = Iye — Inp = |Ip|(1£~120° — 1£0°) = V/3|I,|L~150° (2.31)
Io = Iea — Ipe = |Ip|(1£—240° — 1£—120°) = /3|1, £90°

The relationship between the line currents and phase currents is demonstrated
graphically in Figure 2.15.
If the rms of any of the line currents is denoted by I, then one of the impor-
tant characteristics of the A-connected three-phase load may be expressed as

I, = V3|I,| £-30° (2.32)

Thus in the case of A-connected loads, the magnitude of the line currenf is V3
times the magnitude of the phase current, and with positive phase sequence, the set
of line currents lags the set of phase currents by 30°.

2.10 A-Y TRANSFORMATION

For analyzing network problems, it is convenient to replace the A-connected cir-
cuit with an equivalent Y-connected circuit. Consider the fictitious Y-connected
circuit of Zy (Y/phase which is equivalent to a balanced A-connected circuit of
Zp Qphase, as shown in Figure 2.16.

a
I,
n
co I, I b
(b)
FIGURE 2.16
(a) A to (b) Y-connection.

For the A-connected circuit, the phase current I, is given by

Vo  V, Vap + V.
=2 8 _ 2 %« 2.33
A Zn (2:33)

o e
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FIGURE 2.17
Phasor diagram showing phase and line voltages.

The phasor diagram in Figure 2.17 shows the relationship between balanced phase
and line-to-line voltages. From this phasor diagram, we find

Vab + Vae = V3 |Van | £30° + V/3 [V | £~30° (2.34)
=3Ven (2.35)

Substituting in (2.33), we get

3Van
I =
a Zn
or ’
Z
Van = —3310 (2.36)

Now, for the Y-connected circuit, we have
Van = ZYIG. (2.37)

Thus, from (2.36) and (2.37), we find that

Zy = % (2.38)

211 PER-PHASE ANALYSIS

The current in the neutral of the balanced Y-connected loads shown in Figure 2.12
is given by
Ln=1,+L+1.,=0 (2.39)
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Since the neutral carries no current, a neutral wire of any impedance may be re-
placed by any other impedance, including a short circuit and an open circuit. The
return line may not actually exist, but regardless, a line of zero impedance is in-
cluded between the two neutral points. The balanced power system problems are
then solved on a “per-phase” basis. It is understood that the other two phases carry
identical currents except for the phase shift.

We may then look at only one phase, say “phase A,” consisting of the source
Van in series with Z7, and Z,, as shown in Figure 2.18. The neutral is taken as
datum and usually a single-subscript notation is used for phase voltages.

VA I a ZL Va

=

FIGURE 2.18
Single-phase circuit for per-phase analysis.

If the load in a three-phase circuit is connected in a A, it can be transformed
into a Y by using the A-to-Y transformation. When the load is balanced, the
impedance of each leg of the Y is one-third the impedance of each leg of the A, as
given by (2.38), and the circuit is modeled by the single-phase equivalent circuit.

2.12 BALANCED THREE-PHASE POWER

Consider a balanced three-phase source supplying a balanced Y- or A- connected
load with the following instantaneous voltages

Van = V2| Vp| cos(wt + 6)
Upn = V2|Vj| cos(wt + 6, — 120°) (2.40)
Ven = V2|V, cos(wt + 6, — 240°)
For a balanced load the phase currents are
ia = V2|Ip| cos(wt + 6;)
ib = V2| Iy| cos(wt + 6; — 120°) - (241)
ie = V2|I| cos(wt + 8; — 240°)



38 2. BASIC PRINCIPLES

where |V;| and |Ip| are the magnitudes of the rms phase voltage and current, re-
spectively. The total instantaneous power is the sum of the instantaneous power of
each phase, given by

P3¢ = Vanta + Upnip + Venlc (2.42)
Substituting for the instantaneous voltages and currents from (2.40) and (2.41) into
(2.42)

P3p = 2|Vp||I,| cos(wt + 8,) cos(wt + 6;)
+2|Vp||Ip| cos(wt + 8, — 120°) cos(wt + §; — 120°)
+2|V}||Ip| cos(wt + 8, — 240°) cos(wt + 8; ~ 240°)

Using the trigonometric identity (2.4)

p3p = |VpllIp|[cos(6y — 6;) + cos(2wt + 6, + 6;)]
+VollIpl[cos(6, — 6;) + cos(2wt + 6, + 0; — 240°)]  (2.43)
+|Voll Il [cos(8, — 8;) + cos(2wt + 6, + 6; — 480°)]

The three double frequency cosine terms in (2.43) are out of phase with each other
by 120° and add up to zero, and the three-phase instantaneous power is

P3g = 3|Vp||Ip| cos 6 (2.44)

0 = 6, — 0; is the angle between phase voltage and phase current or the impedance
angle. )

Note that although the power in each phase is pulsating, the total instanta-
neous power is constant and equal to three times the real power in each phase. In-
deed, this constant power is the main advantage of the three-phase system over the
single-phase system. Since the power in each phase is pulsating, the power, then,
is made up of the real power and the reactive power. In order to obtain formula
symmetry between real and reactive powers, the concept of complex or apparent
power (S) is extended to three-phase systems by defining the three-phase reactive
power as

Q3¢ = 3|Vp”Ip| sin @ (2.45)
Thus, the complex three-phase power is
S3¢ = Py + jQ3¢ (2.46)
or
S3p = 3VpI; (2.47)

Equations (2.44) and (2.45) are sometimes expressed in terms of the rms
magnitude of the line voltage and the rms magnitude of the line current. In a Y-
connected load the phase voltage |V;| = [VL|/+/3 and the phase current I, = Ir.
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In the A-connection V,, = V7, and |I,| = |IL|/+/3. Substituting for the phase volt-
age and phase currents in (2.44) and (2.45), the real and reactive powers for either
connection are given by

P3s = V/3|Vi||IL| cos 6 (2.48)

and
Q3p = V3|Vi||IL|sin 8 (2.49)

A comparison of the last two expressions with (2.44) and (2.45) shows that the
equation for the power in a three-phase system is the same for either a Y ora A
connection when the power is expressed in terms of line quantities.

When using (2.48) and (2.49) to calculate the total real and reactive power,
remember that @ is the phase angle between the phase voltage and the phase current.
As in the case of single-phase systems for the computation of power, it is best to
use the complex power expression in terms of phase quantities given by (2.47).
The rated power is customarily given for the three-phase and rated voltage is the
line-to-line voltage. Thus, in using the per-phase equivalent circuit, care must be
taken to use per-phase voltage by dividing the rated voltage by /3.

Example 2.7

A three-phase line has an impedance of 2 + j4 (2 as shown in Figure 2.19.

2+ 740
(Q, o= AANANTYT

a
Vil = 207.85V
bl il = 20785V b/“»/ilfson
\//\N-gzlsﬂ
C o AAAN~YT e [

300
7409

n

FIGURE 2.19
Three-phase circuit diagram for Example 2.7.

The line feeds two balanced three-phase loads that are connected in parallel. The
first load is Y-connected and has an impedance of 30+ 3740 €2 per phase. The second
load is A-connected and has an impedance of 60 — 545 €. The line is energized
at the sending end from a three-phase balanced supply of line voltage 207.85 V.
Taking the phase voltage V, as reference, determine:

(a) The current, real power, and reactive power drawn from the supply.
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(b) The line voltage at the combined loads.
(c) The current per phase in each load.
(d) The total real and reactive powers in each load and the line.

(a) The A-connected load is transformed into an equivalent Y. The impedance per
phase of the equivalent Y is -

— 4
Z2=_6_0_3‘7._5=20—j15 Q
The phase voltage is
- 207.85
i = =120V
SRVE
The single-phase equivalent circuit is shown in Figure 2.20.
I 24740
a o—_._>.._I\NV\I_JWY\
+ Y5 I,
30Q 2092
Vi1 =12040°V Va

74082 —715Q2
7 o — T
FIGURE 2.20

Single-phase equivalent circuit for Example 2.7.

The total impedance is
(30 + 740)(20 — j15)

Z=2+j4
TI%+ B0+ j40) + (20 = 715)
=24 4422 j4=240

With the phase voltage V,,, as reference, the current in phase a is
Vi 120/0°
=z T o oA

The three-phase power supplied is

I

S =3V I" =3(120£0°)(5£0°) = 1800 W
(b) The phase voltage at the load terminal is

Vp = 120£0° — (2 + 54)(5£0°) = 110 — j20
=111.8/-10.3° V
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The line voltage at the load terminal is
Vaab = V3 £30° Vo = v/3 (111.8)/19.7° = 193.64/19.7° V

(c) The current per phase in the Y-connected load and in the equivalent Y of the A
load is

Vo 110 — j20 .
Li=-2="2"J2 _1_j9-92236/—634°A
1= 7 T 30+ 440 J 6

Vo 110 — 20 .
=22 =2 _ 4| 2= 4472/2656° A
2= 7 = g5 = A+ I2 = 447202656

The phase current in the original A-connected load, i.e., I, is given by

;oo B 44712/%56°
O B30 /3/—30°

(d) The three-phase power absorbed by each load is

= 2.582/56.56° A

.

Sy = 3VaI} = 3(111.8/ — 10.3°)(2.236£63.4°) = 450 W + 5600 var
Sy = 3VoI} = 3(111.8/ — 10.3°)(4.472/—26.56°) = 1200 W — 5900 var

—

The three-pixase power absorbed by the line is
St =3(Rr +jXL)|I> = 3(2 + j4)(5)% = 150 W + 5300 var

It is clear that the sum of load powers and line losses is equal to the power delivered
from the supply, i.e.,

S1+ 52 + S = (450 + 5600) + (1200 — 5900) + (150 + 5300)
= 1800 W + 50 var

Example 2.8

A three-phase line has an impedance of 0.4 + 72.7 ) per phase. The line feeds two
balanced three-phase loads that are connected in parallel. The first load is absorb-
ing 560.1 kVA at 0.707 power factor lagging. The second load absorbs 132 kW at
unity power factor. The line-to-line voltage at the load end of the line is 3810.5 V.
Determine:

(a) The magnitude of the line voltage at the source end of the line.
(b) Total real and reactive power loss in the line.
(c) Real power and reactive power supplied at the sending end of the line.
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1 04+4270

+yn I
" Vy = 2200.0°
no -
FIGURE 2.21

Single-phase equivalent diagram for Example 2.8.

(a) The phase voltage at the load terminals is

3810.5
Vo=—=2200V
2 \/g ‘

The single-phase equivalent circuit is shown in Figure 2.21.
The total complex power is

Sr(ag) = 560.1(0.707 + 50.707) + 132 = 528 + 5396
= 660/36.87° kVA

With the phase voltage V5 as reference, the current in the line is

Sh 660,000/ —36.87°

(3¢) ? M {o]
I= = = 100/-36. A
3Vy 3(220020°) 00£-36.87

The phase voltage at the sending end is

V1 = 2200£0° + (0.4 + 52.7)100/—36.87° = 2401.7/4.58° V
The magnitude of the line voltage at the sending end of the line is
[ViLl = V3|Vi| = V3(2401.7) = 4160 V
(b) The three-phase power loss in the line is

Stig) = 3RII|* + j3X1|% = 3(0.4)(100)2 + j3(2.7)(100)?
=12 kW + 581 kvar

(c) The three-phase sending power is

Ss3¢) = 3V1I* = 3(2401.7£4.58°)(100/36.87°) = 540 kW + j477 kvar

It is clear that the sum of load powers and the line losses is equal to the power

delivered from the supply, i.e.,

Ss(a¢) = Sr(3¢) + Spag) = (528 + 5396) + (12 + j81) = 540 kW + 5477 kvar

ek
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PROBLEMS

2.1. Modify the program in Example 2.1 such that the following quantities can
be entered by the user:
The peak amplitude V;,, and the phase angle 8, of the sinusoidal supply
v(t) = Vp, cos(wt + 6,). The impedance magnitude Z, and the phase angle
«y of the load.
The program should produce plots for i(t), v(t), p(t), pr(t) and p,(t), sim-
ilar to Example 2.1. Run the program for V,, = 100 V, 8, = 0 and the
following loads:

An inductive load, Z = 1.25/60°Q
A capacitive load, Z = 2.0/-30°Q
A resistive load, Z = 2.5/0°)

(a) From p,(t) and p,(t) plots, estimate the real and reactive power for each
load. Draw a conclusion regarding the sign of reactive power for inductive
and capacitive loads.

(b) Using phasor values of current and voltage, calculate the real and reactive
power for each load and compare with the results obtained from the curves.
(c) If the above loads are all connected across the same power supply, deter-
mine the total real and reactive power taken from the supply.

2.2. A single-phase load is supplied with a sinusoidal voltage

J v(t) = 200 cos(377t)
// The resulting instantaneous power is

s

p(t) = 800 + 1000 cos(754¢ — 36.87°)

(a) Find the complex power supplied to the load.

(b) Find the instantaneous current ¢(t) and the rms value of the current sup-
plied to the load.

(c) Find the load impedance.

(d) Use MATLAB to plot v(t), p(t), and i(t) = p(t)/v(t) over a range of
0 to 16.67 ms in steps of 0.1 ms. From the current plot, estimate the peak
amplitude, phase angle and the angular frequency of the current, and verify
the results obtained in part (b). Note in MATLAB the command for array or
element-by-element division is . /.

2.3.  An inductive load consisting of R and X in series feeding from a 2400-V
rms supply absorbs 288 kW at a lagging power factor of 0.8. Determine R
and X.

s S BT
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24. An inductive load consisting of R and X in parallel feeding from a 2400-V

rms supply absorbs 288 kW at a lagging power factor of 0.8. Determine R
and X.

2.5. Two loads connected in parallel are supplied from a single-phase 240-V rms
source. The two loads draw a total real power of 400 kW at a power factor
of 0.8 lagging. One of the loads draws 120 kW at a power factor of 0.96
leading. Find the complex power of the other load.

2.6. The load shown in Figure 2.22 consists of a resistance R in parallel with a
capacitor of reactance X. The load is fed from a single-phase supply through
a line of impedance 8.4 + j11.2 €. The rms voltage at the load terminal is
1200£0° V rms, and the load is taking 30 kVA at 0.8 power factor leading.
(a) Find the values of R and X.
(b) Determine the supply voltage V.

8.4+ 41120
I .

VCD 1200£0° VIR ——3iX

FIGURE 2.22
Circuit for Problem 2.6.

2.7. Twoimpedances, Z; = 0.8+55.6 2 and Z, = 8— j16 (, and a single-phase
motor are connected in parallel across a 200-V rms, 60-Hz supply as shown
in Figure 2.23. The motor draws 5 kVA at 0.8 power factor lagging.

v T I I I
| 08" 8’ °
\ S3 = 5KVA
200£0° v @) at 0.8 PF lag
j5.63  —j16 T
FIGURE 2.23

Circuit for Problem 2.7.
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(a) Find the complex powers S, Sz for the two impedances, and S3 for the
motor.

(b) Determine the total power taken from the supply, the supply current, and
the overall power factor. 4

(c) A capacitor is connected in parallel with the loads. Find the kvar and the
capacitance in uF to improve the overall power factor to unity. What is the
new line current?

Two single-phase ideal voltage sources are connected by a line of impedance
of 0.7 4 j2.4 €2 as shown in Figure 2.24. V; = 500£16.26° V and V; =
585/0° V. Find the complex power for each machine and determine whether
they are delivering or receiving real and reactive power. Also, find the real
and the reactive power loss in the line.

0.7 + 2.4 Q
Io

500£16.26° V C_') 585/0°V

FIGURE 2.24
Circuit for Problem 2.8.

2.9.

2.10.

\

WFRQ a MATLAB program for the system of Example 2.6 such that the volt-
age magnitude of source 1 is changed from 75 percent to 100 percent of
the given value in steps of 1 V. The voltage magnitude of source 2 and the
phase angles of the two sources is to be kept constant. Compute the complex
power for each source and the line loss. Tabulate the reactive powers and
plot Q1, Q2, and Q, versus voltage magnitude |V|. From the results, show
that the flow of reactive power along the interconnection is determined by
the magnitude difference of the terminal voltages.

A balanced three-phase source with the following instantaneous phase volt-
ages

Van = 2500 cos{wt)
Upp, = 2500 cos(wt — 120°)
Uen, = 2500 cos(wt — 240°)
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2.11.

2.12.

2.13.

supplies a balanced Y-connected load of impedance Z = 250/36. 87 ° £ per
phase.

(a) Using MATLAB, plot the instantaneous powers pq, Py, p. and their sum
versus wt over a range of 0:0.05: 27 on the same graph. Comment on the
nature of the instantaneous power in each phase and the total three-phase
real power.

(b) Use (2.44) to verify the total power obtained in part (a).

A 4157-V mms, three-phase supply is applied to a balanced Y-connected
three-phase load consisting of three identical impedances of 48/36.87°€).
Taking the phase to neutral voltage V,,, as reference, calculate

(a) The phasor currents in each line.

(b) The total active and reactive power supplied to the load.

Repeat Problem 2.11 with the same fhree-phase impedances arranged in a A
connection. Take V,;, as reference.

A balanced delta connected load of 15 + 518 €2 per phase is connected at
the end of a three-phase line as shown in Figure 2.25. The line impedance is
1 + j2 €2 per phase. The line is supplied from a three-phase source with a
line-to-line voltage of 207.85 V rms. Taking V, as reference, determine the
following:

(a) Current in phase a.

(b) Total complex power supplied from the source.

(¢) Magnitude of the line-to-line voltage at the load terminal.

1+ 720

qQo——————— AAAA~YY M a
|Vi| = 207.85V
e — Y Y Y S 15 + j18Q

Co———=AAVN—"""- c

FIGURE 2.25
Circuit for Problem 2.13.

2.14.

Three parallel three-phase loads are supplied from a 207.85-V rms, 60-Hz
three-phase supply. The loads are as follows:

Load 1: A 15 hp motor operating at full-load, 93.25 percent efficiency, and
0.6 lagging power factor.
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Load 2: A balanced resistive load that draws a total of 6 kW.
Load 3: A Y-connected capacitor bank with a total rating of 16 kvar.

(a) What is the total system kW, kvar, power factor, and the supply current
per phase? ‘ ‘

(b) What is the system power factor and the supply current per phase when
the resistive load and induction motor are operating but the capacitor bank is
switched off?

2.15. Three loads are connected in parallel across a 12.47 kV three-phase supply.

Load 1: Inductive load, 60 kW and 660 kvar.
Load 2: Capacitive load, 240 kW at 0.8 power factor.
Load 3: Resistive load of 60 kW.

(a) Find the total complex power, power factor, and the supply current.

(b) A Y-connected capacitor bank is connected in parallel with the loads.
Find the total kvar and the capacitance per phase in uF to improve the overall
power factor to 0.8 lagging. What is the new line current?

2.16. A balanced A-connected load consisting of a pure resistances of 18 ) per
phase is in parallel with a purely resistive balanced Y-connected load of 12 2
per phase as shown in Figure 2.26. The combination is connected to a three-
phase balanced supply of 346.41-V rms (line-to-line) via a three-phase line
having an inductive reactance of j3 §2 per phase. Taking the phase voltage
Van as reference, determine
(a) The current, real power, and reactive power drawn from the supply.

(b) The line-to-neutral and the line-to-line voltage of phase a at the combined
load terminals.

730
ar ; Y™, a
V| = 346.41V
;LI - b 180

7
c / e, c
2120
»r“/ "

FIGURE 2.26

Circuit for Problem 2.16.




CHAPTER

3

GENERATOR AND
TRANSFORMER MODELS:
THE PER-UNIT SYSTEM

3.1 INTRODUCTION

Before the power systems network can be solved, it must first be modeled. The
three-phase balanced system is represented on a per-phase basis, which was de-
scribed in Section 2.10. The single-phase representation is also used for unbalanced
systems by means of symmetrical components which is treated in a later chapter.
In this chapter we deal with the balanced system, where transmission lines are rep-
resented by the m model as described in Chapter 4. Other essential components
of a power system are generators and transformers; their theory and construction
are discussed in standard electric machine textbooks. In this chapter, we represent
simple models of generators and transformers for steady-state balanced operation.

Next we review the one-line diagram of a power system showing generators,
transformers, transmission lines, capacitors, reactors, and loads. The diagram is
usually limited to major transmission systems. As a rule, distribution circuits and
small loads are not shown in detail but are taken into account merely as lumped
loads on substation busses.
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