التمرين الأول:

نَعرف المؤثرين التاليين:

$$A = \frac{\mathrm{d}}{\mathrm{d}x} + x \qquad B = \frac{\mathrm{d}^2}{\mathrm{d}x^2} + 2x\frac{\mathrm{d}}{\mathrm{d}x} + x^2$$

- 1. عين الدوال الذاتية للمؤثر A. هل طيف القيم الذاتية متقطع اومستمر؟
 - 2. بين أن الدوال الذاتية للمؤثر A هي أيضا دوال ذاتية للمؤثر B.
 - 3. أحسب القيم الذاتية للمؤثر B.
- 4. إعتبر دالة ما f(x) ثم أثر عليها بالمؤثر AB ثم بالمؤثر BA، ماذا تستنتج؟ التمرين الثانى:
- (A^n,B) و $[A,B^n]$ أن [A,B] و $[A,B^n]$ أن [A,B] و $[A,B^n]$ أو [A,B] و [A,B]
 - 2. إذا كان H مؤثر الطاقة لجسيم حر فأحسب:

 $[H, p_x], [H, P_y], [H, p_z], [H, x], [H, y], [H, z]$

3. إذا كان مؤثر الطاقة H معطى بـ

$$H = \frac{p_x^2}{2m} + V(x).$$

فأعد حساب مبدلات السؤال 2.

التمرين الثالث:

الدوال الذاتية لمؤثر طاقة جسيم حر داخل بئر كموني لا نهائي عرضه هي من الشكل:

$$\varphi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right).$$

نفترض أن الجسيم في اللحظة t=0 كانت الدالة التي تصف أحواله هي $\psi(x,0)=C\ \left(\varphi_1(x)+\varphi_2(x)\right).$

- ر أحسب C حتى تكون $\psi(x,0)$ منظمة.
- $\cdot E_2$ ماهو إحتمال وجوده الجسيم بالطاقة E_1 و ما هو إحتمال وجوده بالطاقة $\cdot 2$
 - 6. أحسب القيمة المتوسطة لمؤثرالطاقة $\langle H \rangle$ بإستعمال إجابة السؤال \sim
 - $\cdot E_2$ و E_1 ب القيمة المتوسطة لمؤثر الطاقة H ب المتوسطة المؤثر الطاقة H

1