Chapitre 1

Rappels et préliminairs

1.1 Préliminaires

Définition 1.1. Soient X et Y deux espaces vectoriels sur le même corps des scalaires \mathbb{R} . Un opérateur linéaire de X dans Y est une application $T: X \longrightarrow Y$ qui vérifie :

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y), \ \forall \alpha, \beta \in \mathbb{R}, \ \forall x, y \in X.$$

On écrit souvent Tx au lieu de T(x). L'espace des opérateurs linéaires de X dans Y se note L(X,Y), c'est un espace vectoriel sur $\mathbb R$ pour l'addition et la multiplication par les scalaires

$$(T+S) x = Tx + Sx,$$

 $(\lambda T) x = \lambda (Tx).$

L'opérateur identité noté I, est défini par $I(x) = x, \forall x \in X$.

Remarque 1.1. Soient X et Y deux espaces vectoriels normés et $T: X \longrightarrow Y$ un operateur, alors, T est continu sur X, si

$$\forall x \in X, \forall \varepsilon > 0, \exists \delta > 0: \forall y \in X; \|x - y\| < \delta \Longrightarrow \|Tx - Ty\| < \varepsilon.$$

L'espace des opérateurs linéaires et continus de X dans Y est noté $\mathcal{L}(X,Y)$. Lorsque $Y = \mathbb{R}$, l'espace $\mathcal{L}(X,\mathbb{R})$ s'appelle espace dual de X et se note X', ses élements s'appellent fonctionnelles sur X.

Proposition 1.1. Soit $T: X \longrightarrow Y$ un operateur linéaire, les assertions suivantes sont équivalentes,

- 1) T est uniformément continu,
- 2) T est continu,
- 3) T est continu en 0,
- 4) $\exists C > 0 : \forall x \in X, ||x|| \le 1 \Longrightarrow ||Tx|| \le C$,
- 5) $\exists C > 0, ||Tx|| \le C ||x||, \forall x \in X.$

Démonstration. Il est clair que $1) \Longrightarrow 2) \Longrightarrow 3$). Montrons que $3) \Longrightarrow 4$), la continuité de T à 0 se traduit pour $\varepsilon = 1$

$$\exists \delta > 0 : \forall x \in E, ||x|| < \delta \Longrightarrow ||Tx|| < 1,$$

alors, pour $x \in E : ||x|| < 1$ on a $\left\| \frac{\delta x}{2} \right\| < \delta$ et par suite

$$\left\| T\left(\frac{\delta x}{2}\right) \right\| < 1$$

donc

$$||Tx|| < \frac{2}{\delta} = C.$$

Montrons que 4) \Longrightarrow 5) Soit $x \in E : x \neq 0$, alors, $\left\| \frac{x}{\|x\|} \right\| \leq 1$ et par suite,

$$\left\| T\left(\frac{x}{\|x\|}\right) \right\| \le C$$

donc $||Tx|| \le C ||x||$, pour x = 0 on a ||T(0)|| = C ||0||. Montrons que 5) \Longrightarrow 1). Soient $x, y \in E$ et soit $\varepsilon > 0$, puisque,

$$||Tx - Ty|| = ||T(x - y)|| \le C ||x - y||$$

alors, pour que $||Tx - Ty|| < \varepsilon$, il suffit que, $C ||x - y|| < \varepsilon$, ce qui se vérifie si $||x - y|| < \frac{\varepsilon}{C}$. Il suffit donc de prendre $\delta = \frac{\varepsilon}{C}$.

Définition 1.2. Un opérateur linéaire $T: X \longrightarrow Y$ est dit borné, s'il transforme tout ensemble borné de X à un ensemble borné de Y, c'est à dire

$$\exists k > 0; \ \|Tx\| \le k \|x\|, \ \forall x \in X.$$

Remarque 1.1. Il est à noté que d'après la proposition ci-dessus les termes borné et continu n'ont aucune différence pour les opérateurs linéaires. L'espace $\mathcal{L}(X,Y)$ se note aussi $\mathcal{B}(X,Y)$.

Définition 1.3. Un opérateur $T \in \mathcal{L}(X,Y)$ est dit inversible s'il existe un opérateur $S \in \mathcal{L}(Y,X)$, tel que $TS = I_Y$, et $ST = I_X$. Dans se cas S se note T^{-1} .

Exemple 1.1. Soient $f \in C[0,1]$ et $T_f \in L(L^2[0,1])$ defini par

$$(T_f u)(x) = f(x) u(x), u \in L^2[0,1].$$

Alors $T_f \in \mathcal{L}(L^2[0,1])$. Soit f la fonction définie par f(x) = 1 + x. Alors, T_f est inversible.

Soit $g(x) = \frac{1}{x+1}$, alors, $T_g \in \mathcal{B}(L^2[0,1])$ et on a

$$(T_f T_g u)(x) = f(x) g(x) u(x) = u(x)$$

et

$$(T_g T_f u)(x) = g(x) f(x) u(x) = u(x)$$

donc T_f est inversible et $T_f^{-1} = T_g$.

Théorème 1.1. Soient X un espace de Banach et $T \in \mathcal{L}(X)$ avec ||I - T|| < 1, alors, T est inversible et

$$T^{-1} = \sum_{n \ge 0} (I - T)^n$$
.

Théorème 1.2. Soient X et Y deux espaces de Banach, alors si $T \in \mathcal{L}(X,Y)$ est bijectif, il est inversible.

Démonstration 1.

Définition 1.4. Un opérateur non borné est un opérateur $A:D(A)\subset X\longrightarrow Y$, définit sur D(A) un sous espace de X appelé domaine de A.

L'opérateur A est continu (borné) s'il éxiste une constante positive C telle que

$$||Ax|| \le C ||x||, \forall x \in D(A).$$

La plus petite constante C qui vérifie l'inégalité au-dessus est la norme de A,

$$||A|| = \inf \{C > 0, ||Ax|| \le C ||x||, \forall x \in D(A) \}.$$

Exemple 1.2. Soient $k:[0,1]\times[0,1]\longrightarrow\mathbb{R}$ une fonction continue et $M=\sup_{0\leq x,y\leq 1}|k\left(x,y\right)|$ et soit $A:C\left([0,1]\right)\longrightarrow C\left([0,1]\right)$ défini par

$$(Af)(x) = \int_0^1 k(x, y) f(y) dy.$$

$$|Af(x)| \le \int_0^1 |k(x,y) f(y)| dy \le ||f|| \int_0^1 |k(x,y)| dy \le M ||f|| \int_0^1 dy = M ||f||$$

 $Donc,\ \left\Vert Af\right\Vert =\sup_{0\leq x\leq 1}\left\vert Af\left(x\right) \right\vert \leq M\left\Vert f\right\Vert$

$$||A|| = \sup_{||f||=1} ||Af|| \le M$$

et A est borné.

Exemple 1.3. Soit $X = C([0,1], \mathbb{R})$ l'espace des fonctions continues de [0,1] à valeurs dans \mathbb{R} , muni de la norme de sup et soit $A: X \longrightarrow X$ defini par

$$Af = f'$$

 $\begin{array}{l} alors,\; D\left(A\right) = C^{1}\left(\left[0,1\right],\mathbb{R}\right). \\ Pour\; f\left(x\right) \; = \; x^{n} \;\; on \;\; a \; \|f\| \; = \; \sup_{x \in \left[0,1\right]} |x^{n}| \; = \; 1, \;\; mais \; \|Af\| \; = \; \sup_{x \in \left[0,1\right]} |f'\left(x\right)| \; = \; \sup_{x \in \left[0,1\right]} |nx^{n-1}| = n, \;\; donc \end{array}$

$$\forall C > 0, \exists f \in D(A), f(x) = x^n, n > C : ||f|| = 1, ||Af|| > C,$$

A est alors non borné.

Topologie de $\mathcal{L}(X)$

Soient X un espace de Banach et $\mathcal{L}(X)$ l'espace des operateurs linéaires continus de X dans X, c'est une algèbre de Banach pour la norme

$$||T|| = \sup_{||x|| \le 1} ||Tx||$$

et la multiplication des operateurs définie par

$$TS(x) = T(S(x)), x \in X.$$

La topologie induite par la norme définie ci-dessus, s'appelle la topologie de la convergence uniforme et elle est caracterisée par le fait que

$$T_n \longrightarrow T \text{ dans } \mathscr{L}(X) \Longleftrightarrow \lim_{n \longrightarrow \infty} ||T_n - T|| = 0.$$

On peut aussi munir $\mathcal{L}(X)$ par la topologie forte caractérisé par le fait qu'une suite $(T_n)_{n\in\mathbb{N}}$ converge vers un operateur T si

$$\lim_{n \to \infty} ||T_n x - Tx|| = 0, \ \forall x \in D(T),$$

ou la topologie faible caractérisé par la convergence de $(T_n)_{n\in\mathbb{N}}$ vers T définie comme suit

$$T_n \rightharpoonup T \iff \lim_{n \longrightarrow \infty} \langle f, (T_n - T) x \rangle = 0, \forall x \in D(T), \forall f \in X'.$$

Définition 1.5. Un opérateur $A:D(A)\subset X\longrightarrow Y$, est dit fermé si $D(A)\times R(A)$ est fermé dans $X\times Y$; c'est à dire

$$\forall (x_n) \subset D(A) : \lim x_n = x, \ alors, \ x \in D(A), \lim Ax_n = Ax.$$

Théorème 1.3. Soit $A:D(A)\subset X\longrightarrow Y$ un opérateur linéaire. Si $\mathcal{G}(A)$ le graphe de A est fermé alors A est borné.

Lemme 1.1 (Baire). Soient X un espace métrique complet et (F_n) une suite de fermés telle que $\overset{\circ}{F}_n = \varnothing, \forall n \in \mathbb{N}, \ alors,$

$$\left(\bigcup_{n\in\mathbb{N}} F_n\right)^{\circ} = \varnothing.$$

Théorème 1.4. Banach-Steinhauss. Une famille $\mathscr{F} = \{T_\alpha : X \longrightarrow Y, \alpha \in S\} \subset \mathscr{L}(X,Y)$ d'opérateurs linéaires continus d'un espace de Banach X dans un espace vectoriel normé Y est uniformement bornée si et seulement si elle est simplement bornée,

$$\left(\sup_{T\alpha\in\mathscr{F}}\|T_{\alpha}x\|_{Y}<\infty,\ \forall x\in X\right)\Longleftrightarrow\sup_{T\alpha\in\mathscr{F}}\|T_{\alpha}\|_{\mathscr{L}(X,Y)}<\infty.$$

Démonstration. Il suffit de montrer l'implication directe, le cas inverse est clair. Pour chaque $n \ge 1$ on pose

$$F_n = \{ x \in E : \forall \alpha \in S, ||T_{\alpha}x|| \le n \}.$$

Alors, $\bigcup_{n\geq 1} F_n = E$. Il résulte du lemme de Baire, qu'il existe $n_0 \geq 1$: $\overset{\circ}{F}_{n_0} \neq \emptyset$. Soient alors $x_0 \in E$ et r > 0 tels que

$$B(x_0,r)\subset F_{n_0}$$
.

Pour $||x|| \le 1$ on a $y = x_0 + xr \in F_{n_0}$. Par suite

$$||T_{\alpha}(x_0 + xr)|| \le n_0, \forall \alpha \in S.$$

Par conséquent

$$r ||T_{\alpha}x|| \le n_0 + ||T_{\alpha}x_0||, \forall x, ||x|| \le 1, \forall \alpha \in S.$$

D'où,

$$\sup_{\alpha \in S} ||T_{\alpha}|| \le \frac{1}{r} \left(n_0 + \sup_{\alpha \in S} ||T_{\alpha} x_0|| \right) < \infty.$$

<u>Autre d´monstration</u> Il suffit de montrer l'implication directe, le cas inverse est clair. Notons par $F_b(S, E)$ l'espaces des fonctions $f: S \longrightarrow E$ telle que $\{||f(\alpha)||, \alpha \in S\}$ est borné. C'est un éspace vectoriel normé de norme

$$||f||_b = \sup_{\alpha \in S} ||f(\alpha)||.$$

Pour tout $x \in E$ on pose $f^{x}(\alpha) = T_{\alpha}(x)$. Par définition

$$\{\|f^{x}(\alpha)\|, \alpha \in S\} = \{\|T_{\alpha}(x)\|, \alpha \in S\}$$

est borné, donc $f^x \in F_b(S, E)$. On définit l'opérateur $A : E \longrightarrow F_b(S, E)$ par $A(x) = f^x$. Alors, A est fermé. c'est à dire : $\mathcal{G}(A)$ le graphe de A est fermé. Soit (x_n) une suite de E qui converge vers x et soit $g = \lim_{n \to \infty} A(x_n)$. Alors,

$$\lim_{n \to \infty} \|g(\alpha) - A(x_n)(\alpha)\| \le \lim_{n \to \infty} \|g - A(x_n)\|_b = 0$$

ce qui signifie que

$$\lim_{n \to \infty} A(x_n)(\alpha) = g(\alpha)$$

et en prenant en considération la continuité de T_{α} on obtient

$$g\left(\alpha\right) = \lim_{n \to \infty} A\left(x_n\right)\left(\alpha\right) = \lim_{n \to \infty} T_{\alpha}\left(x_n\right) = T_{\alpha}\left(x\right) = A\left(x\right)\left(\alpha\right), \forall \alpha \in S.$$

Donc g = A(x) et $(x, g) = \lim_{n \to \infty} (x_n, A(x_n)) = (x, A(x)) \in \mathcal{G}(A)$, d'ou A est fermé. Le théorème de graphe fermé entaîne que A est continu (borné). Par suite

$$\left\|T_{\alpha}\left(x\right)\right\| = \left\|f^{x}\left(\alpha\right)\right\| \leq \left\|f^{x}\right\|_{b} = \left\|A\left(x\right)\right\|_{b} \leq \left\|A\right\| \left\|x\right\|, \forall \alpha \in S, \forall x \in E$$

donc

$$||T_{\alpha}|| = \sup_{x \in X, x \neq 0} \frac{||T_{\alpha}(x)||}{||x||} \le ||A||, \forall \alpha \in S.$$

ce qui conduit à

$$\sup \{ \|T_{\alpha}\|, \alpha \in S \} \leq \|A\|.$$

Chapitre 2

Semi-groupe fortement continu

2.1 C_0 -semigroupes

Définition 2.1. Une famille $\{T(t)\}_{t\geq 0}$ d'operateurs linéaires bornés sur un espace de Banach X est appelée semi groupe fortement continu ou C_0 – semigroupe si elle vérifie les assertions suivantes :

i)
$$T(s+t) = T(s)T(t), \forall s, t \ge 0,$$

ii)
$$T(0) = I$$
,

iii) pour tout $x \in X$, $\lim_{t \to 0^+} T(t)x = x$.

Remarque 2.1. Le point iii) ci-dessus, se traduit par le fait que la famille T(t) tend fortement vers I quand $t \to 0^+$. Ce qui revient au même de dire que l'application

$$T: \mathbb{R}_+ \longrightarrow \mathscr{L}(E)$$
$$t \longrightarrow T(t)$$

est continue en 0 à droite par rapport à la topologie forte de $\mathcal{L}(E)$, ou encore l'application

$$\xi_x: [0, +\infty) \longrightarrow E$$
 $t \longrightarrow T(t)x$

est continue.

Exemple 2.1. Soit $C_0(\mathbb{R}_+, \mathbb{R})$ l'espace des fonctions qui s'annulent à l'infini, c'est à dire :

$$\forall \varepsilon > 0, \exists K_{\varepsilon} compact \subset \mathbb{R}; \ |f(x)| < \varepsilon, \ \forall x \in \mathbb{R} - K_{\varepsilon},$$

c'est espace de Banach pour la norme de sup

$$||f|| = \sup_{x \in \mathbb{R}_+} |f(x)|.$$

Soit $q \in C(\mathbb{R}_+, \mathbb{R})$ une fonction continue. On définit une famille d'opérateurs sur $C_0(\mathbb{R}_+, \mathbb{R})$ par

$$T_q(t)f = e^{tq}f,$$

Exemple 2.2. Soit $A \in \mathcal{L}(E)$, alors, la famille $\{T(t)\}$ définie par

$$T(t) = e^{tA} := \sum_{k \ge 0} \frac{t^k A^k}{k!}$$

est un semigroupe fortement continu.

En effet, il est clair que T(0) = I.

En utilisant le produit des series formelles on montre que

$$T(t+s) = T(t)T(s),$$

d'autre part, pour tout $x \in E$

$$\lim_{t \to 0^+} ||T(t)x - x|| \le \lim_{t \to 0^+} \sum_{k \ge 1} \frac{t^k ||A||^k ||x||}{k!} = \lim_{t \to 0^+} \left(e^{t||A||} - 1\right) ||x|| = 0.$$

Exemple 2.3. Soit $E = C_{ub}(\mathbb{R}_+, \mathbb{R})$ l'espace des fonctions bornées et uniformement continues de \mathbb{R}_+ dans \mathbb{R} muni de la norme

$$||f||_X = \sup_{x \in \mathbb{R}_+} |f(x)|.$$

On définit une famille $\{T\left(t\right),t\geq0\}$ d'operateurs bornés à un paramètre sur E en posant

$$T(t) f(x) = f(x+t), s, t \in \mathbb{R}_+,$$

 $il\ est\ clair\ que\ T\left(0\right)f\left(s\right)=f\left(s\right)\ c'est\ \grave{a}\ dire\ T\left(0\right)=I,\ d'autre\ part,$

$$T(t+s) f(x) = f(x+t+s) = T(s) f(x+t) = T(t) T(s) f(x)$$
.

En fin

$$\begin{split} \lim_{t \to 0^{+}} \left\| T(t)f - f \right\|_{X} &= \lim_{t \to 0^{+}} \left(\sup_{x \in \mathbb{R}_{+}} \left| T(t)f\left(x\right) - f\left(x\right) \right| \right) \\ &= \lim_{t \to 0^{+}} \left(\sup_{x \in \mathbb{R}_{+}} \left| f\left(t + x\right) - f\left(x\right) \right| \right), \end{split}$$

 $D\acute{e}monstration$. comme f est uniformement continue

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \forall x \in X : |t| < \alpha; \ |f(t+x) - f(x)| < \varepsilon$$

donc $\sup_{x \in \mathbb{R}_{+}} |f(t+x) - f(x)| < \varepsilon$, par suite

$$\forall \varepsilon > 0, \exists \alpha > 0, \ |t| < \alpha \Longrightarrow \|T(t)f - f\|_X < \varepsilon$$

ce qui signifie que $\lim_{t\to 0^+} ||T(t)f - f||_X = 0$ et le semigroupe et fortement continu. \square

Proposition 2.1. Soit E un espace de Banach et F une fonction d'un ensemble compact $K \subset \mathbb{R}$ dans $\mathcal{L}(E)$. Les assertions suiventes sont équivalentes.

1) $\forall x \in E \ l'application$

$$F(.) x : K \longrightarrow E$$

: $t \longrightarrow F(t) x$

est continue.

2) F est uniformement bornée sur K

$$\sup_{t \in K} \|F(t)\|_{\mathscr{L}(X)} < \infty$$

et il existe un sous-ensemble D dense dans E telle que l'application

$$F(.) x : K \longrightarrow E$$
$$: t \longrightarrow F(t) x$$

est continue pour tout $x \in D$.

3) L'application

$$K \times C \longrightarrow E$$

 $(t, x) \longrightarrow F(t) x$

est uniformement continue pour tout compact $C \subset E$.

 $D\acute{e}monstration.$ 1) \Longrightarrow 2) Puisque F est continue sur le compact K alors pour tout $x \in E$ {||F(t)x||; $t \in K$ } < ∞ c'est à dire la famille { $F(t), t \in K$ } est simplement bornée, alors le théorème de Banach-Steinhauss entraı̂ne qu'elle est uniformément bornée sur K.

2) \Longrightarrow 3) Supposons qu'il existe M > 0 tel que

$$||F(t)||_{\mathscr{L}(X)} \le M, \ \forall t \in K.$$

Soit $\varepsilon > 0$ et C un compact de E, alors il existe une recouvrement finie pour C,

$$\left\{B_0\left(x_i, \frac{\varepsilon}{M}\right), \ 1 \le i \le m, \ x_i \in D\right\}$$

c'est à dire $C \subset \bigcup_{1 \leq i \leq m} B_0\left(x_i, \frac{\varepsilon}{M}\right)$. Comme $F\left(.\right) x_i$ est continue pour tout $x_i \in D, 1 \leq i \leq m$, alors il existe $\delta_i > 0$ tel que

$$\forall t, s \in K; |t - s| < \delta_i \text{ on a } ||F(t)x_i - F(s)x_i|| < \varepsilon.$$

Pour $\delta = \min_{1 \le i \le m} \delta_i$, on a pour tout $1 \le i \le m$

$$||F(t)x_i - F(s)x_i|| < \varepsilon, \ \forall t, s \in K, |t - s| < \delta.$$

Soient $x,y \in C$ et $t,s \in K$ verifient $||x-y||_X < \frac{\varepsilon}{M}$ et $|t-s| < \delta$ alors, il existe $x_i \in \{x_1,s_2,...,x_m\}$ tel que $x \in B_0\left(x_i,\frac{\varepsilon}{M}\right)$ et par suite

$$||F(t)x - T(s)y|| \le ||F(t)x - F(t)x_i|| + ||F(t)x_i - F(s)x_i|| + ||F(s)x_i - F(s)x|| + ||F(s)x - F(s)y|| \le ||F(t)|| ||x - x_i|| + ||F(t)x_i - F(s)x_i|| + ||F(s)|| ||x - x_i|| + ||F(s)|| ||x - y|| \le M\frac{\varepsilon}{M} + \varepsilon + M\frac{\varepsilon}{M} + M\frac{\varepsilon}{M} = 4\varepsilon,$$

ce qui signifie que

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ et } \exists \lambda(\varepsilon) > 0\varepsilon; \ \|x - y\| < \lambda, |t - s| < \delta \Longrightarrow \|F(t)x - T(s)y\| \le 4\varepsilon$$

donc F est uniformement continue sur $K \times C$. 3) \Longrightarrow 1) evident.

Une conséquence immédiate du proposition 2.1 est le lemme suivant

Lemme 2.1. Pour un semigroupe $\{T(t), t \ge 0\}$ sur un espace de Banach E, les assertions suiventes sont équivalentes.

- $a) \lim_{t \to 0^{+}} T(t) x = x,$
- b) il existe $\delta > 0$ et $M \ge 1$ et un ensemble D dense dans E tel que
 - $i) ||T(t)|| \le M, \forall t \in [0, \delta],$
 - $ii) \lim_{t \to 0^{+}} T(t) x = x, \forall x \in D.$

 $D\acute{e}monstration.$ $a) \Longrightarrow b)$ si i) n'est pas vérifié alors il existe une suite (δ_n) converge vers 0 tandis que $||T(\delta_n)|| \longrightarrow \infty$, et par suite le théorème de Banach-Steinhauss assure l'existence d'un $x \in E$ tel que $\lim_{n \to \infty} ||T(\delta_n)x|| = +\infty$ ce qui contredit la continuité de $T(\cdot)x$ en 0 à droite. c)ii) est evidente.

 $b) \Longrightarrow a)$ Soit δ, M et D tels qu'ils sont indiqués en b), soit $K = \{t_n, n \in \mathbb{N}\} \cup \{0\}$, où $(t_n)_{n \in \mathbb{N}}$ est une suite inclue dans $[0, \delta]$ et converge vers 0, alors K est compact de $[0, +\infty[$. De i) de b) $T(\cdot)$ est bornée sur K, $||T(t)|| \leq M$, $\forall t \in K$. ii) signifie que $T(\cdot)$ x est continue en 0 à droite pour tout $x \in D$, c'est à dire

$$\forall \varepsilon > 0, \exists \alpha > 0 : t < \alpha \Longrightarrow ||T(t)x - x|| < \frac{\varepsilon}{M}.$$

Soit $t_n \in K$ et $0 \le t < \alpha$ alors,

$$||T(t_n + t) x - T(t_n) x|| = ||T(t_n)|| ||T(t) x - x|| < \varepsilon,$$

$$||T(t_n - t) x - T(t_n) x|| = ||T(t_n - t)|| ||T(t) x - x|| < \varepsilon, \text{ pour } t \le t_n,$$

donc $T(\cdot)x$ est continue sur K pour tout $x \in D$. Il result de la proposition 1 (2) \Longrightarrow 1)), que $T(\cdot)x$ est continue sur K pour tout $x \in E$ et par suite

$$\lim_{n \to +\infty} T(t_n) x = x, \ \forall x \in E.$$

La suite (t_n) était arbitraire, alors $\lim_{t\to 0^+} T(t) x = x$.

Théorème 2.1. Soit $\{T(t), t \geq 0\}$ un semigroupe fortement continu, alors il existent $M \geq 1$ et $\omega \in \mathbb{R}$ tels que

$$||T(t)||_{\mathscr{L}(X)} \le Me^{t\omega}, \ t \ge 0.$$

Démonstration. Montrons tout d'abord qu'il existe $\eta > 0$ et $M \ge 1$ tels que

$$||T(t)||_{\mathscr{L}(X)} \le M, \ \forall t \in [0, \eta]. \tag{2.1}$$

Supposons que ceci n'est pas vrai, alors il existe un semigroupe $\{T(t), t \geq 0\}$ tel que

$$\forall \eta > 0, \forall M \ge 1, \exists t_{\eta,M} : \left\| T\left(t_{\eta,M}\right) \right\|_{\mathscr{L}(X)} > M.$$

Soit $n \in \mathbb{N}^*$, pour $\eta = \frac{1}{n}$ et M = n, on note $t_{\eta,M} = t_n$ avec $t_n \in \left[0, \frac{1}{n}\right]$ alors on a

$$||T(t_n)||_{\mathscr{L}(X)} > n \tag{2.2}$$

Lorsque, $n \to +\infty$, $t_n \to 0$ donc

$$\lim_{n \to +\infty} T(t_n) x = x, \ \forall x \in E,$$

ce qui entraı̂ne que la suite $(T(t_n)x)_{n\in\mathbb{N}^*}$ est bornée dans X, de théorème de Banach-Steinhaus on conclu que la suite $(T(t_n))_{n\in\mathbb{N}^*}$ est bornée dans $\mathscr{L}(E)$ ce qui est contradictoire avec (2.2) d'où (2.1). Soit t>0, alors il existe $n\in\mathbb{N}^*$ et $\delta\in[0,\eta[$ tels que $t=n\eta+\delta,$ on a donc

$$||T(t)|| = ||T^n(\eta)T(\delta)|| < M^nM.$$

Notons que $n = \frac{t - \delta}{\eta} \le \frac{t}{\eta}$ par suite

$$||T(t)|| < MM^{\frac{t}{\eta}} = Me^{\frac{t}{\eta}\ln M} = Me^{\omega t},$$

avec
$$\omega = \frac{\ln M}{\eta}$$
.

Définition 2.2. Un semigroupe fortement continu qui vérifie

$$||T(t)||_{\mathscr{L}(X)} \le Me^{t\omega}, \ t \ge 0.$$

est dit de type (M, ω) .

Un semigroupe de type (1,0) est dit semigroupe de contractions.

$$||T(t)|| \le 1, \ \forall t \ge 0.$$

Définition 2.3. Soit $\{T(t), t \geq 0\}$ un semigroupe fortement continu, le nombre

$$\omega_0 = \inf \left\{ \omega \in \mathbb{R}; \ \exists M_\omega \ge 1 \text{ tel que } ||T(t)|| \le M_\omega e^{\omega t}, \ \forall t \ge 0 \right\}$$

s'appelle la borne de croissance du semigroupe.

Corollaire 2.1. Soit $\{T(t), t \geq 0\}$ un semigroupe fortement continu, alors, la fonction

$$T: [0, +\infty[\times E \longrightarrow E \\ : (t, x) \longrightarrow T(t) x$$

est continue.

Démonstration. Soient $x, y \in E, t \in [0, +\infty[$ et $h \in \mathbb{R}^*$ tel que $t + h \ge 0$. Si h > 0, alors,

$$||T(t+h)x - T(t)y|| = ||T(t+h)x - T(t+h)y|| + ||T(t+h)y - T(t)y||$$

$$\leq ||T((t+h))|| ||x - y|| + ||T(t)|| ||T(h)y - y||$$

$$\leq Me^{(t+h)\omega} ||x - y|| + Me^{t\omega} ||T(h)y - y||.$$

La continuité forte du semigroupe permet de choisir h assez petit $h < \varepsilon$ tel que

$$Me^{t\omega} \|T(h)y - y\| < \frac{\varepsilon}{2},$$

d'autre part, puisque h verifie $h < \varepsilon$ et $x \longrightarrow y$, il est possible de choisir

$$||x - y|| < \frac{\varepsilon}{2Me^{t\omega h}}$$

et par suite

$$||T(t+h)x - T(t)y|| < \varepsilon.$$

Si h < 0, on aura

$$||T(t+h)x - T(t)y|| = ||T(t+h)x - T(t+h)T(-h)y||$$

$$\leq ||T(t+h)|| ||x - T(-h)y||$$

$$\leq ||T(t+h)|| (||x - y|| + ||x - T(-h)y||)$$

$$\leq Me^{(t+h)\omega} (||x - y|| + ||x - T(-h)y||)$$

et $||x - y|| < \frac{\varepsilon}{2Me^{t\omega}}$ et $||x - T(-h)y|| \longrightarrow 0$ quand $-h \longrightarrow 0^+$ conduisent au resultat.

Corollaire 2.2. Soit $\{T(t), t \geq 0\}$ un semi-groupe fortement continu. Pour tout $x \in E$ la fonction

$$t \longrightarrow T(t) x$$

est continue sur $[0, +\infty[$.

Démonstration. Soient t, h > 0, alors

$$||T(t+h)x - T(t)x|| \le ||T(t)|| ||T(h)x - x|| \le Me^{t\omega} ||T(h)x - x||.$$

Par définition, pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que

$$||T(h)x - x|| < \varepsilon, \ \forall h, 0 \le h < \delta$$

par suite pour tout $t\geq0$, $\lim_{h\longrightarrow0^+}T\left(t+h\right)x=T\left(t\right)x$ d'ou la continuité à droite en tout $t\in[0,+\infty[$. Pour t>0 et $t\geq h\geq0$, on a

$$\|T\left(t-h\right)x-T\left(t\right)x\|\leq\|T\left(t-h\right)\|\,\|T\left(h\right)x-x\|\leq Me^{t\omega}\,\|T\left(h\right)x-x\|\,,$$
 et la continuité à gauche en tout $t\in\left]0,+\infty\right[$ s'en suit. \qed

2.2 Générateur infinitesimal d'un semi-groupe fortement continu

Soit $\{T(t), t \ge 0\}$ un semigroupe d'opérateurs.

Définition 2.4. On appelle générateur infinitésimal du semigroupe $\{T(t), t \geq 0\}$ l'operateur A défini par

$$D(A) = \left\{ x \in E : \lim_{t \to 0^+} \frac{T(t)x - x}{t}, \text{ existe} \right\},$$
$$Ax = \lim_{t \to 0^+} \frac{T(t)x - x}{t}.$$

Remarque 2.2. 1) Il est clair que

$$Ax = \left. \frac{d^{+}T(t)}{dt} \right|_{t=0} x.$$

2) D(A) est un sous espace de E et A est en général un opérateur non borné.

Exemple 2.4. Soit $\{T(t), t \geq 0\}$ le semigroupe défini par

$$T(t) x = \left(e^{tA}\right) x = \sum_{n=0}^{\infty} \frac{t^n A^n x}{n!}.$$

$$\begin{split} \lim_{t \longrightarrow 0^+} \left\| \frac{T\left(t\right)x - x}{t} - Ax \right\| &= \lim_{t \longrightarrow 0^+} \left\| \sum_{n=2}^{\infty} \frac{t^{n-1}A^nx}{n!} \right\| \leq \lim_{t \longrightarrow 0^+} \sum_{n=2}^{\infty} \left\| \frac{t^{n-1}A^nx}{n!} \right\| \leq \lim_{t \longrightarrow 0^+} \sum_{n=2}^{\infty} \frac{t^{n-1} \left\|A\right\|^n \left\|x\right\|}{n!} \\ &= \lim_{t \longrightarrow 0^+} \sum_{n=2}^{\infty} \frac{t^n \left\|A\right\|^n \left\|x\right\|}{n!t} - \left\|A\right\| \left\|x\right\| = \lim_{t \longrightarrow 0^+} \frac{e^{t\left\|A\right\|} \left\|x\right\| - \left\|x\right\|}{t} - \left\|A\right\| \left\|x\right\| = 0 \end{split}$$

Exemple 2.5. Considérons le semigroupe $\{T(t), t \geq 0\}$ défini sur l'espace de Banach $E = C_{ub}(\mathbb{R})$ par

$$T(t) f(x) = f(x+t).$$

On a

$$\lim_{t \longrightarrow 0^{+}} \frac{T\left(t\right)f\left(x\right) - f\left(x\right)}{t} = \lim_{t \longrightarrow 0^{+}} \frac{f\left(x + t\right) - f\left(x\right)}{t}.$$

Pour que la limite $\lim_{t \to 0^+} \frac{f(x+t)-f(x)}{t}$ existe, il faut et il suffit que f soit dérivable à droite en chaque $x \in \mathbb{R}$, alors

 $D(A) = \{ f \in C_{ub}(\mathbb{R}) ; f \text{ admet une dérivée à droite } f'_{+} \text{ en tout point de } \mathbb{R} \},$

de plus

$$Af = f'_+$$
.

Remarque 2.3. On va montrer (Remarque 3. a) que f est dérivable en tout point $x \in \mathbb{R}$, et que Af = f'.

Lemme 2.2. Soit $\{T(t), t \geq 0\}$ un semi-groupe fortement continu sur l'espace de Banach E. Pour tout $x \in E$, on note par T_x l'application

$$T_x: [0, +\infty[\longrightarrow E$$

: $t \longrightarrow T(t) x$.

Les assertions suivantes sont équivalentes : i) T_x est différentiable sur \mathbb{R}_+ , ii) T_x est différentiable à 0 à droite.

Preuve. Il suffit de vérifier que $ii) \Longrightarrow i$).

Pour h > 0, on a

$$\lim_{h \to 0^{+}} \frac{T(s+h)x - T(s)x}{h} = T(s) \lim_{h \to 0^{+}} \frac{T(h)x - x}{h} = T(s) \frac{d^{+}T_{x}}{dt}(0)$$

et T_x est différentiable à droite en tout point $t \in [0, +\infty[$.

Pour $-s \le h < 0$, on a

$$\frac{T(s+h)x - T(s)x}{h} - T(s)\frac{d^{+}T_{x}}{dt}(0) = T(s+h)\left(\frac{T(-h)x - x}{-h} - \frac{d^{+}T_{x}}{dt}(0)\right) + T(s+h)\frac{d^{+}T_{x}}{dt}(0) - T(s)\frac{d^{+}T_{x}}{dt}(0).$$

Notons que d'après la première partie de la démonstration on a

$$\lim_{h \to 0^{-}} \frac{T(-h)x - x}{-h} = \frac{d^{+}T_{x}}{dt}(0),$$

en plus $||T(s+h)|| < \infty$, alors

$$\lim_{h \to 0^{-}} \left\| T\left(s+h\right) \left(\frac{T\left(-h\right)x-x}{-h} - \frac{d^{+}T_{x}}{dt}\left(0\right) \right) \right\| \leq \lim_{h \to 0^{-}} \left\| T\left(s+h\right) \right\| \left\| \frac{T\left(-h\right)x-x}{-h} - \frac{d^{+}T_{x}}{dt}\left(0\right) \right\| = 0.$$

La continuité forte de $T\left(t\right)$ entraı̂ne

$$\lim_{h \to 0^{-}} \left(T(s+h) \frac{d^{+}T_{x}}{dt}(0) - T(s) \frac{d^{+}T_{x}}{dt}(0) \right) = 0,$$

et T_x est différentiable à gauche en tout point $t \in]0, +\infty[$, d'où la différentiabilité de T_x sur $[0, +\infty[$, de plus

$$\frac{dT_{x}\left(t\right)}{dt}=T\left(t\right)\frac{d^{+}T_{x}}{dt}\left(0\right).$$

Remarque 2.4. Sur le sous espace $D(A) = \{x \in E : T_x \text{ est différentiable sur } [0, +\infty[\} \subset E, \text{ la dérivée en 0 à droite } \frac{d^+T_x}{dt}(0) \text{ définie un operateur} \}$

$$A: D(A) \subset E \longrightarrow E$$

: $x \longrightarrow Ax = \frac{d^{+}T_{x}}{dt}(0)$,

c'est le générateur infinitesimal du semigroupe $\{T\left(t\right),t\geq0\}$.

Proposition 2.2. Soit $A: D(A) \subset E \longrightarrow E$ le générateur infinitesimal d'un semi-groupe fortement continu $\{T(t), t \geq 0\}$. Alors,

i) Pour tout $x \in E$ et tout $t \ge 0$ on a

$$\lim_{h \longrightarrow 0^{+}} \frac{1}{h} \int_{t}^{t+h} T(s) x ds = T(t) x.$$

ii) Pour tout $x \in E$ et tout t > 0, on a

$$\int_{0}^{t} T(s) x ds \in D(A) \text{ et } A\left(\int_{0}^{t} T(s) x ds\right) = T(t) x - x.$$

iii) Pour tout $x \in D(A)$ et tout $t \ge 0$, on a $T(t) x \in D(A)$, et l'application

$$[0, +\infty[\longrightarrow E$$

$$t \longrightarrow T(t) x$$

est de classe C^1 sur $[0, +\infty[$ et vérifie

$$\frac{d}{dt}\left(T\left(t\right)x\right) = AT\left(t\right)x = T\left(t\right)Ax.$$

iv) Pour tout $x \in D(A)$ et tout $0 \le s \le t < \infty$ on a

$$\int_{s}^{t} AT(\tau) x d\tau = \int_{s}^{t} T(\tau) Ax d\tau = T(t) x - T(s) x.$$

 $D\acute{e}monstration.$ i) Soit h > 0, notons que

$$\left\| \frac{1}{h} \int_{t}^{t+h} T(s) x ds - T(t) x \right\| = \left\| \frac{1}{h} \int_{t}^{t+h} (T(s) - T(t)) x ds \right\|$$

$$\leq \frac{1}{h} \int_{t}^{t+h} \|T(s) x - T(t) x\| ds.$$

En utilisant le corollaire 1. $\lim_{s \to t} ||T(s)x - T(t)x|| = 0$ et le resultat s'ensuit. ii) Soient $x \in E, t > 0$ et h > 0, alors,

$$\lim_{h \to 0^{+}} \frac{T(h) - I}{h} \int_{0}^{t} T(s) x ds = \lim_{h \to 0^{+}} \frac{\int_{0}^{t} T(s+h) x ds - \int_{0}^{t} T(s) x ds}{h}$$

$$= \lim_{h \to 0^{+}} \left(\frac{1}{h} \int_{h}^{t+h} T(s) x ds - \frac{1}{h} \int_{0}^{t} T(s) x ds \right)$$

$$= \lim_{h \to 0^{+}} \left(\frac{1}{h} \int_{h}^{t+h} T(s) x ds - \frac{1}{h} \int_{0}^{h} T(s) x ds - \frac{1}{h} \int_{h}^{t} T(s) x ds \right)$$

$$= \lim_{h \to 0^{+}} \left(\frac{1}{h} \int_{h}^{t+h} T(s) x ds - \frac{1}{h} \int_{h}^{h} T(s) x ds + \frac{1}{h} \int_{h}^{h} T(s) x ds \right)$$

et en utilisant i) on obtient

$$\lim_{h\longrightarrow0^{+}}\frac{T\left(h\right)-I}{h}\int_{0}^{t}T\left(s\right)xds=\lim_{h\longrightarrow0^{+}}\left(\frac{1}{h}\int_{t}^{t+h}T\left(s\right)xds-\frac{1}{h}\int_{0}^{h}T\left(s\right)xds\right)=T\left(t\right)x-x.$$

D'autre part

$$\lim_{h \to 0^{+}} \frac{T(h) - I}{h} T(s) x = \lim_{h \to 0^{+}} \frac{T(s+h) x - T(s) x}{h}$$

ce qui prouve ii). iii) Soit $x \in D(A)$, alors, a) pour $t \ge 0$ et h > 0 on a

$$\left\| \frac{T(t+h)x - T(t)x}{h} - T(t)Ax \right\| = \left\| T(t) \left(\frac{T(h)x - x}{h} - Ax \right) \right\|$$

$$\leq \left\| T(t) \right\| \left\| \frac{T(h)x - x}{h} - Ax \right\|$$

et puisque $||T(t)|| < \infty$ le second terme ted vers 0 ce qui prouve que

$$\lim_{h\longrightarrow0^{+}}\frac{T\left(h\right)T\left(t\right)x-T\left(t\right)x}{h}=T\left(t\right)Ax$$

et par suite $T(t)x \in D(A)$ et AT(t)x = T(t)Ax. De plus T est differentiable à droite de $t \in [0, +\infty[$ et

$$\frac{d^{+}T(t)}{dt} = T(t) Ax = AT(t) x.$$

b) Pour t > 0 et h < 0 tel que $t + h \ge 0$, on a

$$\left\| \frac{T(t+h)x - T(t)x}{h} - T(t)Ax \right\| \le \|T(t+h)\| \left\| \frac{x - T(-h)x}{h} - T(-h)Ax \right\|$$

$$\le \|T(t+h)\| \left(\left\| \frac{T(-h)x - x}{-h} - Ax \right\| + \|T(-h)Ax - Ax\| \right)$$

en utilisant le fait que $\lim_{h\longrightarrow 0^-}\frac{T(-h)x-x}{-h}=Ax$ et $\lim_{h\longrightarrow 0^-}T\left(-h\right)y=y,$ on aura

$$\lim_{h \to 0^{-}} \frac{T(t+h)x - T(t)x}{h} = T(t)Ax$$

d'ou la différentiabilité de T à gauche de tout t > 0. La continuité de

$$t \longrightarrow T(t) Ax$$

sur $[0,+\infty[\,,\,$ termine la démonstration de iii). iv) La continuité de $t\longrightarrow T\left(t\right)Ax$ permet d'integrer l'égalité

$$\frac{d}{dt}\left(T\left(t\right)x\right) = AT\left(t\right)x = T\left(t\right)Ax$$

et par suite

$$\int_{s}^{t} AT(\tau) x d\tau = \int_{s}^{t} T(\tau) Ax d\tau = \int_{s}^{t} \frac{d}{d\tau} (T(\tau) x) d\tau = T(t) x - T(s) x.$$

Remarque 2.5. Notons que si $x \in D(A)$, le resultat de ii) peut s'écrit aussi

$$A\left(\int_{0}^{t} T(s) x ds\right) = \int_{0}^{t} AT(s) x ds = \int_{0}^{t} T(s) Ax ds.$$

Remarque 2.6. En appliquant iii) à la générateur infinitisimal de semi-groupe défini par

$$T(t) f(x) = f(x+t),$$

on conclu que

$$t \longrightarrow f(t+x)$$

est dérivable par rapport t, alors,

$$\lim_{s \to 0} \frac{f(x+t+s) - f(x+t)}{s} existe$$

ce qui signifie que f est dérivable en tout $y = x + t \in \mathbb{R}$, par suite

$$D(A) = \left\{ f \in C_{ub}(\mathbb{R}) ; f \in C^{1}(\mathbb{R}) \right\},$$
$$Af = f'.$$

Corollaire 2.3. Pour tout $u_0 \in D(A)$, où A est le générateur infinitesimal d'un semi-groupe fortement continu, le problème de Cauchy

$$\begin{cases} \frac{du(x,t)}{dt} = Au(x,t), \ t > 0, \\ u(x,0) = u_0(x), \end{cases}$$

admet une solution unique $u(t) = T(t) u_0$ qui vérifie

$$u \in C([0, +\infty[; D(A)) \cap C^{1}([0, +\infty[; E)]))$$

Démonstration. En effet, si $u_0 \in D(A)$ on a $u(t) = T(t)u_0 \in D(A)$ d'après iii) du théorème précédent, et

$$u:t\longrightarrow T\left(t\right) u_{0}$$

est continue, d'où $u \in C([0, +\infty[; D(A)))$. D'autre part, u est différentiable sur $[0, +\infty[$ et

$$\frac{du}{dt} = \frac{d}{dt}T(t) u_0 = AT(t) u_0 \in E,$$

de plus la continuité de u par rapport à t et de A sur $D\left(A\right)$ entraine que

$$\frac{d}{dt}T\left(\cdot\right)u_{0}=AT\left(\cdot\right)u_{0}\in C\left(\left[0,+\infty\right[;E\right).$$

d'où le resultat. □

L'unicité de la solution est une conséquence du théorème 4. ci-dessous.

Corollaire 2.4. Le domaine D(A) du generateur infinitisimal A d'un semigroupe fortement continu $\{T(t), t \geq 0\}$ est dense dans E et l'operateur A est fermé.

Démonstration. Soient $x \in E$ et $n \in \mathbb{N}^*$, du théorème 3 ii), pour $h = \frac{1}{n} > 0$ on a $x_n = \frac{1}{h} \int_0^h T(s) \, x ds \in D(A)$ et de i) on a

$$\lim_{n \to \infty} x_n = \lim_{h \to 0^+} \frac{1}{h} \int_0^h T(s) \, x ds = T(0) \, x = x,$$

donc D(A) dense dans X. Soient $(x_n) \subset D(A)$ tel que $x_n \longrightarrow x$ et $Ax_n \longrightarrow y$, d'aprés théorème 3, iv) on a,

$$\int_{0}^{t} T(s) Ax_{n} ds = T(t) x_{n} - x_{n},$$

puisque $T\left(t\right)$ est borné (continu et défini sur E), alors $\lim_{n\longrightarrow\infty}T\left(t\right)x_{n}=T\left(t\right)x$, d'autre part

$$\left\| \int_0^t T(s) Ax_n ds - \int_0^t T(s) y ds \right\| = \left\| \int_0^t T(s) (Ax_n - y) ds \right\|$$

$$\leq \int_0^t \|T(s)\| \|Ax_n - y\| ds$$

$$\leq M \int_0^t e^{s\omega} \|Ax_n - y\| ds$$

$$\leq \frac{M}{|\omega|} e^{t|\omega|} \|Ax_n - y\| \longrightarrow 0,$$

donc,

$$\int_{0}^{t} T(s) y ds = T(t) x - x$$

et par suite

$$y = \lim_{t \to 0^{+}} \frac{1}{t} \int_{0}^{t} T(s) y ds = \lim_{t \to 0^{+}} \frac{T(t) x - x}{t}$$

donc $x \in D(A)$ et Ax = y.

Théorème 2.2. Soient T(t), S(t) deux semigroupes fortement continus de generateurs infinitesimals A et B respectivement.

Si
$$A = B$$
, alors $T(t) = S(t)$ pour tout $t \ge 0$.

Démonstration. Soit $x \in D(A) = D(B)$, d'après le théorème 3. iii) $s \longrightarrow S(s)x$ est différentiable et $S(s)x \in D(A)$. En utilisant encore le théorème 3. iii) et le fait que $s \longrightarrow t - s$ est differentiable, on constate que

$$f: s \longrightarrow T(t-s)S(s)x$$

est differentiable pour tout $s \in [0, t]$. Alors,

$$\frac{d}{ds}T(t-s)S(s)x = -\frac{dT(t-s)}{d(t-s)}S(s)x + T(t-s)\frac{dS(s)}{ds}x$$
$$= -AT(t-s)S(s)x + T(t-s)BS(s)x$$
$$= -T(t-s)AS(s)x + T(t-s)BS(s)x = 0.$$

L'application f est alors constante et par suite

$$f(0) = f(t)$$

ce qui entraîne

$$T(t) x = S(t) x$$
.

Théorème 2.3. Soit A le generateur infinitisimal d'un semigroupe fortement continu T(t), et soit $D(A^n)$ le domaine de A^n , alors, $\bigcap_{n=0}^{\infty} D(A^n)$ est dense dans E.

Démonstration. Pour tout $x \in E$ et tout $\varphi \in C_0^{\infty}(]0, +\infty[)$ on pose

$$y = x(\varphi) = \int_0^\infty \varphi(s) T(s) x ds.$$

$$\begin{split} \lim_{h\longrightarrow0^{+}}&\frac{T\left(h\right)y-y}{h}=\lim_{h\longrightarrow0^{+}}&\frac{1}{h}\left(\int_{0}^{+\infty}\varphi\left(s\right)T\left(s+h\right)xds-\int_{0}^{+\infty}\varphi\left(s\right)T\left(s\right)xds\right)\\ &=\lim_{h\longrightarrow0^{+}}&\frac{1}{h}\left(\int_{h}^{+\infty}\varphi\left(s-h\right)T\left(s\right)xds-\int_{0}^{+\infty}\varphi\left(s\right)T\left(s\right)xds\right). \end{split}$$

Puisque $\operatorname{supp}\varphi\subset \left]0,+\infty\right[$ on a $\varphi\left(s-h\right)=0$ sur $\left]0,h\right[$ et par suite

$$\lim_{h \to 0^{+}} \frac{T(h)y - y}{h} = \lim_{h \to 0^{+}} \frac{1}{h} \left(\int_{0}^{+\infty} \varphi(s - h) T(s) x ds - \int_{0}^{+\infty} \varphi(s) T(s) x ds \right)$$

$$= \int_{0}^{+\infty} \lim_{h \to 0^{+}} \frac{\varphi(s - h) - \varphi(s)}{h} T(s) x ds = -x(\varphi'),$$

ceci prouve que $x\left(\varphi\right)\in D\left(A\right)$ et $Ax\left(\varphi\right)=-x\left(\varphi'\right)$.

Démonstration. En refaisant le même travail avec $y = -x(\varphi')$ on montre que $-x(\varphi') = Ax(\varphi) \in D(A)$ et $-Ax(\varphi') = x(\varphi'')$ ce qui signifie que

$$x(\varphi) \in D(A^2)$$
 et $A^2x(\varphi) = x(\varphi'')$

et par suite on montre par reccurence que

$$x(\varphi) \in D(A^n)$$
 et $A^n x(\varphi) = (-1)^n x(\varphi'')$, $\forall n \in \mathbb{N}$

donc,

$$x(\varphi) \in \bigcap_{n=0}^{\infty} D(A^n)$$
.

Soit $\varphi \in C_0^{\infty}(]0, +\infty[)$ telle que

$$\int_{0}^{\infty} \varphi\left(s\right) ds = 1.$$

Pour $\varepsilon > 0$, on pose

$$\varphi_{\varepsilon}(s) = \frac{1}{\varepsilon} \varphi\left(\frac{t}{\varepsilon}\right).$$

Il est clair que $\varphi_{\varepsilon} \in C^{\infty}(]0, +\infty[)$ et que $supp\varphi_{\varepsilon} = \varepsilon supp\varphi$, alors, $\varphi_{\varepsilon} \in C_{0}^{\infty}(]0, +\infty[)$ et

$$\int_{0}^{+\infty} \varphi_{\varepsilon}(s) \, ds = 1.$$

D'autre part,

$$\|x\left(\varphi_{\varepsilon}\right) - x\| = \left\| \frac{1}{\varepsilon} \int_{0}^{+\infty} \varphi\left(\frac{s}{\varepsilon}\right) \left(T\left(s\right)x - x\right) ds \right\|$$

$$\leq \frac{1}{\varepsilon} \int_{0}^{+\infty} \varphi\left(\frac{s}{\varepsilon}\right) \|T\left(s\right)x - x\| ds$$

$$\leq \frac{1}{\varepsilon} \int_{supp\varphi_{\varepsilon}} \varphi\left(\frac{s}{\varepsilon}\right) \|T\left(s\right)x - x\| ds$$

$$\leq \sup_{s \in supp\varphi_{\varepsilon}} \|T\left(s\right)x - x\|.$$

Notons que lorsque $\varepsilon \longrightarrow 0$, $supp \varphi_{\varepsilon}$ se reduit à $\{0\}$ et par suite $\sup_{s \in supp \varphi_{\varepsilon}} ||T(s)x - x|| \longrightarrow 0$, ce qui prouve que

$$\lim_{\varepsilon \to 0} x \left(\varphi_{\varepsilon} \right) = x$$

et $\bigcap_{n=0}^{\infty} D(A^n)$ est dense dans E.

Corollaire 2.5. Soient $n \in \mathbb{N}^*$ et A le générateur infinitisimal d'un semigroupe T(t). Pour tout $t \geq 0$ et $u_0 \in D(A^n)$, $T(t) x \in D(A^n)$ et la fonction

$$u: [0, +\infty[\longrightarrow E$$

: $t \longrightarrow T(t) u_0$

est de classe $C^n([0,+\infty[)$ et est la solution du problème de Cauchy

$$\begin{cases} u^{(n)}(t) = A^{n}u(t), \ t \ge 0 \\ u^{(k)}(0) = A^{k}u_{0}, \ k = 0, 1, ..., n - 1. \end{cases}$$
 (2.3)

Démonstration. Le cas n=1 était l'objet de la remarque 3. Montrons le cas général par récurrence. Supposons que la propriété est vraie jusqu'au cas n et que $u_0 \in D(A^{n+1})$. Puisque $D(A^{n+1}) \subset D(A^n)$ alors $x \in D(A^n)$ et il existe une solution unique de du problème de Cauchy (2.3) pour tout $t \geq 0$. Soient $t \geq 0$ et $h \in \mathbb{R}$ tels que t + h > 0. On a

$$\frac{1}{h} \left(u^{(n)} \left(t + h \right) - u^{(n)} \left(t \right) \right) = \frac{1}{h} \left(A^n T \left(t + h \right) u_0 - A^n T \left(t \right) u_0 \right).$$

Notons que d'après théorème 3 iii) on a pour tout $x \in D(A^n)$ et $s \ge 0$ on a

$$A^{n}T(s) u_{0} = T(t) A^{n}u_{0}$$

et on peut écrire

$$\frac{1}{h} \left(u^{(n)} \left(t + h \right) - u^{(n)} \left(t \right) \right) = \frac{1}{h} \left(T \left(t + h \right) A^n u_0 - T \left(t \right) A^n u_0 \right).$$

Puisque $A^n u_0 \in D(A)$ alors $T(t) A^n u_0 \in D(A)$ donc la limite du terme à droite existe et on a

$$\lim_{h \to 0^{+}} \frac{u^{(n)}(t+h) - u^{(n)}(t)}{h} = \lim_{h \to 0^{+}} \frac{T(t+h)A^{n}u_{0} - T(t)A^{n}u_{0}}{h}$$

$$= \lim_{h \to 0^{+}} \frac{T(h)T(t)A^{n}u_{0} - T(t)A^{n}u_{0}}{h} = AT(t)A^{n}u_{0}.$$

Ce qui montre que $u^{(n)}$ est differentiable et que

$$u^{(n+1)}(t) = AT(t) A^{n} u_{0} = A^{n+1}T(t) u_{0}.$$

Il est facile de vérifier que $u^{(k)}\left(0\right)=A^{k}u_{0}$ pour k=0,1,...,n.

2.3 Propriétés spectrales du générateur infinitesimal

Définition 2.5. Soit (A, D(A)) le générateur infinitesimal d'un semi-groupe fortement continu $\{T(t), t \geq 0\}$, on définit :

a) $\rho(A)$ l'ensemble résolvant de A par

$$\rho(A) := \{ \lambda \in \mathbb{C}, (\lambda I - A)^{-1} \text{ existe et est continu} \}.$$

- b) $R(\lambda, A) := (\lambda I A)^{-1}$, la résolvante de A.
- c) $\sigma(A) := \mathbb{C} \rho(A)$ le spectre de A.

Rappelons qu'un semi-groupe fortement continu $\{T(t), t \geq 0\}$ vérifie la proprièté suivante :

$$\exists M \geq 1, \omega \in \mathbb{R}; ||T(t)|| \leq Me^{t\omega}, \ \forall t \geq 0. \tag{2.4}$$

Lemme 2.3. Soit (A, D(A)) le générateur infinitesimal d'un semi-groupe fortement continu T(t). Alors, pour tout $\lambda \in \mathbb{C}$ et tout t > 0, les égalités suivantes sont vérifiées :

1)
$$e^{-\lambda t}T(t)x - x = (A - \lambda I) \int_0^t e^{-\lambda s}T(s)xds$$
 si $x \in X$.

2)
$$e^{-\lambda t}T(t)x - x = \int_0^t e^{-\lambda s}T(s)(A - \lambda I)xds$$
 si $x \in D(A)$.

Démonstration. On définit la famille d'opérateurs $S(t) := e^{-\lambda t} T(t)$, c'est un semi-groupe fortement continu de générateur infinitesimal $B = A - \lambda I$ de domaine D(B) = D(A). 1) On applique le théorème 3.ii) au semi-groupe S(t) on aura pour tout $x \in X$

$$\int_0^t S(s)xds \in D(B)$$

et

$$B\int_0^t S(s)xds = (A - \lambda I)\int_0^t e^{-\lambda s}T(s)xds = S(t)x - x = e^{-\lambda t}T(t)x - x.$$

2) Pour $x \in D(B)$ on applique théorème 3.iv) on aura

$$S(t)x - x = \int_0^t S(s)Bxds = \int_0^t e^{-\lambda s}T(s)(A - \lambda I)xds.$$

Théorème 2.4. Soient $\{T(t), t \geq 0\}$ un semi-groupe fortement continu de générateur infinitesimal (A, D(A)) et M, ω les réels qui vérifient

$$||T(t)|| \le Me^{t\omega},$$

alors, les propriétes suivantes sont satisfaites :

1) $Si \lambda \in \mathbb{C} \ tel \ que$

$$R(\lambda)x := \int_0^{+\infty} e^{-\lambda s} T(s) \, x ds$$

existe pour tout $x \in X$, alors, $\lambda \in \rho(A)$ et $R(\lambda, A) = \int_0^{+\infty} e^{-\lambda s} x ds$.

2) Si $Re(\lambda) > \omega$, alors $\lambda \in \rho(A)$,

$$R\left(\lambda,A\right) = \int_{0}^{+\infty} e^{-\lambda s} T\left(s\right) x ds$$

et

$$||R_{\lambda}(A)|| \le \frac{M}{Re(\lambda) - \omega} \ \forall Re(\lambda) > \omega.$$

La réprésentation de $R(\lambda, A)$ donnée en 1) s'appelle la réprésentation intégrale de la résolvante, c'est une intégrale impropre

$$R(\lambda)x = \lim_{t \to +\infty} \int_0^t e^{-\lambda s} T(s)x ds.$$

Démonstration. 1) Si $\int_0^{+\infty} e^{-\lambda s} x ds$ existe, alors,

$$\int_0^{+\infty} e^{-\lambda s} x ds = \lim_{t \to +\infty} \int_0^t e^{-\lambda s} T(s) x ds \in D(B) = D(A)$$

et on a

$$(\lambda I - A)R(\lambda)x = -\lim_{t \to +\infty} (A - \lambda I) \int_0^t e^{-\lambda s} T(s)xds$$

et en utilisant le lemme précédent 1) on aura

$$(\lambda I - A)R(\lambda)x = -\lim_{t \to +\infty} e^{-\lambda t}T(t)x + x = x,$$

 $\operatorname{car} ||T(t)|| < +\infty$. D'où

$$(\lambda I - A)R(\lambda) = I.$$

D'autre part, pour $x \in D(A)$ on a

$$R(\lambda)Ax = \lim_{t \to +\infty} \int_0^t e^{-\lambda s} T(s) Ax ds = \lim_{t \to +\infty} \int_0^t e^{-\lambda s} AT(s) x ds.$$

En utilisant le théorème 3.iii) on peut écrire

$$\begin{split} R(\lambda)Ax &= \lim_{t \to +\infty} \int_0^t e^{-\lambda s} \frac{dT(s)x}{ds} ds \\ &= \lim_{t \to +\infty} \left[e^{-\lambda t} T(t)x \right]_0^t + \lambda \int_0^{+\infty} e^{-\lambda s} T(s)x ds. \\ &= -x + \lambda R(\lambda)x, \end{split}$$

ce qui signifie que

$$R(\lambda)(\lambda I - A) = I.$$

Donc

$$R(\lambda) = (\lambda I - A)^{-1} = R(\lambda, A).$$

2)
$$\left\| \int_0^t e^{-\lambda s} T(s) ds \right\| \le M \int_0^t e^{(\omega - Re(\lambda))s} ds = \frac{M}{(\omega - Re(\lambda))} \left[e^{(\omega - Re(\lambda))s} \right]_0^t$$

Lorsque $t \longrightarrow +\infty$ le second membre converge vers $\frac{M}{(\omega - Re(\lambda))}$ si $\omega - Re(\lambda) < 0$.

Corollaire 2.6. Soit (A, D(A)) le générateur infinitisimal d'un semi groupe fortement continu $\{T(t), t \geq 0\}$, alors, pour tout $\lambda \in \mathbb{C}$; $Re(\lambda) > \omega$ on a

$$R(\lambda, A)^n x = \frac{(-1)^n}{(n-1)!} \frac{d^{n-1}}{d\lambda^{n-1}} R(\lambda, A) x$$

 $D\acute{e}monstration.$ Du théorème précéedent il result que

$$\lambda R(\lambda, A) - AR(\lambda, A) = I$$

par suite

$$[\lambda R(\lambda, A) - AR(\lambda, A)] R(\mu, A) = R(\mu, A)$$

$$R(\lambda, A) \left[\mu R(\mu, A) - AR(\mu, A) \right] = R(\lambda, A).$$

La soustraction des deux égalités donne

$$R(\lambda, A) - R(\mu, A) = (\mu - \lambda)R(\lambda, A)R(\mu, A)$$

ce qui entraîne

$$\frac{R(\mu, A) - R(\lambda, A)}{\mu - \lambda} = -R(\lambda, A)R(\mu, A)$$

Le passage à la limite conduit à

$$\frac{d}{d\lambda}R(\lambda, A) = -R(\lambda, A)^2$$

et on continu par récurrence.

Chapitre 3

Semi-groupes de contractions et théorie de Hille-Yoside

3.1 Semi-groupes uniformement continu

Définition 3.1. Un semi-groupe $\{T(t), t \geq 0\}$ est dit uniformement continu si il vérifie la proprièté suivante

$$\lim_{t \to 0^+} ||T(t) - I|| = 0.$$

Théorème 3.1. Un operateur A est le générateur infinitesimal d'un semi-groupe uniformément continu si est seulement si il est borné.

Démonstration. Supposons que A est un opérateur borné défini sur X. On définit une famille d'opérateur T(t) en posant pour $t \ge 0$

$$T(t) = e^{tA} = \sum_{n=0}^{+\infty} \frac{t^n A^n}{n!}.$$

La série précédente est majorée par la série

$$\sum_{n=0}^{+\infty} \frac{t^n \|A\|^n}{n!}$$

qui converge pour tout $t \geq 0$ vers $e^{t\|A\|}$. Donc elle converge et définit pour tout $t \geq 0$ un opérateur linéaire borné T(t). Il est facile de vérifier que T(s+t) = T(s)T(t) et que T(0) = I. D'autre part, pour tout $t \geq 0$ on a

$$||T(t) - I|| = \left\| \sum_{n=1}^{+\infty} \frac{t^n A^n}{n!} \right\| = t ||A|| \left\| \sum_{n=0}^{+\infty} \frac{t^n A^n}{(n+1)!} \right\|$$

$$\leq t ||A|| e^{t||A||}.$$

ce qui prouve que

$$\lim_{t \to 0^+} ||T(t) - I|| = 0.$$

De plus

$$\left\| \frac{T(t) - I}{t} - A \right\| = \left\| \sum_{n=2}^{+\infty} \frac{t^n A^n}{n!} \right\| = t \left\| \sum_{n=2}^{+\infty} \frac{t^{n-2} A^n}{n!} \right\|$$
$$= t \|A\|^2 \left\| \sum_{n=1}^{+\infty} \frac{t^n A^n}{(n+2)!} \right\| \le t \|A\|^2 e^{t\|A\|},$$

ce qui montre que

$$\lim_{t \longrightarrow 0^{+}} \frac{T(t) - I}{t} = A$$

d'ou A est le générateur infinitisimal du semi-groupe T(t). Réciproquement, Soit $\{T(t), t \geq 0\}$ un semi-groupe uniformement continu sur un espace de Banach X. Soit $\rho > 0$ suffisament petit tel que

$$\left\| I - \frac{1}{\rho} \int_0^\rho T(s) \, ds \right\| < 1,$$

alors, $\frac{1}{\rho} \int_0^{\rho} T(s) ds$ est inversible et par suite $\int_0^{\rho} T(s) ds$ est inversible

$$\begin{split} \frac{T\left(h\right) - I}{h} \int_{0}^{\rho} T\left(s\right) ds &= \frac{\int_{0}^{\rho} T\left(s + h\right) ds - \int_{0}^{\rho} T\left(s\right) ds}{h} \\ &= \frac{\int_{h}^{\rho + h} T\left(s\right) ds - \int_{0}^{\rho} T\left(s\right) ds}{h} \\ &= \frac{\int_{h}^{\rho + h} T\left(s\right) ds - \int_{0}^{h} T\left(s\right) ds - \int_{h}^{\rho} T\left(s\right) ds}{h} \\ &= \frac{\int_{\rho}^{\rho + h} T\left(s\right) ds - \int_{0}^{h} T\left(s\right) ds}{h}. \end{split}$$

En multipliant par $\left(\int_{0}^{\rho} T\left(s\right) ds\right)^{-1}$ on obtain

$$\frac{T(h) - I}{h} = \frac{\int_{\rho}^{\rho + h} T(s) ds - \int_{0}^{h} T(s) ds}{h} \left(\int_{0}^{\rho} T(s) ds \right)^{-1}$$

En utilisant le théorème 3.i) $\lim_{h\longrightarrow 0}\frac{1}{h}\int_{\rho}^{\rho+h}T\left(s\right)ds=T\left(\rho\right)-I$ et $\lim_{h\longrightarrow 0}\frac{1}{h}\int_{0}^{h}T\left(s\right)ds=0$, d'où $\frac{T\left(h\right)-I}{h}$ converge uniformement, donc fortement, vers l'opérateur linéaire borné

$$A = \left(T\left(\rho\right) - I\right) \left(\int_{0}^{\rho} T\left(s\right) ds\right)^{-1}$$

qui est le générateur infinitisimal de semi-groupe $\{T\left(t\right),t\geq0\}$.

On résume que le générateur infinitisimal d'un semi-groupe uniformement continu est un opérateur borné et que tout opérateur linéaire borné A engendre un semi-groupe uniformement continu donné par

$$T\left(t\right) = \sum_{n=0}^{+\infty} \frac{t^n A^n}{n!}.$$

Corollaire 3.1. Soit $\{T(t), t \geq 0\}$ un semi-groupe uniformement continue, alors,

- 1) Il existe un opérateur linéaire borné A tel que $T(t) = e^{tA}$, $t \ge 0$.
- 2) Il existe $\omega \geq 0$, tel que $||T(t)|| \leq e^{t\omega}$, $t \geq 0$.

Démonstration. 1) D'après le théorème précédent, $\{T(t), t \geq 0\}$ admet un générateur infinitisimal A, qui est un opérateur borné, cet opérateur engendre un semi-groupe uniformement continu $S(t) = e^{tA}$, l'égalité des semi-groupes qui ont le même générateur infinitisimal entraı̂ne que $T(t) = S(t) \cdot 2$ $||T(t)|| \leq e^{t||A||} \leq e^{t\omega}$, où $\omega = ||A||$.

3.2 Théorie de Hille-Yosida

Semi-groupes de contractions

Rappelons qu'un semi-groupe fortement continu $\{T\left(t\right),t\geq0\}$ vérifie $\|T\left(t\right)\|\leq Me^{t\omega}$, pour $M\geq1$ et $\omega\in\mathbb{R}$.

Définition 3.2. Si $\omega = 0$ le semi-groupe est dit uniformement borné. Si de plus M = 1 le semi-groupe est dit de contractions.

Un semi-groupe de contractions $\{T(t), t \geq 0\}$ vérifie

$$||T(t)|| \le 1, \ \forall t \ge 0.$$

Théorème 3.2. (Hille-Yosida) Un opérateur (non borné) A est le générateur infinitisimal d'un C_0 -semi-groupe de contractions, si et seulement si :

- 1) A est fermé de domaine dense.
- 2) $]0, +\infty[\subset \rho(A) \ et \ pour \ tout \ \lambda > 0,$

$$||R(\lambda, A)|| = ||(\lambda I - A)^{-1}|| \le \frac{1}{\lambda}.$$

 $D\acute{e}monstration$. D'après le corollaire 2. du Chapitre I, le générateur infinitisimal d'un semi-groupe fortement continu est fermé et à domaine dense.

Démonstration. Soit $\lambda > 0$. Pour tout $x \in X$ l'application

$$t \longrightarrow T(t) x$$

est continue et uniformement borné $\left(\sup_{t\geq0}\left\Vert T\left(t\right)x\right\Vert \leq\left\Vert x\right\Vert \right),$ l'intégrale

$$\int_{0}^{+\infty} e^{-\lambda s} T(s) x ds$$

converge donc $\lambda \in \rho(A)$ et, d'après le théorème 7.1) du chapitre I, la résolvante $R(\lambda, A)$ est donnée par

$$R(\lambda, A) x = \int_{0}^{+\infty} e^{-\lambda s} T(s) x ds.$$

De plus

$$||R(\lambda, A) x|| \le \int_0^{+\infty} e^{-\lambda s} ||T(s) x|| ds \le ||x|| \int_0^{+\infty} e^{-\lambda s} ds = \frac{1}{\lambda} ||x||,$$

donc

$$||R(\lambda, A)|| \le \frac{1}{\lambda}.$$

Pour montrer la suffisance des conditions i) et ii) du théorème on est besoin de montrer quelques lemmes

Lemme 3.1. Soit A un opérateur qui vérifie les conditions i) et ii) du théorème précédent, alors

$$\lim_{\lambda \to +\infty} \lambda R(\lambda, A) x = x, \ \forall x \in X.$$

 $D\acute{e}monstration$. Supposons que $x \in D(A)$, alors

$$\|\lambda R(\lambda, A) x - x\| = \|R(\lambda, A) (\lambda x - Ax + Ax) - x\|$$

$$= \|R(\lambda, A) [(\lambda I - A) x + Ax] - x\|$$

$$= \|R(\lambda, A) Ax\| \le \frac{1}{\lambda} \|Ax\|$$

et

$$\lim_{\lambda \longrightarrow +\infty} \frac{1}{\lambda} \|Ax\| = 0$$

ce qui conduit à l'affirmation du théorème pour $x \in D(A)$. Comme D(A) est dense dans X et la suite $\{\lambda R(\lambda, A), \lambda \in \mathbb{R}_+\}$ des opérateurs linéaires bornés est uniformement borné

$$\|\lambda R(\lambda, A)\| \le 1, \ \forall \lambda \in \mathbb{R}_+,$$

alors,

$$\lim_{\lambda \to +\infty} \lambda R(\lambda, A) x = x, \ \forall x \in X.$$

Définition 3.3. Pour tout $\lambda > 0$, on définit la régularisé Yoside de A par

$$A_{\lambda} = \lambda AR(\lambda, A) = \lambda^{2}R(\lambda, A) - \lambda I.$$

 A_{λ} est une approximation de A, de la manière suivante :

Lemme 3.2. Soit A un opérateur qui vérifie les conditions i), ii) du théorème précédent, alors,

$$\lim_{\lambda \to +\infty} A_{\lambda} x = Ax, \ \forall x \in D(A).$$

Démonstration. Pour $x \in D(A)$, on a

$$\lim_{\lambda \to +\infty} A_{\lambda} x = \lim_{\lambda \to +\infty} \lambda R(\lambda, A) Ax = Ax.$$

Lemme 3.3. Soient A un opérateur qui vérifie les conditions i), ii) du théorème précédent et A_{λ} sa régularisé Yosida, alors A_{λ} est le générateur infinitisimal d'un semi-groupe de contractions uniformement continu $T(t) = e^{tA_{\lambda}}$ et pour tout $x \in X, \lambda, \mu > 0$, on a

$$||e^{tA_{\lambda}}x - e^{tA_{\mu}}x|| \le t ||A_{\lambda}x - A_{\mu}x||, \ \forall t \ge 0.$$

Démonstration. Puisque A est fermé, $A_{\lambda} \in \mathcal{L}(X)$ et est le générateur infinitisimal d'un semi groupe uniformement continu $T(t) = e^{tA_{\lambda}}$, de plus

$$\left\|e^{tA_{\lambda}}\right\| = \left\|e^{t\left(\lambda^{2}R(\lambda,A) - \lambda I\right)}\right\| = e^{-\lambda t} \left\|e^{t\lambda^{2}R(\lambda,A)}\right\| \le e^{-\lambda t} e^{t\lambda^{2}\|R(\lambda,A)\|} \le e^{-\lambda t} e^{t\lambda} = 1.$$

D'après les définitions de A_{λ} , A_{μ} , $e^{tA_{\lambda}}$ et $e^{tA_{\mu}}$ commute et on a

$$||e^{tA_{\lambda}}x - e^{tA_{\mu}}x|| = ||\int_{0}^{1} \frac{d}{ds} \left(e^{stA_{\lambda}}e^{(1-s)tA_{\mu}}x\right)||$$

$$\leq \int_{0}^{1} t ||e^{stA_{\lambda}}e^{(1-s)tA_{\mu}} \left(A_{\lambda}x - A_{\mu}x\right)|| ds$$

$$\leq t ||A_{\lambda}x - A_{\mu}x||.$$

Fin de la démonstration du théorème de Hille-Yosida Suffisance

Soit $x \in D(A)$ et prenons $t \in [0, \eta]$, on a

$$||e^{tA_{\lambda}}x - e^{tA_{\mu}}x|| \le t ||A_{\lambda}x - A_{\mu}x||$$

$$\le t ||A_{\lambda}x - Ax|| + t ||A_{\mu}x - Ax||$$

et en utilisant le lemme 3.2. ci-dessus on conclu que pour tout $t \ge 0$, la suite $\{e^{tA_{\lambda}}x\}$ est de Cauchy dans X, par suite elle converge vers une limite T(t) x quand $\lambda \longrightarrow +\infty$.

La limite T(t) détermine un opérateur linéaire

$$T(t):D(A)\subset X\longrightarrow X$$

tel que pour $x \in D(A)$

$$\lim_{\lambda \longrightarrow +\infty} e^{tA_{\lambda}} x = T(t) x$$

uniformement dans tout compact de \mathbb{R}_+ .

Comme $||e^{tA_{\lambda}}|| \leq 1$ et D(A) dense dans X, en déduit que T(t) est prolongeable sur X et on a

$$\lim_{\lambda \longrightarrow +\infty} e^{tA_{\lambda}} x = T(t) x, \ \forall x \in X.$$

et

$$||T(t)x|| \le ||x||, \ \forall t \ge 0, \forall x \in X.$$

La famille d'opérateur bornés $\{T\left(t\right),t\geq0\}$ ainsi déterminer est un semi-groupe qui vérifie

$$||T(t)|| \le 1.$$

De plus, pour tout $t \geq 0$ et tout $x, y \in X$ on a

$$\begin{split} \left\|T\left(t\right)x-x\right\| &\leq \left\|T\left(t\right)x-T\left(t\right)y\right\| + \left\|T\left(t\right)y-e^{tA_{\lambda}}y\right\| + \left\|e^{tA_{\lambda}}y-y\right\| + \left\|y-x\right\| \\ &\leq \left\|T\left(t\right)y-e^{tA_{\lambda}}y\right\| + \left\|e^{tA_{\lambda}}y-y\right\| + 2\left\|y-x\right\|. \end{split}$$

Soient T>0 et $\varepsilon>0$, et on choisi $y=x_{\varepsilon}\in D\left(A\right)$ tel que $\|x_{\varepsilon}-x\|<\varepsilon$. Pour λ suffisament grand on a

$$\|T(t)x_{\varepsilon} - e^{tA_{\lambda}}x_{\varepsilon}\| < \varepsilon$$

pour tout $t \in [0, T]$, donc

$$||T(t)x - x|| < 3\varepsilon + ||e^{tA_{\lambda}}x_{\varepsilon} - x_{\varepsilon}||.$$

Puisque $\{e^{tA_{\lambda}}, t \geq 0\}$ est un semi-groupe uniformement continu, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$\left\| e^{tA_{\lambda}} - I \right\| < \varepsilon$$

pour tout tout $t \in [0, \delta]$, par conséquant

$$\|e^{tA_{\lambda}}x_{\varepsilon}-x_{\varepsilon}\| \le \varepsilon \|x_{\varepsilon}\|, \forall 0 \le t \le \delta$$

comme $x_{\varepsilon} \in B(x, \varepsilon)$ alors, $||x_{\varepsilon}|| < \eta$ et par suite

$$||T(t)x - x|| < 3\varepsilon + ||e^{tA_{\lambda}}x_{\varepsilon} - x_{\varepsilon}|| < \varepsilon'$$

et $\{T(t), t \geq 0\}$ est fortement continu.

Montrons que A est le générateur infinitisimal de $T\left(t\right)$, notons par B le générateur infinitisimal de $T\left(t\right)$.

Soit $x \in D(A)$, rappelons que $\lim_{\lambda \to +\infty} A_{\lambda} x = Ax$ et $\lim_{\lambda \to +\infty} e^{tA_{\lambda}} Ax = T(t) Ax$ dans tout compact [0,T] alors,

$$\begin{aligned} \left\| e^{tA_{\lambda}} A_{\lambda} x - T\left(t\right) A x \right\| &\leq \left\| e^{tA_{\lambda}} A_{\lambda} x - e^{tA_{\lambda}} A x \right\| + \left\| e^{tA_{\lambda}} A x - T\left(t\right) A x \right\| \\ &\leq \left\| e^{tA_{\lambda}} \right\| \left\| A_{\lambda} x - A x \right\| + \left\| e^{tA_{\lambda}} A x - T\left(t\right) A x \right\| \end{aligned}$$

ce qui prouve que

$$\lim_{\lambda \to +\infty} e^{tA_{\lambda}} A_{\lambda} x = T(t) Ax.$$

Soit h > 0, alors,

$$T(h)x - x = \lim_{\lambda \to +\infty} \left(e^{hA_{\lambda}}x - x \right) = \lim_{\lambda \to +\infty} \int_0^h e^{tA_{\lambda}} A_{\lambda}x dt = \int_0^h T(t) Ax dt,$$

et par suite

$$\lim_{h \to 0^+} \frac{T(h)x - x}{h} = \lim_{h \to 0^+} \frac{1}{h} \int_0^h T(t) Ax dt = Ax$$

et déduit que $x \in D(B)$ et Bx = Ax. Donc $A \subset B$.

Puisque B est le générateur infinitisimal d'un semi groupe de contractions en déduit de 2) que $1 \in \rho(B)$, donc (I-B) est inversible par suite $(I-B)^{-1}X = D(B)$.

Comme (I-B) D(A)=(I-A) D(A) et d'après 2) $1\in \rho(A)$ on a (I-A) D(A)=X, en déduit que

$$(I - B) D(A) = X$$

ce qui entraı̂ne que $(I - B)^{-1} X = D(A)$, donc D(B) = D(A) ou B = A.

3.3 Théorème de Lumer-Phillips

Soit H un espace de Hilbert de produit scalaire $\langle .,. \rangle$, alors H sera identifié avec son dual H'.

Définition 3.4. Un opérateur $A:D(A)\subset H\longrightarrow H$ est dit dissipatif si pour tout $x\in D(A)$ on a

$$\operatorname{Re}\langle Ax; x \rangle \leq 0.$$

Théorème 3.3. Soit $A:D(A)\subset H\longrightarrow H$ un opérateur, alors A est dissipatif si est seulement si

 $\forall x \in D(A), \forall \lambda > 0 \ on \ a$

$$\lambda \|x\| \le \|(\lambda I - A) x\|.$$

Démonstration. Si A est dissipatif et $\lambda > 0$ on a

$$\lambda \langle x, x \rangle - \operatorname{Re} \langle Ax; x \rangle \ge \lambda \langle x, x \rangle \ge 0 \iff \operatorname{Re} \langle \lambda x - Ax; x \rangle \ge \lambda \|x\|^2 \ge 0$$

et par suite

$$\lambda \|x\|^2 \le \operatorname{Re} \langle \lambda x - Ax; x \rangle \le |\langle \lambda x - Ax; x \rangle| \le \|\lambda x - Ax\| \|x\|$$
.

Réciproquement, si $\lambda \|x\| \leq \|(\lambda I - A)x\|$, alors

$$0 \le \lambda^2 \|x\|^2 \le \|\lambda x - Ax\|^2 = \lambda^2 \|x\|^2 - 2\lambda \operatorname{Re} \langle Ax, x \rangle + \|Ax\|^2$$

donc

$$-2\lambda \operatorname{Re}\langle Ax, x\rangle + \|Ax\|^2 > 0, \ \forall \lambda > 0$$

ce qui est faux sauf que si $\operatorname{Re}\langle Ax, x\rangle \leq 0$.

Théorème 3.4. Soit $A: D(A) \subset H \longrightarrow H$ un opérateur linéaire et D(A) dense dans H. Alors, A est le générateur infinitisimal d'un C_0 -semi-groupe de contractions si et seulement si :

- a) A est dissipatif.
- b) It exists $\lambda > 0$ tel que $\operatorname{Im}(\lambda I A) = H$. (A est maximal).

Démonstration. Néssecité : Supposons que A est le générateur infinitisimal d'un semi groupe de contraction, $\{T(t), t \geq 0\}$. Alors, d'après le théorème de Hille Yosida, $]0, +\infty[\subset \rho(A)$ donc, $\lambda I - A$ est surjectif pour tout $\lambda > 0$, c'est à dire $\mathrm{Im}(\lambda I - A) = H$. D'autre part, pour tout $x \in D(A)$,

$$|\langle T(t) x, x \rangle| \le ||T(t) x|| ||x|| \le ||x||^2$$
.

Donc,

$$\operatorname{Re} \langle T(t) x - x, x \rangle = \operatorname{Re} \langle T(t) x, x \rangle - ||x||^2 \le |\langle T(t) x, x \rangle| - ||x||^2 \le 0.$$

En devisant par t > 0 et on fait tendre t vers 0 on obtain

$$\lim_{t \to 0^{+}} \operatorname{Re} \langle T(t) x - x, x \rangle = \operatorname{Re} \langle Ax, x \rangle \le 0$$

et A est dissipatif. Suffisance : Démontrons tout d'abord le lemme

Lemme 3.4. Soit $T \in \mathcal{L}(X)$, où X est un espace de Banach, les assertions suiventes sont équivalente : i) T est inversible, ii) $\operatorname{Im}(T)$ est dense et il existe $\alpha > 0$, tel que

$$||Tx|| \geq \alpha ||x||$$
.

Démonstration. Si T est inversible alors, $\operatorname{Im}(T) = X$ et

$$||x|| = ||T^{-1}Tx|| \le ||T^{-1}|| \, ||Tx||$$

d'où

$$||Tx|| \ge ||T^{-1}||^{-1} ||x||.$$

Reciproquement, soit (y_n) une suite de Im(T) = X et $\lim y_n = y$. On a $y_n = Tx_n$ et

$$||y_n - y_m|| = ||Tx_n - Tx_m|| \ge \alpha ||x_n - x_m||.$$

Puisque (y_n) est convergente, elle est de Cauchy et parsuite (x_n) est de Cauchy et elle est convergente, soit $\lim x_x = x$, donc

$$Tx = T(\lim x_n) = \lim Tx_n = \lim y_n = y.$$

 $\operatorname{Im}(T)$ est donc fermé. Comme $\operatorname{Im}(T)$ est dense on aura, $\operatorname{Im}(T) = X$. D'autre part, pour $x \in \ker T$ on a

$$0 = \|Tx\| \ge \alpha \|x\|$$

et par suite x=0 et T est injectif. En utilisant le théorème d'isomorphisme de Banach on constate que T est inversible. \Box

Suite de la démonstration de théorème de Lumer-Phillips:

Puisque A est dissipative, alors, pour tout $\lambda > 0$ on a

$$\lambda \|x\| \le \|(\lambda I - A) x\|. \tag{3.1}$$

Soit $\mu > 0$ tel que Im $(\mu I - A) = H$, de (3.1) on a

$$\mu \|x\| \le \|(\mu I - A) x\|$$

alors, $\mu I - A$ est inversible et

$$\|(\mu I - A)^{-1}y\| \le \frac{1}{\mu} \|y\|$$

ce qui signifie que $(\mu I - A)^{-1}$ est borné et par suite fermé. Il s'ensuit que $\mu I - A$ est fermé et A l'est aussi.

Pour montrer que Im $(\mu I - A) = H$, pour tout $\lambda > 0$, on considère l'ensemble

$$\Gamma = {\lambda > 0, \operatorname{Im}(\lambda I - A) = H}$$

D'après, le lemme précédent $\lambda \in \rho(A)$ d'où $\Gamma \subset \rho(A)$.

 $\rho(A)$ est ouvert, alors pour tout $\lambda \in \rho(A)$, il existe $V \subset \mathbb{C}$ voisinage de λ tel que $V \subset \rho(A)$, il est claire que $V \cap \mathbb{R}_+ \subset \Gamma$, ce qui prouve que Γ est ouvert. Soit $(\lambda_n) \subset \Gamma$ et $\lim \lambda_n = \lambda > 0$. Pour tout $n \in \mathbb{N}$ et $y \in X$ il existe $x_n \in D(A)$ tel que

$$\lambda_n x_n - A x_n = y \tag{3.2}$$

d'où (3.1) entraîne

$$||x_n|| \le \frac{1}{\lambda_n} ||y||$$

et comme (λ_n) est borné et structement positive, il existe existe C > 0 tel que

$$||x_n|| \le \frac{1}{\lambda_n} ||y|| \le C.$$

De plus,

$$\lambda_{m} \|x_{n} - x_{m}\| \leq \|\lambda_{m} (x_{n} - x_{m}) - A (x_{n} - x_{m})\|$$

$$\leq \|\lambda_{m} x_{n} - \lambda_{m} x_{m} - A x_{n} + A x_{m}\|$$

$$\leq \|\lambda_{m} x_{n} - A x_{n} - y\| = \|\lambda_{m} x_{n} - \lambda_{n} x_{n}\|$$

$$\leq |\lambda_{n} - \lambda_{m}| \|x_{n}\| \leq C |\lambda_{n} - \lambda_{m}|$$

ce qui prouve que (x_n) est de Cauchy, elle converge alors vers $x \in X$. En utilisant (3.2) on obtain

$$\lim Ax_n = \lambda x - y$$

et comme A est fermé on a $x \in D(A)$ et $\lim Ax_n = Ax$ on aura

$$\lambda x - Ax = y.$$

D'où $\lambda \in \Gamma$ et Γ est fermé. Γ est à la fois fermé et ouvert et est non vide $\mu \in \Gamma$ d'où $\Gamma =]0,1[$.

Problème de Cauchy abstraits

Exemple 1. Considérons le problème

$$\begin{cases} A: D(A) \subset L^{2}(0,\pi) \longrightarrow L^{2}(0,\pi) \\ Au = u_{xx}, \ x \in D(A) \\ u(0) = u(\pi) = 0. \end{cases}$$

avec $D(A) = H_0^1(0, \pi) \cap H^2(0, \pi)$.

Proposition 3.1. L'operateur A définie ci-dessus est le générateur infinitisimal d'un C_0 -semigroupe de contraction.

 $D\acute{e}monstration.$ 1) Rappelons que $C_0^{\infty}\left(0,\pi\right)\subset H^2\left(0,\pi\right)$ et que $C_0^{\infty}\left(0,\pi\right)$ est dense dans $L^2\left(0,\pi\right)$ donc $H^2\left(0,\pi\right)$ est dense dans $L^2\left(0,\pi\right)$. Même chose pour $H_0^1\left(0,\pi\right)$. Le domaine $D\left(A\right)$ est donc dense dans $L^2\left(0,\pi\right)$. 2) A est dissipatif, en effet

$$\langle Au, u \rangle = \int_0^{\pi} u_{xx} \cdot u dx = -\int_0^{\pi} |u_x|^2 dx \le 0.$$

3) A est maximal, soit $f \in L^2(0,\pi)$, cherchons $u \in D(A)$ tel que

$$(\lambda I - A) u = f$$

pour un certain $\lambda > 0$, ceci équivaut à

$$\begin{cases} \lambda u - u_{xx} = f \\ u(0) = u(\pi) = 0 \end{cases}$$

L'équation homogène $\lambda u - u_{xx} == 0$ à pour solution

$$u(x) = c_1(x) e^{-\sqrt{\lambda}x} + c_2(x) e^{\sqrt{\lambda}x}$$

où $c_1(x)$, $c_2(x)$ satisfaient

$$c_{1}'\left(x\right)e^{-\sqrt{\lambda}x} + c_{2}'\left(x\right)e^{\sqrt{\lambda}x} = 0$$
$$-\sqrt{\lambda}c_{1}'\left(x\right)e^{-\sqrt{\lambda}x} + \sqrt{\lambda}c_{2}'\left(x\right)e^{\sqrt{\lambda}x} = f\left(x\right)$$

on trouve alors,

$$u(x) = k_1 e^{-\sqrt{\lambda}x} + k_2 e^{\sqrt{\lambda}x} + \frac{1}{2\sqrt{\lambda}} \int_0^{\pi} k(x, y) f(y) dy$$

avec

$$k(x,y) = \begin{cases} e^{\sqrt{\lambda}(x-y)}, & 0 \le y \le x \le \pi \\ e^{\sqrt{\lambda}(y-x)}, & 0 \le x \le y \le \pi \end{cases}$$

Exercice1. Soient Ω un ouvert borné de \mathbb{R}^n et $u_0 \in L^2(\Omega)$. Considérons le problème

$$\begin{cases}
\frac{du}{dt} = \Delta u \operatorname{sur} \Omega \times]0, +\infty[, \\
u(0) = u_0 \operatorname{sur} \Omega, \\
u(x,t) = 0, \operatorname{sur} \partial\Omega \times]0, +\infty[.
\end{cases}$$
(3.3)

1) Montrer que (3.3) admet une solution unique $u \in C(]0, +\infty[, H^2(\Omega) \cap H_0^1(\Omega)) \cap C^1(]0, +\infty[, L^2(\Omega))$.

Solution. Considérons l'opérateur $A = \Delta = \sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$: $L^{2}(\Omega) \longrightarrow L^{2}(\Omega)$, de domaine

$$D(A) = H^{2}(\Omega) \cap H_{0}^{1}(\Omega).$$

1) A est dissipatif.

$$\langle Au, u \rangle = \sum_{i=1}^{n} \int_{\Omega} \frac{\partial^{2} u}{\partial x_{i}^{2}} u = \int_{\Omega} \operatorname{div} \left(\nabla u \right) u = \int_{\partial \Omega} \left(\nabla u . \eta \right) u - \int_{\Omega} \left(\nabla u \right)^{2} = -\int_{\Omega} \left| \nabla u \right|^{2} \le .0$$

CHAPITRE 3. SEMI-GROUPES DE CONTRACTIONS ET THÉORIE DE HILLE-YOSIDE34

2) A est maximal soit $f \in L^2(\Omega)$ et considérons l'équation

$$(\lambda I - A) u = f$$

pour $\lambda = 1$ on obtient

$$\int_{\Omega} (u - \Delta u) v = \int_{\Omega} f v, \ \forall v \in H_0^1(\Omega)$$

ce qui peut écrire

$$\int_{\Omega} uv + \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv, \ \forall v \in H_0^1(\Omega)$$

et on applique Lax-Milgram le dernier problème admet une solution.

Exercice

$$\begin{cases} u_{tt} - u_{xx} = 0, \\ u(t, 0) = u(t, \pi) = 0, \end{cases}$$
$$u(0, x) = u_0(x), u_t(0, x) = u_1(x).$$

Pour toutes $(u_0, u_1) \in (H^2 \cap H_0^1) \times H_1^1$, le problème admet une solution forte unique

$$u\in C\left(0,\infty,\left(H^2\cap H^1_0\right)\right)\cap C^1\left(0,\infty,H^1_0\right)\cap C^2\left(0,\infty,L^2\right).$$

- 1) Hille Yosida
- 2) Lumer-Phillips

3.4 Théorie spectrale d'un operateur fermé

Soit $A:D(A)\subset X\longrightarrow X$ un opérateur linéaire sur un espace de Banach X. **Définition 1.** On dit que A est fermé si son graphe

$$\Gamma(A) = \{(x, Ax), x \in D(A)\}\$$

est fermé dans $E \times E$.

Proposition 1. Un opérateur A est fermé si et seulement si, pour toute suite $(x_n) \subset D(A)$ qui converge vers x telle que (Ax_n) converge vers y, on a $x \in D(A)$ et y = Ax.

Preuve. Montrons tout d'abord que si $x_n \longrightarrow x$ dans E et $(x_n, Ax_n) \longrightarrow (x', y)$ alors, x = x'. Supposons que A est fermé et soit (x_n) est une suite de D(A) qui converge vers x, alors, (x_n, Ax_n) est une suite de $\Gamma(A)$ qui est fermé, elle converge donc vers une limite $(z, y) \in \Gamma(A)$.

$$\lim \|(x_n, Ax_n) - (z, y)\|_{\Gamma} = \|x_n - z\|_{D(A)} + \|Ax_n - y\|_{E} = 0,$$