¹H/¹³C NMR SPECTROSCOPY

Dr. NAIMA BENCHIKHA

¹H NMR SPECTROSCOPY

Introduction to NMR Spectroscopy

- Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbon-hydrogen frameworks within molecules.
- Two common types of NMR spectroscopy are used to characterize organic structure: ¹H NMR is used to determine the type and number of H atoms in a molecule; ¹³C NMR is used to determine the type of carbon atoms in the molecule.
- The source of energy in NMR is radio waves which have long wavelengths, and thus low energy and frequency.
- When low-energy radio waves interact with a molecule, they can change the nuclear spins of some elements, including ¹H and ¹³C.

Introduction to NMR Spectroscopy

- When a charged particle such as a proton spins on its axis, it creates a magnetic field. Thus, the nucleus can be considered to be a tiny bar magnet.
- Normally, these tiny bar magnets are randomly oriented in space. However, in the presence of a magnetic field B_0 , they are oriented with or against this applied field. More nuclei are oriented with the applied field because this arrangement is lower in energy.
- The energy difference between these two states is very small (<0.1 cal).

Nuclear Magnetic Resonance

Nuclear spin

 $\mu=\gamma \ I \ h$

- μ magnetic moment
- γ gyromagnetic ratio
- I spin quantum number
- h Planck's constant

Apply an external magnetic field

(i.e., put your sample in the magnet)

$$\omega = \gamma B_o = \nu/2\pi$$

- o resonance frequency in radians per second, also called Larmor frequency
- v resonance frequency in cycles per second, Hz
- γ gyromagnetic ratio
- B_o external magnetic field (the magnet)

Spin 1/2 nuclei will have two orientations in a magnetic field +1/2 and -1/2.

Net magnetic moment

Ensemble of Nuclear Spins

The net magnetization vector

Allowed Energy States for a Spin 1/2 System

Therefore, the nuclei will absorb light with energy ΔE resulting in a change of the spin states.

Introduction to NMR Spectroscopy

- In a magnetic field, there are now two energy states for a proton: a lower energy state with the nucleus aligned in the same direction as B₀, and a higher energy state in which the nucleus aligned against B₀.
- When an external energy source (h_v) that matches the energy difference (ΔE) between these two states is applied, energy is absorbed, causing the nucleus to "spin flip" from one orientation to another.
- The energy difference between these two nuclear spin states corresponds to the low frequency RF region of the electromagnetic spectrum.

Introduction to NMR Spectroscopy

• Thus, two variables characterize NMR: an applied magnetic field B_0 , the strength of which is measured in tesla (T), and the frequency v of radiation used for resonance, measured in hertz (Hz), or megahertz (MHz)—(1 MHz = 10⁶ Hz).

• A nucleus is in *resonance* when it absorbs RF radiation and "spin flips" to a higher energy state.

Introduction to NMR Spectroscopy

- The frequency needed for resonance and the applied magnetic field strength are proportionally related.
- NMR spectrometers are referred to as 300 MHz instruments, 500 MHz instruments, and so forth, depending on the frequency of the RF radiation used for resonance.
- These spectrometers use very powerful magnets to create a small but measurable energy difference between two possible spin states.

Nuclear Magnetic Resonance Spectroscopy Introduction to NMR Spectroscopy

Schematic of an NMR spectrometer

An NMR spectrometer. The sample is dissolved in a solvent, usually $CDCl_3$ (deuterochloroform), and placed in a magnetic field. A radiofrequency generator then irradiates the sample with a short pulse of radiation, causing resonance. When the nuclei fall back to their lower energy state, the detector measures the energy released, and a spectrum is recorded. The superconducting magnets in modern NMR spectrometers have coils that are cooled in liquid helium and conduct electricity with essentially no resistance.

Introduction to NMR Spectroscopy

- Protons in different environments absorb at slightly different frequencies, so they are distinguishable by NMR.
- The frequency at which a particular proton absorbs is determined by its electronic environment.
- The size of the magnetic field generated by the electrons around a proton determines where it absorbs.
- Modern NMR spectrometers use a constant magnetic field strength B_0 , and then a narrow range of frequencies is applied to achieve the resonance of all protons.
- Only nuclei that contain odd mass numbers (such as ¹H, ¹³C, ¹⁹F and ³¹P) or odd atomic numbers (such as ²H and ¹⁴N) give rise to NMR signals.

¹H NMR—The Spectrum

• An NMR spectrum is a plot of the intensity of a peak against its chemical shift, measured in parts per million (ppm).

¹H NMR—The Spectrum

- NMR absorptions generally appear as sharp peaks.
- Increasing chemical shift is plotted from right to left.
- Most protons absorb between 0-10 ppm.
- The terms "upfield" and "downfield" describe the relative location of peaks. Upfield means to the right. Downfield means to the left.
- NMR absorptions are measured relative to the position of a reference peak at 0 ppm on the δ scale due to tetramethylsilane (TMS). TMS is a volatile inert compound that gives a single peak upfield from typical NMR absorptions.

Nuclear Magnetic Resonance Spectroscopy ¹H NMR—The Spectrum

• The chemical shift of the *x* axis gives the position of an NMR signal, measured in ppm, according to the following equation:

- By reporting the NMR absorption as a fraction of the NMR operating frequency, we get units, ppm, that are independent of the spectrometer.
- Four different features of a ¹H NMR spectrum provide information about a compound's structure:
 - a. Number of signals
 - b. Position of signals
 - c. Intensity of signals.
 - d. Spin-spin splitting of signals.

¹H NMR—Number of Signals

- The number of NMR signals equals the number of different types of protons in a compound.
- Protons in different environments give different NMR signals.
- Equivalent protons give the same NMR signal.

 To determine equivalent protons in cycloalkanes and alkenes, always draw all bonds to hydrogen.

¹H NMR—Number of Signals

The number of ¹H NMR signals of some representative organic compounds

number of signals?

one

one

CH₃ CH₃

one

one

two

CH₃CH₂CH₂-Br

three

CH₃CHCH₃ CI

two

$\begin{array}{c} \mathsf{CH}_3\mathsf{CHCH}_2\mathsf{CH}_3\\ \overset{{}_{\mathsf{B}}}{\mathsf{Br}}\end{array}$

$CI-CH_2CH_2CH_2-CI$

four

two

three

¹H NMR—Number of Signals

 In comparing two H atoms on a ring or double bond, two protons are equivalent only if they are cis (or trans) to the same groups.

¹H NMR—Number of Signals

• Proton equivalency in cycloalkanes can be determined similarly.

¹H NMR—Enantiotopic Protons.

 When substitution of two H atoms by Z forms enantiomers, the two H atoms are equivalent and give a single NMR signal. These two H atoms are called *enantiotopic* protons.

¹H NMR— Diastereotopic Protons.

 When substitution of two H atoms by Z forms diastereomers, the two H atoms are not equivalent, and give two NMR signals. These two H atoms are called *diastereotopic* protons.

Nuclear Magnetic Resonance Spectroscopy ¹H NMR—Position of Signals

- In the vicinity of the nucleus, the magnetic field generated by the circulating electron decreases the external magnetic field that the proton "feels".
- Since the electron experiences a lower magnetic field strength, it needs a lower frequency to achieve resonance. Lower frequency is to the right in an NMR spectrum, toward a lower chemical shift, so shielding shifts the absorption upfield.

¹H NMR—Position of Signals

- The less shielded the nucleus becomes, the more of the applied magnetic field (B₀) it feels.
- This deshielded nucleus experiences a higher magnetic field strength, to it needs a higher frequency to achieve resonance.
- Higher frequency is to the left in an NMR spectrum, toward higher chemical shift—so deshielding shifts an absorption downfield.
- Protons near electronegative atoms are deshielded, so they absorb downfield.

¹H NMR—Position of Signals

 $CH_{3}CH_{2}CI$ H_{a} H_{b} $BrCH_{2}CH_{2}F$ H_{a} H_{b} $CICH_{2}CHCI_{2}$ H_{a} H_{b}

- The H_b protons are **deshielded** because they are closer to the electronegative Cl atom, so they absorb **downfield** from H_a .
- Because F is more electronegative than Br, the H_b protons are more **deshielded** than the H_a protons and absorb farther **downfield**.
- The larger number of electronegative Cl atoms (two versus one) **deshields** H_b more than H_a, so it absorbs **downfield** from H_a.

¹H NMR—Chemical Shift Values

 Protons in a given environment absorb in a predictable region in an NMR spectrum.

¹H NMR—Chemical Shift Values

• The chemical shift of a C—H bond increases with increasing alkyl substitution.

¹H NMR—Chemical Shift Values

- In a magnetic field, the six π electrons in benzene circulate around the ring creating a ring current.
- The magnetic field induced by these moving electrons reinforces the applied magnetic field in the vicinity of the protons.
- The protons thus feel a stronger magnetic field and a higher frequency is needed for resonance. Thus they are deshielded and absorb downfield.

¹H NMR—Chemical Shift Values

- In a magnetic field, the loosely held π electrons of the double bond create a magnetic field that reinforces the applied field in the vicinity of the protons.
- The protons now feel a stronger magnetic field, and require a higher frequency for resonance. Thus the protons are deshielded and the absorption is downfield.

¹H NMR—Chemical Shift Values

- In a magnetic field, the π electrons of a carbon-carbon triple bond are induced to circulate, but in this case the induced magnetic field opposes the applied magnetic field (B₀).
- Thus, the proton feels a weaker magnetic field, so a lower frequency is needed for resonance. The nucleus is shielded and the absorption is upfield.

¹H NMR—Chemical Shift Values

Effect of π Electrons on Chemical Shift Values

Proton type	Effect	Chemical shift (ppm)
H	highly deshielded	6.5–8
C=C H	deshielded	4.5–6
—C≡C— <mark>H</mark>	shielded	~2.5
	1	

Т
¹H NMR—Chemical Shift Values)

Regions in the¹H NMR spectrum

- Shielded protons absorb at lower chemical shift (to the right).
- Deshielded protons absorb at higher chemical shift (to the left).

¹H NMR—Intensity of Signals

- The area under an NMR signal is proportional to the number of absorbing protons.
- An NMR spectrometer automatically integrates the area under the peaks, and prints out a stepped curve (integral) on the spectrum.
- The height of each step is proportional to the area under the peak, which in turn is proportional to the number of absorbing protons.
- Modern NMR spectrometers automatically calculate and plot the value of each integral in arbitrary units.
- The ratio of integrals to one another gives the ratio of absorbing protons in a spectrum. Note that this gives a ratio, and not the absolute number, of absorbing protons.

¹H NMR—Intensity of Signals

How To Determine the Number of Protons Giving Rise to an NMR Signal

Example A compound of molecular formula $C_9H_{10}O_2$ gives the following integrated ¹H NMR spectrum. How many protons give rise to each signal?

- Step [1] Determine the number of integration units per proton by dividing the total number of integration units by the total number of protons.
 - Total number of integration units: 54 + 23 + 33 = 110 units
 - Total number of protons = 10
 - Divide: 110 units/10 protons = 11 units per proton
- Step [2] Determine the number of protons giving rise to each signal.
 - To determine the number of H atoms giving rise to each signal, divide each integration value by the answer of Step [1] and round to the nearest whole number.

Signal [A]:
 Signal [B]:
 Signal [C]:

 Answer:

$$\frac{54}{11}$$
 =
 4.9
 \approx
 5 H
 $\frac{23}{11}$
 =
 2 H
 $\frac{33}{11}$
 =
 3 H

¹H NMR—Spin-Spin Splitting

• Consider the spectrum below:

¹H NMR—Spin-Spin Splitting

• Spin-spin splitting occurs only between nonequivalent protons on the same carbon or adjacent carbons.

Let us consider how the doublet due to the CH₂ group on BrCH₂CHBr₂ occurs:

- When placed in an applied electric field, (B_0) , the adjacent proton (CHBr₂) can be aligned with (\uparrow) or against (\downarrow) B₀.
- Thus, the absorbing CH_2 protons feel two slightly different magnetic fields—one slightly larger than B_0 , and one slightly smaller than B_0 .
- Since the absorbing protons feel two different magnetic fields, they absorb at two different frequencies in the NMR spectrum, thus splitting a single absorption into a doublet.

¹H NMR—Spin-Spin Splitting

The frequency difference, measured in Hz between two peaks of the doublet is called the coupling constant, *J*.

One adjacent proton splits an NMR signal into a doublet.

¹H NMR—Spin-Spin Splitting

Let us now consider how a triplet arises:

- When placed in an applied magnetic field (B₀), the adjacent protons H_a and H_b can each be aligned with (\uparrow) or against (\downarrow) B₀.
- Thus, the absorbing proton feels three slightly different magnetic fields—one slightly larger than B₀, one slightly smaller than B₀, and one the same strength as B₀.

¹H NMR—Spin-Spin Splitting

- Because the absorbing proton feels three different magnetic fields, it absorbs at three different frequencies in the NMR spectrum, thus splitting a single absorption into a triplet.
- Because there are two different ways to align one proton with B₀, and one proton against B₀—that is, $\uparrow_a\downarrow_b$ and $\downarrow_a\uparrow_b$ —the middle peak of the triplet is twice as intense as the two outer peaks, making the ratio of the areas under the three peaks 1:2:1.
- Two adjacent protons split an NMR signal into a triplet.
- When two protons split each other, they are <u>said to be</u>
 <u>coupled</u>.
- The spacing between peaks in a split NMR signal, measured by the *J* value, is equal for coupled protons.

¹H NMR—Spin-Spin Splitting

three different magnetic fields

¹H NMR—Spin-Spin Splitting

Three general rules describe the splitting patterns commonly seen in the ¹H NMR spectra of organic compounds.

- 1. Equivalent protons do not split each other's signals.
- 2. A set of n nonequivalent protons splits the signal of a nearby proton into n + 1 peaks.
- 3. Splitting is observed for nonequivalent protons on the same carbon or adjacent carbons.

If H_a and H_b are not equivalent, splitting is observed when:

H_a and H_b are on the same carbon.

H_a and H_b are on **adjacent** carbons.

¹H NMR—Spin-Spin Splitting

Splitting is not generally observed between protons separated by more than three σ bonds.

 $\begin{array}{c} & O \\ & \sigma \\ CH_2 \\ & CHCH_3 \\ & \sigma_1 \\ & H_a \\ & H_b \\ & 2-butanone \end{array}$

 H_a and H_b are separated by four σ bonds.

no splitting between H_a and H_b

 $\begin{array}{c} CH_2 \stackrel{\sigma}{=} O \stackrel{\sigma}{=} CHCH_3 \\ I \\ H_a \\ H_b \\ ethyl methyl ether \\ H_a \\ H_b \end{array}$

 ${\rm H}_{\rm a}$ and ${\rm H}_{\rm b}$ are separated by four σ bonds.

no splitting between ${\rm H}_{a}$ and ${\rm H}_{b}$

Names for a Given Number of Peaks in an NMR Signal

Number of pe	aks Name	Number of peaks	Name
1	singlet	5	quintet
2	doublet	6	sextet
3	triplet	7	septet
4	quartet	> 7	multiplet

Common Splitting Patterns Observed in ¹H NMR

*The relative area under the peaks of a quartet is 1:3:3:1.

Nuclear Magnetic Resonance Spectroscopy ¹H NMR—Spin-Spin Splitting

Whenever two (or three) different sets of adjacent protons are equivalent to each other, use the n + 1 rule to determine the splitting pattern.

<u>The 1H NMR spectrum of</u> <u>2-bromopropane, [(CH₃)₂CHBr]</u>

Nuclear Magnetic Resonance Spectroscopy ¹H NMR—Spin-Spin Splitting

Now consider the spectrum of 1-bromopropane. Since H_a and H_c are not equivalent to each other, we cannot merely add them together and use the n + 1 rule.

- H_a and H_c are both triplets.
- H_b is split into 12 peaks, labeled as a multiplet. Fewer peaks are seen because some peaks overlap.

¹H NMR—Spin-Spin Splitting

When two sets of adjacent protons are different from each other (n protons on one adjacent carbon and m protons on the other), the number of peaks in an NMR signal = (n + 1)(m + 1).

 The H_b signal is split into 12 peaks, a quartet of triplets. The number of peaks actually seen for the signal depends on the relative size of the coupling constants, J_{ab} and J_{bc}. When J_{ab} >> J_{bc}, as drawn in this diagram, all 12 lines of the pattern are visible. When J_{ab} and J_{bc} are similar in magnitude, peaks overlap and fewer lines are observed.

¹H NMR—Spin-Spin Splitting

- Protons on carbon-carbon double bonds often give characteristic splitting patterns.
- A disubstituted double bond can have two geminal protons, two cis protons, or two trans protons.
- When these protons are different, each proton splits the NMR signal of the other so that each proton appears as a doublet.
- The magnitude of the coupling constant J for these doublets depends on the arrangement of hydrogen atoms.

Nuclear Magnetic Resonance Spectroscopy ¹H NMR—Spin-Spin Splitting

¹H NMR spectra for the alkenyl protons of (*E*)- and (*Z*)-3-chloropropenoic acid

 Although both (*E*)- and (*Z*)-3-chloropropenoic acid show two doublets in their ¹H NMR spectra for their alkenyl protons, *J*_{trans} > *J*_{cis}.

¹H NMR—Spin-Spin Splitting

The ¹H NMR spectrum of vinyl acetate (CH₂=CHOCOCH₃)

¹H NMR—Spin-Spin Splitting

Splitting diagrams for the alkenyl protons in vinyl acetate are shown below. Note that each pattern is different in appearance because the magnitude of the coupling constants forming them is different.

Splitting diagram for the alkenyl protons in vinyl acetate Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. $(CH_2 = CHOCHOCH_3)$ Hd Hb H_c One nearby H splits the $J_{\rm bd}$ $J_{\rm bd}$ signal into a doublet. Jbc Jbc Jbc The second nearby proton J_{cd} splits the doublet into a Jod $J_{\rm bc} = 1.2$ Hz (geminal) doublet of doublets. $J_{cd} = 6.5 \text{ Hz} (cis)$ $J_{\rm bd} = 14$ Hz (trans) doublet of doublets doublet of doublets doublet of doublets due to H_d due to H_h due to H_c

¹H NMR—OH Protons

- Under usual conditions, an OH proton does not split the NMR signal of adjacent protons.
- The signal due to an OH proton is not split by adjacent protons.

¹H NMR—OH Protons

- Ethanol (CH_3CH_2OH) has three different types of protons, so there are three signals in its NMR spectrum.
- The H_a signal is split by the two H_b protons into three peaks (a triplet).
- The H_b signal is split only by the three H_a protons into four peaks, a quartet. The adjacent OH proton does not split the signal due to H_b .
- \cdot $\rm H_{c}$ is a singlet because OH protons are not split by adjacent protons.
- Protons on electronegative atoms rapidly exchange between molecules in the presence of trace amounts of acid or base. Thus, the CH_2 group of ethanol never "feels" the presence of the OH proton, because the OH proton is rapidly moving from one molecule to another.
- This phenomenon usually occurs with NH and OH protons.

¹H NMR—Cyclohexane Conformers

- Recall that cyclohexane conformers interconvert by ring flipping.
- Because the ring flipping is very rapid at room temperature, an NMR spectrum records an average of all conformers that interconvert.
- Thus, even though each cyclohexane carbon has two different types of hydrogens—one axial and one equatorial—the two chair forms of cyclohexane rapidly interconvert them, and an NMR spectrum shows a single signal for the average environment that it "sees".

Axial and equatorial H's rapidly interconvert. NMR sees an average environment and shows one signal.

¹H NMR—Protons on Benzene Rings

- Benzene has six equivalent deshielded protons and exhibits a single peak in its ¹H NMR spectrum at 7.27 ppm.
- Monosubstituted benzenes contain five deshielded protons that are no longer equivalent, and the appearance of these signals is highly variable, depending on the identity of Z.

• The appearance of the signals in the 6.5–8 ppm region of the ¹H NMR spectrum depends on the identity of Z in C_6H_5Z .

Examples

 $C_{11}H_{16}$

 $C_4H_8Br_2$

C₇H₈O

C₄H₉Br

- a doublet 1.04 ppm 6H
- b complex 1.95 ppm 1H
- c doublet 3.33 ppm 2H

a = two equivalent CH₃'s with one neighboring H (b?)
c = CH₂ with one neighbor H (also b)

- a 6H doublet
 - b 1H complex
- c 2H doublet

$C_{10}H_{13}Cl$

- a singlet 1.57 ppm 6H
- b singlet 3.07 ppm 2H
- c singlet 7.27 ppm 5H
- a = two-equilalent CH₃'s with no neighbors c = monosubstituted benzene ring
- $\mathbf{b} = \mathbf{CH}_2$

¹H NMR—Structure Determination

How To Use ¹H NMR Data to Determine a Structure

Example Using its ¹H NMR spectrum, determine the structure of an unknown compound X that has molecular formula $C_4H_8O_2$ and contains a C=O absorption in its IR spectrum.

Step [1] Determine the number of different kinds of protons.

- The number of NMR signals equals the number of different types of protons.
- This molecule has three NMR signals ([A], [B], and [C]) and therefore three types of protons (H_a, H_b, and H_c).

¹H NMR—Structure Determination

How To, continued . . .

Step [2] Use the integration data to determine the number of H atoms giving rise to each signal (Section 14.5).

- Total number of integration units: 14 + 11 + 15 = 40 units
- Total number of protons = 8
- Divide: 40 units/8 protons = 5 units per proton
- Then, divide each integration value by this answer (5 units per proton) and round to the nearest whole number.

¹H NMR—Structure Determination

How To, continued . . .

- Step [3] Use individual splitting patterns to determine what carbon atoms are bonded to each other.
 - Start with the singlets. Signal [C] is due to a CH₃ group with no adjacent nonequivalent H atoms. Possible structures include:

$$CH_3O-$$
 or CH_3O- or CH_3-C-

- Because signal [A] is a triplet, there must be 2 H's (CH₂ group) on the adjacent carbon.
- Because signal [B] is a quartet, there must be 3 H's (CH₃ group) on the adjacent carbon.
- This information suggests that X has an ethyl group ---→ CH₃CH₂-.

To summarize, **X** contains CH_3- , CH_3CH_2- , and C=O (from the IR). Comparing these atoms with the molecular formula shows that one O atom is missing. Because O atoms do not absorb in a ¹H NMR spectrum, their presence can only be inferred by examining the chemical shift of protons near them. O atoms are more electronegative than C, thus deshielding nearby protons, and shifting their absorption downfield.

¹H NMR—Structure Determination

How To, continued . . .

- Step [4] Use chemical shift data to complete the structure.
 - Put the structure together in a manner that preserves the splitting data and is consistent with the reported chemical shifts.
 - In this example, two isomeric structures (A and B) are possible for X considering the splitting data only:

- Chemical shift information distinguishes the two possibilities. The electronegative O atom deshields adjacent H's, shifting them downfield between 3 and 4 ppm. If A is the correct structure, the singlet due to the CH₃ group (H_c) should occur downfield, whereas if B is the correct structure, the quartet due to the CH₂ group (H_b) should occur downfield.
- Because the NMR of X has a singlet (not a quartet) at 3.7, A is the correct structure.

¹³C NUCLEAR MAGNETIC RESONANCE

✓ ¹³C occurs naturally as 1.11% of total C and the NMR signal is weaker than ¹H.

Therefore, acquisition of a spectrum usually <u>takes much longer</u> <u>than in ¹H NMR</u>. Fourier Transform NMR is used to collect a spectrum.

✓ The magnetogyric ratio of the ¹³C nucleus is about 1/4 that of the ¹H nucleus. Therefore, the <u>resonance frequency in ¹³C</u> NMR:

is much lower than in ¹H NMR.

(75 MHz for ¹³C as opposed to 300 MHz for ¹H in a 7.04 Tesla field).

✓ At these lower frequencies, the excess population of nuclei in the lower spin state is reduced, which, in turn, reduces the sensitivity of NMR detection.

✓ ¹³C resonances occur: from <u>0 to 200</u> ppm (δ) so there is <u>little interference</u> with ¹H δ values.

- Unlike ¹H NMR, the area of a peak is <u>not</u> proportional to the number of carbons giving rise to the signal. Therefore, integrations are usually not done.
- ✓ Each <u>unique carbon</u> in a molecule gives rise to <u>a ¹³C</u> <u>NMR signal</u>. Therefore, if there are <u>fewer signals</u> in the spectrum than <u>carbon atoms</u> in the compound, the molecule must <u>possess symmetry</u>.
- ✓ ¹³C peaks are :
 <u>split by the attached hydrogens</u>.

✓ When running a spectrum: The *protons are usually decoupled*

The *protons are usually decoupled from their respective carbons* to give a singlet for each carbon atom. This is called a *proton-decoupled spectrum*.

✓ **Broadband decoupling:**

eliminates splitting of C by Hs attached to that C.

✓ Off-resonance decoupling:

eliminates interactions of hydrogens on adjacent carbons.

✓ Peaks in a ¹³C NMR spectrum are: <u>typically singlets</u>

✓ ¹³C—¹³C splitting is not seen:

because the probability of two ¹³C nuclei being in the

<u>same molecule</u> is <u>very small</u>.

✓ ¹³C—¹H splitting is not seen:

because spectrum is measured under conditions that suppress this splitting (*broadband decoupling*).

Carbon-13 Proton-Coupled Patterns

Typical coupling constants for ¹³C-¹H one-bond couplings are between *100 to 250 Hz*.

Proton-Decoupled ¹³C NMR of 2-Butanol

Proton-Coupled ¹³C NMR of 2-Butanol

¹³C Off-resonance decoupled spectrum

¹H & ¹³C NMR: 1,1,2-trichloropropane

¹³C Off-resonance & Broadband decoupled spectra

¹³C Broadband decoupled spectrum

¹³C NMR – n-Hexane

¹³C NMR – Acetone

¹H & ¹³C NMR: 2-methyl-2-butene

¹H & ¹³C NMR: 2-methyl-1-butene

Symmetry in ¹³C NMR

 ✓ If there are <u>fewer signals in the spectrum than carbon atoms</u> in the compound, the molecule <u>must possess symmetry</u>.

Examples:

Enantiotopic vs Diastereotopic CH₃'s

¹³C NMR and Peak Intensities

¹H and ¹³C NMR compared

- ✓ Both give us information about the number of chemically nonequivalent nuclei (*nonequivalent hydrogens or nonequivalent carbons*)
- ✓ Both give us information about the environment of the nuclei:
 - **Ex:**(hybridization state, attached atoms, etc.)
- ✓ ¹³C signals are spread over a much wider range than ¹H signals making it easier to identify and count individual nuclei

¹³C Chemical Shifts

are measured in ppm (δ) *from the carbons of TMS*

¹³C NMR

C environment			δppm	C environm e	n t	δррт
Saturated carbons			0-55	Acetylenic	-C≡C-	60-90
	primary	$R-CH_3$	4-30			
	secondary	R_2 - C H_2	12-50	Benzenoid		120-140
	tertiary	R ₃ - C H	22-54			
	quaternary	R ₄ - C	29-47	Carbonyl	C=O	150-220
				amie	des & imides	150-180
Olefinic carbons			100-165	este	ers & anhydride	155-185
		$R_2C=CH_2$	100-110		acids	170-190
		$R-CH=CH_2$	110-120		ketones	185-220
		R-CH= C H-R	125-150		aldehydes	190-210
		CH ₂ = C H-R	130-154			
		$CH_2 = CR_2$	140-165	Nitriles	R- C≡ N	115-125
Allenes				Azomethine	R ₂ C =N-R	145-165
		C=C=C	70-95			
		C= C =C	200-215			

¹³C Chemical Shifts are most affected by:

✓ <u>hybridization state</u> of carbon

electronegativity of groups attached to the carbon:
 electronegativity has an even: *greater effect on ¹³C chemical shifts than it does on 1H chemical shifts*

Hybridization Effects

 \checkmark <u>sp</u>³ hybridized carbon is <u>more shielded</u> than <u>sp</u>².

$$\begin{array}{c} H - C \equiv C - CH_2 - CH_2 - CH_3 \\ 68 \quad 84 \quad 22 \quad 20 \quad 13 \end{array}$$

sp hybridized carbon is more shielded than <u>*sp*</u>², but <u>less shielded</u> than <u>*sp*</u>³.

Electronegativity Effect

an electronegative atom deshields the carbon to which it is attached.

Types of Carbons

	Classification	Chemical shift, &	
		¹ H	¹³ C
CH ₄		0.2	2
CH ₃ CH ₃	primary	0.9	8
CH ₃ CH ₂ CH ₃	secondary	1.3	16
(CH ₃) ₃ CH	tertiary	1.7	25
(CH ₃) ₄ C	quaternary		28

Replacing H with C (more electronegative) <u>deshields</u> <u>C to which it is attached</u>.

Electronegativity Effects on CH₃

	Chemical shift, δ (ppm)			
	¹ H	¹³ C		
CH ₄	0.2	2		
CH ₃ NH ₂	2.5	27		
CH ₃ OH	3.4	50		
CH ₃ F	4.3	75		

Electronegativity Effects and Chain Length

$\frac{\text{CI}}{\text{CH}} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3$ $\delta \text{ (ppm)} \qquad \frac{45}{2} \qquad 33 \qquad 29 \qquad 22 \qquad \underline{14}$

 Deshielding effect of CI <u>decreases</u> as <u>number of bonds</u> between <u>CI and C increases</u>. <u>Carbonyl Carbons</u> are Especially <u>Deshielded</u>

<i>Type of carbon</i>	Chemical shift (δ), ppm	Type of carbon	Chemical shift (δ), ppm
RCH ₃	0-35	RC≡CR	65-90
$R_2 CH_2$	15-40		<u>2</u> 100-150
R₃ <mark>C</mark> H	25-50		
R ₄ C	30-40		110-175

Type of carbon C	^c hemical shift (δ), ppm	Type of carbon	Chemical shift (δ), ppm
RCH₂Br	20-40	RC=N O	110-125
RCH ₂ CI	25-50	RCOR	160-185
RCH ₂ NH ₂	35-50	o	
RCH ₂ OH	50-65	RCR	190-220
RCH ₂ OR	50-65		

Approximate Values of Chemical Shifts for ¹³C NMR

Type of carbon	Approximate chemical shift (ppm)	Type of carbon	Approximate chemical shift (ppm)
(CH ₃) ₄ Si	0	C—I	0–40
R— <mark>C</mark> H ₃	8–35	C-Br	25–65
R— <mark>C</mark> H ₂ —R	15–50	C—Cl C—N C—O	35–80 40–60 50–80
R R R R R R R R	20–60		165–175
R R— <mark>C</mark> —R R	30–40	R RO	165–175
≡ <mark>C</mark>	65–85	R HO	175–185
= <mark>C</mark>	100–150	R H C=O	190–200
C	110–170	R R	205–220

Measuring a ¹³C NMR spectrum involves

1- Equilibration of the nuclei between the lower and higher spin states under the influence of a magnetic field.

2- Application of a radiofrequency pulse to give an excess of nuclei in the higher spin state.

3- Acquisition of free-induction decay data during the time interval in which the equilibrium distribution of nuclear spins is restore

4- Mathematical manipulation (Fourier transform) of the data to plot a spectrum

5- Steps 2 and 3 can be repeated hundreds of times to enhance the signal-noise ratio

Alkane: 2-methylpentane

Example 1:

Alcohol: 2-hexanol

Alkyl Halide: 3-bromopentane

Example 3:

Alkene: 1-hexene

-

Aromatic Ring: eugenol

Example 6: Carboxylic Acid: pentanoic acid

Ester: ethyl valerate

Example 8:

<u>Amide</u>: pentanamide

Example 9: Ketone: 3-methyl-2-pentanone

Example 10: Aldehyde: 2-methylpentanal

DEPT¹³C NMR Spectra

- DISTORTIONLESS ENHANCEMENT BY POLARIZATION TRANSFER (DEPT) ¹³C NMR provides information the <u>number of hydrogen atoms attached to each</u> <u>carbon</u>.
 - ✓ Some ¹³C signals *stay the same*
 - ✓ Some ¹³C signals <u>*disappear*</u>
 - ✓ Some ¹³C signals *are inverted*
- Full decoupled ¹³C spectrum shows all carbon peaks.
- In a **DEPT-90**, only **CH** signals appear.
- In a DEPT-135, CH₃ and CH give (+) signals, and CH₂ give
 (-) signals.

DEPT Spectra

	CH ₃	CH ₂	CH	С
Broadband-decoupled	L	L	L	L
DEPT-90	_		T	
DEPT-135	Ţ	Υ	Ţ	_

	С	Ή	CH_2	CH_3
С	normal C-13 spectrum			

Quaternary carbons (C) do <u>not</u> show up in DEPT.

Simulated DEPT Spectra of Ethyl Phenylacetate

DEPT Spectra of Ipsenol

¹³C NMR – 6-methyl-5-hepten-2-ol

Broadband All carbons as singlets

¹³C NMR – 6-methyl-5-hepten-2-ol

DEPT 90 Only CH carbons

references

- -Robert Milton Silverstein, G. Clayton Bassler, Terence C. Morill 1998 Science 432 pages
- http://rmn2d.univ-lille1.fr/index1.htm
- http://www.chem.queensu.ca/facilities/NMR/nmr/webcourse/inept.htm
- www.cheneliere.info/.../05_Spectroscopie_par_resonance_magnetique_nucleaire_(RMN_13C).pdf
- -Proton NMR spectroscopy /prof: Chaafai Ahmed Mahmoud Jad
- -Spectrometric identification of organic compounds, 7edition, Robert M.S., Francis .X.W., and David J.K., State university of New york
- •
- <u>www.rmn.uhp-nancy.fr/Mutzenhardt/RMNSV2CM4.pdf</u>