
UNIVERSITY YEAR 2023- 2024

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH ECHAHID HAMMA LAKHDAR

UNIVERSITY OF EL-OUED

FACULTY OF TECHNOLOGY
1ST YEAR LMD SCIENCES AND TECHNIQUES

Concept of Algorithm and Program

مفهوم الخوارزمية والبرنامج

Chapter III :

Dr . BERHOUM Adel

professor at

University of El
Oued

Outline

Star

o The word “Algorithm” is invented by the mathematician “ALKHAWARISMI”. A Algorithm

is the statement of a sequence of primitive actions carrying out processing. It describes

the plan or sequences of actions to resolve a given problem.

o An algorithm is a set of sequential and logically ordered actions (or instructions),

making it possible to transform input data (Inputs) into output data (outputs or results), in

order to solve a problem.

o So, an algorithm represents a solution for a given problem. This solution is specified

through a set of instructions (sequential with logical order) that manipulate data. Once

the algorithm is written (with any language: French, English, Arabic, etc.), it will be

transformed, after choosing a programming language, into a source code program

which will be compiled (translated) and executed by the computer.

For the programming language that will be used, it will be the PASCAL language.02

1. Introduction
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

An algorithm represents a

solution to a given problem.

To achieve this algorithmic

solution, an analysis and

resolution process will be

applied. This process consists

of the following steps:

03

1. Concept of an algorithm
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

The approach and analysis of a problem

problem

model

Algorithm

Program

Results

 Analysis/study of the problem to be
solved

 Specify the resolution model

 Writing the algorithm

 Translation of the algorithm into a
program

 Execution of the program by the

computer

An algorithm allows processing on a

set of input data to produce output

data. The output data represents the

solution of the problem treated by

the algorithm.

An algorithm can be schematized as

follows:

All data in a program are objects in

RAM (a reserved space in RAM).

Each object (memory space) is

designated by a name called:

identifier.04

2. Data Structures
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. input output Data

Algorithm

Input data (variables)

Output data (result)

An identifier is a character string containing only alphanumeric characters (alphabetical

of [az] and [AZ] and numeric [09]) and drawn 8 '_' (underline), and which must begin with

either an alphabetic letter Or _.

An identifier allows you to uniquely identify an algorithm (or a program), a variable, a

constant, a procedure or a function.

In a given programming language, we are not allowed to use the reserved words

(keywords) of the language as identifiers. Among the key words of the PASCAL language:

• program, begin, end,

• if, else, then, while, for, do, to, downto, repeat, until, goto,

• procedure, function, label, var, const, type, uses, array, of,

• real, integer, boolean, char, string, ...
05

2. Data Structures
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

2. Concept of identifier

Examples:

a1: is a valid identifier.

a_1: is a valid identifier.

A_1: is a valid identifier.

x12y: is a valid identifier.

x1 y: is an invalid identifier (because

of blank or space).

06

2. Data Structures
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

2. Concept of identifier

Examples:

x1-y: is an invalid identifier (because

of the sign).

x1_y: is a valid identifier.

1xy: is an invalid identifier (starts a

numeric character).

_x1 : ?

The data manipulated by an algorithm (or a program) are either constants or

variables:

– Constants: a constant is an object containing a value that can never be modified. Its

goal is to avoid using a value in a direct way. Let's imagine that an algorithm uses the

value 3.14 ten times (the number of occurrences of the value 3.14 is for example 15) and

that we want to modify this value by another more precise value: 3.14159. In this case we

are required to modify all occurrences of 3.14.

– On the other hand, if we use a constant PI = 3.14 we modify this constant only once.

– Variables: a variable is an object containing a value that can be modified.All data

(variable or constant) in an algorithm has a data type (domain of possible values).
03

2. Data Structures
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

3. Constants and variables

In algorithms, we have five basic types:

– Integers: represents the set {…, 4, 3, 2, 1, 0, 1, 2, 3, 4, ...}

– Real: represents fractional numeric values and with

fixed (or floating) points

– Characters: represents all printable characters.

– Character strings: a sequence of one or more

characters

– Booleans (logical): represents the two values TRUE and

FALSE.
07

2. Data Structures
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

Algorithm PASCAL

Entire Integer

Real Real

Boolean Boolean

Character Char

chain String

4. Data types

An algorithm manipulates data, the data before using it must be identified and declared

using the identifier.

An algorithm is made up of three parts:

– Header : in this part we declare the name of the algorithm through an identifier.

– Declarations: in this part we declare all the data used by the algorithm.

– Body : represents the sequence of actions (instructions)

08

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

To write an algorithm, you must follow the following structure

03

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

To write an algorithm/ program, you must follow the following structure

Algorthm < Algo_Identifier>

End.

Star

<Declarations>

<Body of algo>
<instruction1>

<instruction2>

In the declaration part, we declare all the input and output data in the

form of constants and variables.

– Constants: are objects containing non-modifiable values. Constants are declared

as follows: <identifier> = <value>;

Examples:

• PI = 3.14; Real constant.

• MAX = 10; Integer constant.

• cc = 'a'; Constant character.

• ss = 'algo'; Character string constant.

• b1 = true; Boolean constant.

• b2 = false; Boolean constant.09

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Declarations

– Variables: are objects containing values that can be modified. Variables are

declared as follows: <identifier>: <type>;

A variable belongs to a data type. We have five basic types of data:

– Integers – Real –Characters - String of characters – Booleans, containing two

values: True or False;

Examples:

x: real; variable. n, m:integer; two integer variables. s:String; character string

variables.

b1, b2, b3:boolean; 3 Boolean variables. c1: character c1:char; character variable.

N.B.: In addition to constants and variables, we can declare new types, labels and

(in a PASCAL program) functions and procedures.10

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Declarations

The body of an algorithm consists of a set of sequentially and logically ordered

actions/instructions. The instructions are of five types, namely:

– Read: The operation of inputting data to the algorithm. A reading consists of giving an arbitrary

value to a variable.

– Write: The operation of displaying data. It is used to display results or messages.– Assignment:

this is used to modify the values of the variables.

– Control structure: It allows modifying the sequentiality of the algorithm, to choose an execution

path or repeat a process.

– Alternative Single /Double Test Structure – Repetitive structure (iterative) – the For loop – the

Tantque loop

The Repeat loopI n the PASCAL language, each statement ends with a semicolon. Except at the

end of the program, we put a period.
11

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

2. Body

All of a program's instructions are written in its body. (between Start and

End, i.e. Begin and End.). These instructions can be grouped into three types:

inputs/outputs (entry of values and display of results), assignment and control

structures (tests and loops)

12

3. Instruction Types
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

2. Body

Algorthm < Algo_Identifier>

End.

Star

<Declarations>

<Body of algo>
<instruction1>

<instruction2>

Input (Read): An input instruction allows us in a program to give any value to a variable. This is

achieved through the read operation. The syntax and semantics of a reading is as follows:

13

3. Instruction Types
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

2. Input/Output Instructions (Read/Write)

Algorithm PASCAL Meaning

read(<id_var>) read(<id_var>);

readln(<id_var>);

Give any value to the variable including

the identifier <id_var>.

read(<iv1>, <iv2>, …); read(<iv1>, <iv2>, …); Give values to variables <iv1>, <iv2>, etc.

It should be noted that the read instruction only concerns variables, we cannot read constants

or values. When reading a variable in a PASCAL program, the program hangs waiting for a

value to be entered via the keyboard. Once the value is entered, validate with the enter key,

and the program resumes execution with the following instruction.

Examples: read(a, b, c); read(height);

Outputs (Write): An output instruction allows us in a program to display a result (processed

data) or a message (character string). This is achieved through the writing operation.The syntax

and semantics of a script is as follows: reading is as follows:

14

3. Instruction Types
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

2. Input/Output Instructions (Read/Write)

Algorithm PASCAL Meaning

write(<id_var> |

<is_const> | <value>,

<expression>)

write(<id_var> | <id_const> |
<valeur>, <expression>);
writeln(<id_var> | <id_const>
| <valeur>,
< expression>);

Display a value of a variable,

constant, immediate or

calculated value through an

expression.

It should be noted that the writing instruction does not only concern variables, we can write

constants, values or expressions (arithmetic or logical). We can display a value and skip the line

immediately after using the instruction: writeln.

15

3. Instruction Types
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

2. Input/Output Instructions (Read/Write)

Examples:

write ('Bonjour'); {show Hello message}

write(a, b, c); {show the values of variables a, b and c}

write(5+2); {display the result of the sum of5 and 2: display 7}

write(a+b-c); {display the result of the arithmetic expression: a+b-c}

write(5<2); {display the result of the comparison 5 < 2, the result is the

boolean value FALSE}

write('The value of x : ', x);

–An assignment consists of giving a value (immediate, constant, variable or

calculated through an expression) to a variable. The syntax for an assignment is:

Algo : <id_varialbe> = OR  < valeur>|<id_variable>|<expression >

PASCAL : <id_varialbe> := <valeur>|<id_variable>|<expression> ;

An assignment has two parts: the left part which always represents a variable, and

the right part which can be: a value, variable or an expression. The condition for an

assignment to be correct is that: the right part must be of the same type (or

compatible type) with the left part.
16

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Instruction of assignment

17

3. Instruction Types
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Instruction of assignment

Examples:

a = 5 a:=5; { put the value 5 in the variable a }

Ba=5 b:=a+5; { put the value of the expression a+5 into the variable B }

sup a>b sup:=a>b; {a>b gives a Boolean result, so sup is a Boolean variable}

In general, the instructions in a program are executed in a sequential manner:

the first instruction, then the second, after the third and so on. However, in several

cases, we are required either to choose between two or more execution paths (a

choice between two or more options), or to repeat the execution of a set of

instructions, for this we need control structures to control and choose execution

paths or redo processing several times. Control structures are of two types:

Conditional control structures and repetitive (iterative) control structures.

18

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

1. Conditional control structures:

These structures are used to decide the execution of an instruction block: is this

block executed or not. Or to choose between executing two different blocks. We

have two types of conditional structures:

A. Simple alternative test (if <cond> then)

B. Double alternative test (if <cond> then else)

19

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

1. Conditional control structures:

A. Simple alternative test (if <cond> then)

A simple test contains a single block of instructions. Depending on a condition (logical

expression), we decide whether the block of instructions is executed or not. If the condition is

true, we execute the block, otherwise we do not execute it.

The syntax for a simple alternative test is as follows:

Algorithm: if <condition (s)> then <instruction (s)>; Endif

PASCAL : if <condition (s)> then begin <instruction (s)>; end;

20

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

1. Conditional control structures:

A. Simple alternative test (if <cond> then)

21

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

Read(x);

if (x>2) then

x:= x + 3;
writeln(‘x=‘, x);

Read(x);

if (x>2) then

x:= x + 3;

endif
write(‘x=‘, x);

Note: In the PASCAL language, a block is delimited by the two
keywords begin and end. If the block contains a single instruction,

begin and end are optional (they can be removed).

1. Conditional control structures:

B. Double alternative test (if <cond> then else)

A double test contains two blocks of instructions: we have to decide between the first block or

the second. This decision is made according to a condition (logical or Boolean expression) which

can be true or false. If the condition is true we execute the first block, otherwise we execute the

second.

The syntax for a simple alternative test is:

Algorithm: if <condition (s)> then <instruction (s)>; else <instruction (s)>; Endif

PASCAL : if <condition (s)> then begin <instruction (s)>; end; else begin <instruction (s)>; end;
22

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

1. Conditional control structures:

B. Double alternative test (if <cond> then else)

23

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

Read(x);

if (x>2) then

x := x + 3;

else

x := x * 3;
writeln(‘x=‘, x);

Read(x);

if (x>2) then

x = x + 3;

else

x = x * 3;

endif
write(‘x=‘, x);

1. Conditional control structures:

B. Double alternative test (if <cond> then else)

– In PASCAL language, you must never put a semicolon before else.

– In the previous example, we can remove begin end from the if and those from the else since

there is only one instruction in the two blocks.

Examples:

Write an algorithm (and a PASCAL program) which allows you to indicate whether an integer is

even or not.

24

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

2. Repetitive control structures:

Repetitive structures allow us to repeat a treatment a finite number of times. For example, we

want to display all the prime numbers between 1 and N (N given positive integer).We have three

types of iterative structures (loops):

A. For Loop

B. While loop

C. Repeat Loop

25

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

2. Repetitive control structures:

A. For Loop

The repetitive control structure for uses an integer index which varies (with increment = 1) from

an initial value to a final value. At the end of each iteration, the index is incremented by 1

automatically (implicitly).

The syntax of the for loop is as follows:

26

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

For <index> := <vi> To <vf> Do

begin

<instruction (s)>
end;

For <index> = <vi> To <vf> Do

<instruction (s)>
endfor;

<index>: integer variable <vi>: initial value <vf>: final value

2. Repetitive control structures:

A. For Loop

o The for loop contains a block of instructions (the instructions to repeat). If the block contains a

single instruction, the begin and end are optional.

o The block will be repeated a number of times = (<vf> = <vi> + 1) if the final value is greater

than or equal to the initial value.

o The block will be executed for <index> = <vi>, for <index> = <vi>+1, for <index> = <vi>+2, …,

for <index> = <vf>.You should never put a semicolon after the do keyword. (logical error)

27

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

2. Repetitive control structures:

B. While loop

The repetitive control structure while uses a logical or Boolean expression as a condition for

access to the loop: if the condition is verified (it gives a true result: TRUE) then we enter the loop,

otherwise we left him.The syntax of the repeat loop is as follows:

28

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

Whille <condition (s)> do

<instruction (s)>

Whille <condition (s)> do

<instruction (s)>

<condition>: logical expression that can be true or false.

2. Repetitive control structures:

B. While loop

o The block of instructions is executed as long as the condition is true. Once the condition is

false, we stop the loop, and we continue executing the instruction that comes after end As

long as (after end).

o Like the for loop, you must never put a semicolon after do.

o Any for loop can be replaced by a while loop, however the reverse is not always possible.

29

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

2. Repetitive control structures:

C. Repeat loop

The repetitive control structure repeat uses a logical or Boolean expression as an exit condition

from the loop: if the condition is verified (it gives a true result: TRUE) we exit the loop, otherwise

we access it (we repeat the execution of the block).

The syntax of the repeat loop is as follows:

30

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

repet

<instruction (s)>

until <condition (s)>

repet

<instruction (s)>

until <condition (s)>

<condition>: logical expression that can be true or false.

2. Repetitive control structures: C. Repeat loop

We execute the block of instructions until we have the correct condition. Once the condition is

verified, we stop the loop, and we continue executing the instruction that comes after until

(after until). In the repeat loop we do not use begin and end to delimit the block of instructions

(the block is already delimited by repeat and until).

The difference between the repeat loop and the while loop is:

– The condition to repeat and always the opposite of the condition while: to repeat is the exit

condition of the loop, and for while it is the condition to enter.

– The condition test is at the end of the loop (the end of the iteration) to repeat. On the other

hand, it is at the start of the iteration for the while loop. That is to say, in as long as we test the

condition before entering the iteration, and in repeat we do the iteration after we test the

condition.

31

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

3. Branch/Jump control structure (the Goto instruction):

A branch statement allows us to jump to a location in the program and continue execution from

that location. To make a connection, you must first indicate the target of the connection via a

<num_etiq> label: . Then we jump to this place with the instruction go to <num_etiq> (in Pascal:

goto <num_etiq>).

The syntax for a branch is as follows:

32

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

Goto <num_etiq>

……

…..
<num_etiq>

Goto <num_etiq>

……

…..
<num_etiq>

3. Branch/Jump control structure (the Goto instruction):

N.B.:–

A label represents a number (integer), example: 1, 2, 3, etc.

– In a PASCAL program, you must declare the labels in the declaration part with the keyword

label. (we saw const for constants var for variables)

– A label designates a single place in the program, you can never indicate two places with the

same label.

– On the other hand, you can make several connections to the same label.– A jump or branch

can be to an earlier or later instruction (before or after the jump).

33

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

3. Branch/Jump control structure (the Goto instruction):

Example:–

34

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

Algorithme Branching;
variable a, b, c:integer;
label 1 , 2;

Star

read(a,b);

2: c:=a;

if (a>b) then
goto 1;

Endif;
a := a + 5;

goto 2;

1: write(c);

end.

program Branching;
uses wincrt;
var a, b, c:integer;
label 1 , 2;

begin

read(a,b);

2: c:=a;

if (a>b) then
goto 1;
a := a + 5;

goto 2;

1: write(c);

End.

3. Branch/Jump control structure (the Goto instruction):

In the example above, there are two labels: 1 and 2.

Label 1 refers to the last instruction of the algorithm/program (write(c) / write(c) ;),

label 2 refers to references the third instruction of the algorithm/program (c a; / c := a;).

To run the algorithm, we use the following table (a = 2 and b = 5):

35

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

Instructions Variables a b c

Read (a, b): Give any two values to a and b 2 5 ?

c = a ; 2 5 2
a > b → false if a = 2 and b =5 we do not enter the block if
a = a + 5;

7 5 2

goto 2 c = a; 7 5 7
a > b → true since a = 7 and b =5 we enter the if block go
to 1 => write (c)

7 5 7 (result displayed)

3. Branch/Jump control structure (the Goto instruction):

A. There are two types of connection: has. unconditional connection: it is an unconditional

connection, it does not belong to an if block or an otherwise block. In the previous example,

the go to 2 instruction is an unconditional jump.

B. Conditional branch: On the other hand, a conditional branch is a jump which belongs to an

if block or an else block. The go to 1 (goto 1) instruction in the previous example is a

conditional jump since it belongs to the if block.

36

3. Structure of an algorithm / program
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Control structures

Instructions Variables a b c

Read (a, b): Give any two values to a and b 2 5 ?

c a ; 2 5 2

a > b → false if a = 2 and b =5 we do not enter the block if a a + 5; 7 5 2

go to 2 c a; 7 5 7
a > b → true since a = 7 and b =5 we enter the if block go to 1 =>

write (c)
7 5 7 (result displayed)

A flowchart is the graphical representation of solving a problem. It is similar to an

algorithm. Each type of action in the algorithm has a representation in the flowchart.

It is better to use the algorithmic representation than the flowchart representation,

especially when the problem is complex. The disadvantages that may be

encountered when using flowcharts are:

– When the organization chart is long and takes up more than one page,

– arrow overlap problem,

– more difficult to read and understand than an algorithm.
37

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

38

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Organization chart symbols

Represents the start and end of Algorthm

Inputs/Outputs: Reading data and writing

results.

Calculations, Treatments

Tests and decision: we write the test inside the

diamond

Order of execution of operations

(Sequencing)

Connector

Sequencing allows you to execute a series of actions in the order in which they appear. Let A1,

A2, …, be a series of actions, their sequence is represented as follows:

39

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Representation of algorithmic primitives

A1;

A2;

…..

…..

……

An;

A1;

A1;

A1;

. A1, A2, …, An: can be elementary or complex actions.

A. The simple alternative structure

40

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Representation of algorithmic primitives

If < condition (s)> then

<Action (s)>

Endif

If the condition is verified, the <action(s)> block will be

executed, otherwise nothing, and we continue

executing the instruction after end if.

Conditions ?

Action(s)

True

False

Continuation of the organization

A. The simple alternative structure

The conditions used for testing (single or double) are logical or Boolean expressions, meaning

expressions whose evaluation gives either TRUE or FALSE . Any comparison between two numbers

represents a logical expression. We can form logical expressions from other logical expressions

using the following operators: Not, Or and And.

Examples: (x >= 5): is a logical expression, it is true if the value of x is greater than or equal to 5. it

is false other wise. Not (x >= 5): E.L. which is true only if the value of x is less than 5.(x >=5) And

(y<=0): E.L. which is true if x is greater than or equal to 5 and y less than or equal to 0.

41

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Representation of algorithmic primitives

B. The double alternative structure

42

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Representation of algorithmic primitives

Représentation sous forme d'organigrammeAlgorithmic representation

If <condition (s)> then

| <action1 (s)>

else

| <action2 (s)>

endif

If the condition is verified, the
<action1(s)> block will be executed,
otherwise (if it is false) we execute
<action2(s)>.

Action1(s)

Continuation of the organization

Conditions ?
TRUE

Action2(s)

FALSE

C. The iterative FOR structure (FOR Loop)

43

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Representation of algorithmic primitives

Représentation sous forme d'organigrammeAlgorithmic representation

For<cpt> =<iv> To <fv> then

| <action1 (s)>

endFor

In the FOR loop, we execute the

<acitons> block (<vf> <vi> + 1) times.

This in the case where <vf> is greater

than or equal to <vi>. Otherwise, the

action block will never be executed

Action(s)

FALSE

Continuation of the organization

cpt> <= <iv> TRUE

<cpt> = <cpt> + 1 ;

C. The iterative FOR structure (FOR Loop)

44

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Representation of algorithmic primitives

The flow of the FOR loop is expressed as follows:

1 – the integer variable <cpt> (the counter) takes the initial

value <vi>;

2 – we compare the value of <cpt> to that of <vf>; if <cpt> is

greater than <vf> we exit the loop;

3 – if <cpt> is less than or equal to <vf> we execute the

<action(s)> block;

4 – the FOR loop automatically increments the counter

<cpt>, that is to say it adds one (<cpt> <cpt> + 1);

Action(s)

FALSE

Continuation of the organization

cpt> <= <iv> TRUE

<cpt> = <cpt> + 1 ;

D. The While Iterative Structure (While Loop)

45

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Representation of algorithmic primitives

Représentation sous forme d'organigrammeAlgorithmic representation

While <cpt> =<iv> To <fv> do

| <action1 (s)>

endwhile

We execute the <actions> instruction block as long as the <condition> is verified (i.e. it is

true). The sequence of the loop is as follows:

1 – We evaluate the condition: if the condition is false we exit the loop;

2 – If the condition is true, we execute the <actions> block; otherwise go to 4.

3 – We return to 1;4 – We continue with the rest of the algorithm

False

Continuation of the organization

< Action(s)>

Condition ?
True

E. The iterative structure Repeat (Repeat Loop)

46

4. Organization chart representation
C

o
n

ce
p

t
 o

f
 A

lg
o

ri
th

m

a

n
d

P

ro
g

ra
m

1. Representation of algorithmic primitives

Représentation sous forme d'organigrammeAlgorithmic representation

Repet

| <action1 (s)>;

until <condition (s)>

We repeat the execution of the <action(s)> block until we have the correct condition. The procedure is

as follows:

1 – We execute the <action(s)> block;

2 – We evaluate the condition: if the condition is verified (it is true) we exit the loop (we continue the

rest of the algorithm);

3 if the condition is not verified (it is false) we return to 1.

Fals

e

Continuation of the organization

< Action(s)>

Condition ?

True

Fin

C
o

n
ce

p
t

 o
f

 A
lg

o
ri

th
m

a

n
d

P

ro
g

ra
m

