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Chapter 1

Bilinear and quadratic Forms

1.1 Bilinear and sesquilinear forms

Throughout this paragraph, we denote by V a vector (linear) space over the scalar
field K (R or C).

Definition 1.1. A bilinear form over V is a two-variables functional B : V × V −→
K, such that for all α, β ∈ K and all x, y, z ∈ V, we have

i) B (αx+ y, z) = αB (x, z) +B (y, z) ,

ii) B (x, βy + z) = βB (x, y) +B (x, z) ..

In other words, B (·, ·) is linear with respect to each of its components.
If B satisfies the above statement i) and

iii) B(z, αx+ y) = αB(z, x) +B (z, y) , ∀α ∈ C,∀x, y, z ∈ V,

then B is called a sesquilinear form.

Example 1.1. The simplest example is the functions

B : R× R −→ R S : C −→ C

: (x, y) −→ xy, : (x, y) −→ xy.

B is bilinear form and S is sesquilinear form.

Example 1.2. Suppose that V is a vector space and let B be the inner product over
V, B (x, y) = 〈x, y〉 , then, B is a bilinear form if 〈·, ·〉 is a real valued inner product,
and a sesquilinear form if 〈·, ·〉 is complex valued inner product.

Example 1.3. Let V be an n−dimensional vector space, and let A be a square matrix
over K, A ∈Mn (K) . For every u, v ∈ V, we set

B (u, v) = uTAv =
∑

1≤i,j≤n

uiaijvj,

3
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where, uT is the transpose of u. Then, B is a bilinear form over V.
Similarly, S (u, v) = uTAv =

∑
1≤i,j≤n

uiaijvj, is a sesquilinear form.

Lemma 1.1. Let B be a bilnear or a sesquilinear form, then B (0, y) = B (x, 0) , for
all x, y ∈ V.

Proof. B (0, y) = B (0 + 0, y) = 2B (0, y) , then B (0, y) = 0.

Proposition 1.1. Let B be a bilinear form over a finite dimensional linear space V,
then, there exists a matrix A ∈Mn (R) , such that

B (u, v) = uTAv.

Similarly, for every sesquilinear form S there exists a matrix A ∈Mn (C) , such that

S (u, v) = uTAv.

Demonstration. Let (ei) be a basis in V, then, it suffices to take aij = B (ei, ej) in
the first case and aij = S (ei, ej) in the second case, and A = (aij) .

Definition 1.2. A bilinear form B is said to be:
1) symmetric if

B (x, y) = B (y, x) , ∀x, y ∈ V,
2) skew-symmetric or anti-symmetric if

B (x, y) = −B (y, x) , ∀x, y ∈ V.

Definition 1.3. A sesquilinear form S is said to be:
1) symmetric if

S (x, y) = S (y, x), ∀x, y ∈ V,
2) skew-symmetric or anti-symmetric if

S (x, y) = −S (y, x), ∀x, y ∈ V.

Definition 1.4. A bilinear or a sesquilinear form B, is said to be
1) alternating if

B (x, x) = 0, ∀x ∈ V,
2) non degenerate if

∀x ∈ V − {0} ,∃y ∈ V : B (x, y) 6= 0,

then, a degenerate form is such that

∃x ∈ V − {0} ,∀y ∈ V : B (x, y) = 0.

Example 1.4. The real inner product over V is a symmetric bilinear non degenerate
form.

The bilinear form B (u, v) = uTAv is symmetric if and only if the matrix A is
symmetric, and it is skew-symmetric if and only if A is skew-symmetric.
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Definition 1.5. A bilinear or a sesquilinear form B is said to be positive if

B (x, x) ≥ 0, ∀x ∈ V,

and it said to be definite if

B (x, x) > 0, ∀x ∈ V, x 6= 0.

Example 1.5. Let V = L2 (0, π) and

B (f, g) =

∫ π

0

f (x) g (x)dx,

we have,

B (f, f) =

∫ π

0

|f (x)|2 dx > 0, for all f 6= 0,

then, B is positive definite.

In what follows in this paragraph, we suppose that V is a normed space with
norm ‖·‖ .

Theorem 1.1. [Uniform boundedness princible] Let X be a Banach space, Y
a normed linear space, and let Tα : X −→ Y, α ∈ I, be a family of bounded linear
operators, Tα ∈ L (X, Y ). Assume that the family {Tα;α ∈ I} is pointwise bounded,
that is,

∀x ∈ X, ∃Cx > 0 : ‖Tαx‖ ≤ Cx, ∀α ∈ I.

Then {Tα;α ∈ I} is uniformly bounded, that is,

∃C > 0 : ‖Tα‖ ≤ C, ∀α ∈ I.

Definition 1.6. Let B : V × V −→ K, we say that B is continuous over V, if for all
(x, y) ∈ V × V and for all ε > 0, there exists α > 0,

∀ (x′, y′) ∈ V × V : ‖(x, y)− (x′, y′)‖ < α =⇒ |B (x, y)−B (x′, y′)| < ε.

Proposition 1.2. Let B : V ×V −→ K then, the following statements are equivalent
:

i) B is continuous,
ii) B is continuous at (0, 0) ,
iii) ∃C > 0, such that

|B (x, y)| ≤ C ‖x‖ ‖y‖ , ∀x, y ∈ V.

Demonstration. (i) =⇒ (ii) evident.
(ii) =⇒ (iii), suppose that B continuous in (0, 0) , then from the definition we

have
∀ε > 0,∃α > 0 : ‖(x, y)‖V×V < α =⇒ |B (x, y)| < ε.
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If B is not continuous at (0, 0) , then there exists ε > 0, such that ∀α > 0, ∃ (x, y) ∈
V × V, ‖(x, y)‖V×V < α and |B (x, y)| > ε.

Suppose that iii) is not satisfied, then,

∀n ∈ N∗, ∃xn, yn ∈ V : |B (xn, yn)| > n2 ‖xn‖ ‖yn‖ .

Clearly, xn 6= 0 and yn 6= 0. Then, if we set x∗n = xn
n‖xn‖ and y∗n = yn

n‖yn‖ , we have

|B (x∗n, y
∗
n)| = 1

n2 ‖xn‖ ‖yn‖
|B (xn, yn)| > 1.

Therefore, there exists 0 < ε < 1, such that ∀α > 0, there exist x∗n and y∗n such that

‖(x∗n, y∗n)‖ = sup (‖x∗n‖ , ‖y∗n‖) =
1

n
< α, but |B (x∗n, y

∗
n)| > 1 > ε,

which contradict (ii).
(iii) =⇒ (i). Suppose that (iii) is not satisfied and let (xn) and (yn) be two se-

quences from V such that xn −→ x and yn −→ y.
Thus, (xn) and (yn) are bounded, that there exists M > 0, such that ‖xn‖ < M

and ‖yn‖ < M. On the other hand, we have

|B (xn, yn)−B (x, y)| ≤ |B (xn, yn)−B (xn, y)|+ |B (xn, y)−B (x, y)|
≤ |B (xn, yn − y)|+ |B (xn − x, y)|
≤ C ‖xn‖ ‖yn − y‖+ C ‖y‖ ‖xn − x‖
≤ CM ‖yn − y‖+ C ‖y‖ ‖xn − x‖ −→ 0,

which shows that B is continuous in each (x, y) ∈ V × V, this completes the proof.

Lemma 1.2. Suppose that V is a Banach space. Then, B is continuous if and only
it is separately continuous, that is continuous in each coordinate.

Demonstration. It suffices to prove the sufficiency of the condition.
Suppose that V is a Banach space and B is separately continuous. For every

y ∈ V with ‖y‖ = 1, let Ty = B (·, y) : V −→ K. Then, {Ty; ‖y‖ = 1} is a family
of bounded operator. Moreover, for any fixed x ∈ V, {Tyx = B (x, y) ; ‖y‖ = 1} is
bounded, because

‖Tyx‖ = ‖B (x, y)‖ ≤ Cx ‖y‖ = Cx.

This means that the family {Ty; ‖y‖ = 1} is pointwise bounded. Thus, from the uni-
form boundedness principle, there exixts C > 0, such that

‖Ty‖ ≤ C, ∀y ∈ V, ‖y‖ = 1.

Consequently, for every x ∈ V,

‖B (x, y)‖ = ‖Tyx‖ ≤ C ‖x‖ .
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Therefore, for every, z ∈ V, z 6= 0,

‖B (x, z)‖ =

∥∥∥∥‖z‖B(x, z

‖z‖

)∥∥∥∥ =

∥∥∥∥B(x, z

‖z‖

)∥∥∥∥ ‖z‖
≤ C ‖x‖ ‖z‖ ,

which proves that B is continuous.

Example 1.6. Let B be the bilinear form on H1 (0, π) defined by

B (u, v) =

∫ π

0

uxvxdx+

∫ π

0

uvdx.

H1 (0, π) is endowed with the norm

‖u‖2 = ‖u‖1 + ‖ux‖1 .

We have,

|B (u, v)| ≤
∫ π

0

|uxvx| dx+

∫ π

0

|uv| dx

≤
(∫ π

0

u2xdx

) 1
2
(∫ π

0

v2xdx

) 1
2

+

(∫ π

0

u2dx

) 1
2
(∫ π

0

v2dx

) 1
2

≤ ‖ux‖ ‖vx‖+ ‖u‖ ‖v‖ ≤ (‖ux‖+ ‖u‖) (‖vx‖+ ‖v‖) .

Consequently, B is continuous.

Remark 1.1. The reason for the name bounded for a continuous bilinear form B, is
justified from the fact that B transform a bounded set S = {x ∈ V ; ‖x‖ ≤M} of V
into a bounded set {r ∈ R; |r| ≤ CM2} in R.

Definition 1.7. A bilinear form B on a normed vector space (V, ‖ · ‖) is said to be
elliptic, or coercive, if there is a positive constant α > 0, such that

B (x, x) ≥ α ‖x‖2 , ∀x ∈ V.

Example 1.7. Let I be an interval in R, and p, q be two functions that satisfy

p ∈ C1
(
I
)
, q ∈ C (I)

and there exists α > 0, such that p (x) ≥ α, for all x ∈ I.
Set V = H1

0 (I) endowed with the norm ‖u‖H1
0

=
√∫

I
u2x (x) dx, finally, let B be

defined on V × V by

B (u, v) =

∫
I

p (x)ux (x) vx (x) dx+

∫
I

q (x)u (x) v (x) dx.

If q ≥ 0, then B is coercive. Indeed

B (u, u) =

∫
I

p (x)u2x (x) dx+

∫
I

q (x)u2 (x) dx

≥ α

∫
I

u2x (x) dx = α ‖u‖2H1
0
.



CHAPTER 1. BILINEAR AND QUADRATIC FORMS 8

1.2 Quadratic forms

Definition 1.8. A quadratic form over V is a function q : V −→ K that satisfies the
two following statements :

i)
q (λx) = λ2q (x) , ∀x ∈ V, ∀λ ∈ K, (1.1)

ii) the form B̃ : V × V −→ K defined by

B̃ (x, y) = q (x+ y)− q (x)− q (y) (1.2)

is bilinear.
The bilinear form B̃ is called the underlying bilinear form of q (or the associated

bilinear form of q). Note that B̃ is always symmetric.

Example 1.8. 1) V = R, q (x) = αx2,

Example 1.9. 2) V = R2, q (x, y) = ax2 + bxy,
are quadratic forms on V .
1)

q (λx) = λ2αx2 = λ2q (x) .

B̃ (x, y) = α (x+ y)2 − αx2 − αy2 = 2αxy.

2)

q (λ (x, y)) = a (λx)2 + b (λx) (λy) = λ2
(
ax2 + bxy

)
= λ2q (x, y) ,

B̃ ((x, y) , (u, v)) = q (x+ u, y + v)− q (x, y)− q (u, v)

= a (x+ u)2 + b (x+ u) (y + v)− ax2 − bxy − au2 − buv
= 2axu+ bxv + byu

B̃ ((x+ x′, y + y′) , (u, v)) = 2a (x+ x′)u+ b (x+ x′) v + b (y + y′)u

= 2axu+ bxv + byu+ 2ax′u+ bx′v + by′u

= B̃ ((x, y) , (u, v)) + B̃ ((x′, y′) , (u, v))

B̃ ((x, y) , (u+ u′, v + v′)) = 2ax (u+ u′) + bx (v + v′) + by (u+ u′)

= 2axu+ bxv + byu+ 2axu′ + bxv′ + byu′

= B̃ ((x, y) , (u, v)) + B̃ ((x, y) , (u′, v′))

B̃ ((αx, αy) , (u, v)) = 2aαxu+ bαxv + bαyv

= αB̃ ((x, y) , (u, v)) .
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Remark 1.2. If we set λ = 0 in (1.1) we get q (0) = 0, and if we set λ = −1 we
obtain q (−x) = q (x) , that is q is an even function.

Lemma 1.3. For any bilinear and symmetric form B, there is an associated quadratic
form given by q (x) = B (x, x) .

The form B is called the polar form of q.

Proof. 1) q (λx) = B (λx, λx) = λ2B (x, x) = λ2q (x) .

2) B̃ (x, y) = q (x+ y)− q (x)− q (y) = B (x+ y, x+ y)−B (x, x)−B (y, y)

= B (x, y) +B (y, x) = 2B (x, y) , (1.3)

which is also a bilinear and symmetric form.

Example 1.10. If we take B the inner product over V , then, q (x) = 〈x, x〉 = ‖x‖2 .

1.2.1 Polarization identity

Proposition 1.3. Let q be a quadratic form, then there exists a unique bilinear and
symmetric form B, such that q (x) = B (x, x) .

Proof. Indeed, let

B (x, y) =
1

2
[q (x+ y)− q (x)− q (y)] ,

then, B is bilinear and symmetric and

B (x, x) =
1

2
[q (2x)− 2q (x)] =

1

2
[4q (x)− 2q (x)] = q (x) .

Suppose that there exists an other bilinear and symmetric form B∗ such that q (x) =
B∗ (x, x) , then,

q (x+ y)− q (x)− q (y) = B∗ (x+ y, y + y)−B∗ (x, x)−B∗ (y, y) = 2B∗ (x, y) .

Therefore,
B∗ (x, y) = B (x, y) , ∀x, y ∈ V,

which shows the uniqueness of B.

Definition 1.9. The identity

B (x, y) =
1

2
[q (x+ y)− q (x)− q (y)] , (1.4)

is called polarization identity.
The bilinear form B given by (1.4), is called the polar form associated to q.

Remark 1.3. The polar form associated to a quadratic form is alyaws symmetric.
The underlying form B̃ and the polor form B are related by the relation B̃ = 2B.
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Lemma 1.4. A quadratic form q satisfies also the identities

B (x, y) =
1

4
[q (x+ y)− q (x− y)] (1.5)

and
q (x+ y) + q (x− y) = 2 (q (x) + q (y)) ,

the last one is called parallelogram identity.

Proof. Let B be the polar form of q, from the identity (1.4) we have

q (x+ y) = 2B (x, y) + q (x) + q (y)

then, replace y by −y we get,

q (x− y) = q (x+ (−y)) = 2B (x,−y) + q (x) + q (−y)

= −2B (x, y) + q (x) + q (y)

consequently, (1.5) follows.
On the other hand

q (x+ y) + q (x− y) = B (x+ y, x+ y) +B (x− y, x− y)

= 2B (x, x) + 2B (y, y)

= 2 (q (x) + q (y)) ,

which proves the parallelogram identity.

Definition 1.10. Let q be a quadratic form and B be its polar form.
1) We say that q is non degenerate if B is non degenerate. Any element x ∈ V, that
satisfies q (x) = 0, is called isotropic.
2) We say that the quadratic form q is positive if

q (x) ≥ 0, ∀x ∈ V,

3) the quadratic form q is called definite if it hasn’t any non-zero isotropic element,
that is

q (x) = 0⇐⇒ x = 0.

A positive definite quadratic form is such that

q (x) > 0, ∀x 6= 0.

1.2.2 Cauchy Schwarz and Minkowsky’s inequalities

Proposition 1.4. (Cauchy Schwarz inequality) Let B be a symmetric and pos-
itive bilinear form and let q be the underlying quadratic form of B, Then, for all
x, y ∈ V, B and q satisfy the Cauchy-Schwarz inequality,

|B (x, y)| ≤
√
q (x)

√
q (y).

In addition, if B is definite, the equality is reached if and only if x and y are collinear
(y = λx).



CHAPTER 1. BILINEAR AND QUADRATIC FORMS 11

Demonstration. 1) For any t ∈ R, we have

q (tx+ y) = 2B (tx, y) + q (tx) + q (y)

= 2tB (x, y) + t2q (x) + q (y) ≥ 0.

If q (x) = 0, then
2tB (x, y) + q (y) ≥ 0, ∀t ∈ R

which entails that B (x, y) = 0. If q (x) 6= 0, the trinomial P (t) = q (x) t2+2B (x, y) t+
q (y) , doesn’t change sign, thus, ∆ = 4B2 (x, y)− 4q (x) q (y) ≤ 0, and the result fol-
lows.

2) On the other hand, if y = λx, we get

B (x, λx) = λB (x, x) = λq (x) =
√
q (x)

√
λ2q (x) =

√
q (x)

√
q (y).

reciprocally, if the equality holds, the discriminant will be zero, and therefore q (tx+ y) =
0, and since q is definite there exists t0, such that tx+ y = 0, et y = −t0x.

Corollary 1.1. (Minkowsky inequality) If q is positive, then

∀x, y ∈ V :
√
q (x, y) ≤

√
q (x) +

√
q (y).

Proof. Let B be the polar form of q, then

q (x+ y) = q (x) + 2B (x, y) + q (y) .

On the other hand, from the Cauchy-Schwarz inequality we have

0 ≤ q (x+ y) ≤ q (x) + 2
√
q (x)

√
q (y) + q (y)

0 ≤ q (x+ y) ≤
(√

q (x) +
√
q (y)

)2
which completes the proof.
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Exercise Sheet 1

Exercise 1.1. Let V = R [X] be the space of polynomials in x, and a, b ∈ R. Define
the form B by

B (p, q) = p (a) q (b) .

1) Show that B is a bilinear form on V.
2) Is it symmetric or skew-symmetric?

Exercise 1.2. Let V = C ([a, b] ,R) and B : V × V −→ R, given by

B (f, g) =

∫ b

a

f (x) g (x) dx.

Prove that B is a bilinear and symmetric form.

Exercise 1.3. Let A ∈ Mn×n (R) be a square matrix and B the form defined on
Rn × Rn by B (u, v) = uTAv.

1) Prove that B is bilinear form?
2) Say when B is symmetric and when it is skew-symmetric?

Exercise 1.4. B is the form defined on R2 × R2 by

B ((a, b) , (c, d)) = 2ac+ 4ad− bc

Find the matrix A for which B (u, v) = uTAv.

Exercise 1.5. On Mn×n (R)×Mn×n (R) we define B by B (A,C) = tr
(
ATC

)
.

Show that B is bilinear form.

Exercise 1.6. Let Rn [X] be the space of polynomials of degree at most n. Define a
form B by

B (P,Q) =

∫ 1

0

tP (t)Q′ (t) dt.

Prove that B is a bilinear form that is neither symmetric nor skew-symmetric.

Exercise 1.7. On the space of square matrix we define the functionals

q1 (A) = (tr (A))2 , q2 (A) = tr
(
ATA

)
.

Show that q1 and q2 are quadratic forms.

Exercise 1.8. Prove that q (x, y) = ax2 + bxy is a quadratic form on R2.

Exercise 1.9. Let q be a quadratic form on a vector space V. Assume that q is
definite.

Prove that q is either positive definite or negative definite, that is q does not change
sign.
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Exercise 1.10. Let q be a quadratic form and B its polar form. Prove the identity

B (x, y) =
1

2
[q (x) + q (y)− q (x− y)] .

Exercise 1.11. Let q be a quadratic form on V and B its polar form. Suppose that B
is non degenerate, and let f : V −→ V be a bijective function that satisfies f (0) = 0
and

q (f (x)− f (y)) = q (x− y) , ∀x, y ∈ V.

Prove that B (f (x) , f (y)) = B (x, y) and that B (f (λx+ y) , z) = λB (f (x) , z) +
B (f (y) , z) , ∀x, y, z ∈ V, ∀λ ∈ R.

Show that f is linear.

Exercise 1.12. Let q be a quadratic form on a vectorial space V over R. Let r ∈ R,
we say that q reprensents r, if there exists v ∈ V such that q (v) = r. Thus, q is
isotropic if q represents 0.

Suppose that q is isortopic and B is nondegenrate. Show that q represents every
r ∈ R.



Chapter 2

Bounded operators on Hilbert
spaces

2.1 Bounded linear Operators

In this paragraph, X and Y are two normed linear spaces defined on the same scalar
field IK.

Definition 2.1. A linear operator is a mapping T : D (T ) ⊂ X −→ Y that satisfies:

T (αx+ y) = αT (x) + T (y) , ∀α ∈ IK, ∀x, y ∈ D (T ) ,

where D (T ) is a linear subspace of X, called the domain of T.
The image of x is denoted Tx and

R (T ) := {y ∈ Y ;∃x ∈ D (T ) , y = Tx}

is called the range or the image of T.
The space of all linear operators form X into Y is denoted by L (X, Y ), it is a

linear space over IK with respect to the addition and multiplication by scalars,

(T + S)x = Tx+ Sx, ∀x, y ∈ D(T ) ∩D(S),

(λT )x = λ (Tx) , ∀x, y ∈ D(T ).

The identity operator is denoted I, I (x) = x,∀x ∈ X.

Definition 2.2. The operator T : D (T ) ⊂ X −→ Y is said to be continuous or
bounded if it satifies the property

∀x ∈ D (T ) ,∀ε > 0,∃δ > 0 : ∀y ∈ D (T ) ; ‖x− y‖ < δ =⇒ ‖Tx− Ty‖ < ε.

The space of all bounded operators from X into Y is denoted by L (X, Y ) or B (X, Y ) .
In particular, if Y = X the space is denoted by L (X) and if Y = IK, the space
L (X, IK) is written X ′ and called the dual space of X. The elements of X ′ are called
linear forms or functionals.

14
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Proposition 2.1. Let T : D (T ) ⊂ X −→ Y be a linear operator, the following
statements are equivalent,

1) T is uniformly continuous on D (T ),
2) T is continuous on D (T ),
3) T is continuous in 0,
4) ∃C > 0 : ∀x ∈ D (T ) , ‖x‖ ≤ 1 =⇒ ‖Tx‖ ≤ C,
5) ∃C > 0, ‖Tx‖ ≤ C ‖x‖ , ∀x ∈ D (T ) .

Proof. It is clear that 1) =⇒ 2) =⇒ 3). 3) =⇒ 4) Assume that T is continuous at 0,
then for ε = 1 we have

∃δ > 0 : ∀x ∈ E, ‖x‖ < δ =⇒ ‖Tx‖ < 1,

then, for any x ∈ E such that ‖x‖ < 1 we have
∥∥ δx

2

∥∥ < δ, consequently∥∥∥∥T (δx2
)∥∥∥∥ < 1,

therefore,

‖Tx‖ < 2

δ
= C.

To prove that 4) =⇒ 5), let x ∈ E ifx 6= 0, we have
∥∥∥ x
‖x‖

∥∥∥ = 1, hence, by 4) we

deduce ∥∥∥∥T ( x

‖x‖

)∥∥∥∥ ≤ C,

which gives ‖Tx‖ ≤ C ‖x‖ . If x = 0 clearly ‖T (0)‖ = C ‖0‖ . Thus 5) is satisfied.
Finaly, let us show that 5) =⇒ 1). Let x, y ∈ E and take ε > 0, since,

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ C ‖x− y‖

then, so that ‖Tx− Ty‖ < ε, it suffices that C ‖x− y‖ < ε, which is satisfied if
‖x− y‖ < ε

C
. Thus, δ = ε

C
guaranties the result.

2.1.1 Norm of an operator

Lemma 2.1. Let X and Y be two normed linear spaces, then, ‖·‖ : L (Y,X) −→ IR+

define by
‖T‖L (Y,X) = sup {‖Tx‖ ;x ∈ D (T ) , ‖x‖ ≤ 1}

is a norm on L (Y,X) .

Proof. i) Suppose that T = 0, that is Tx = 0 for all x ∈ D (T ) , then, sup
x∈D(T ),‖x‖≤1

‖Tx‖ =

0. Thus, ‖T‖ = 0.
Reciprocally, suppose that ‖T‖ = sup

‖x‖≤1
‖Tx‖ = 0, then, Tx = 0, ∀x ∈ D (T ) , ‖x‖ ≤

1.
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Suppose that x ∈ D(T ), ‖x‖ > 1, then z =
x

‖x|
is such that ‖z‖ = 1 consequently

Tz = 0, which implies that Tx = 0 and therefore, Tx = 0, ∀x ∈ D(T ).
ii) Let λ ∈ C, then,

‖λT‖ = sup
‖x‖≤1

‖λTx‖ = |λ| sup
‖x‖≤1

‖Tx‖ = |λ| ‖T‖ .

iii) Let S, T ∈ L (Y,X)

‖T + S‖ = sup {‖Tx+ Sx‖ ;x ∈ D (T ) ∩D (S) , ‖x‖ ≤ 1}
≤ sup {‖Tx‖+ ‖Sx‖ ;x ∈ D (T ) ∩D (S) ‖x‖ ≤ 1} triangular inequality

≤ sup {‖Tx‖ ;x ∈ x ∈ D (T ) , ‖x‖ ≤ 1}+ sup {‖Sx‖ ;x ∈ D (S) , ‖x‖ ≤ 1} = ‖T‖+ ‖S‖ ,
which completes the proof of the lemma.

Example 2.1. Let T : CIR [0, 1] −→ IR, be defined by Tf = f (0) , and equipped
CIR [0, 1] by the usual norm ‖f‖ = sup

0≤x≤1
|f (x)| . We have

‖T‖ = sup
‖f‖≤1

|f (0)| ≤ sup
‖f‖≤1

sup
0≤x≤1

|f (x)| = sup
‖f‖≤1

‖f‖ = 1.

On the other hand, let g : [0, 1] −→ R with g (x) = 1, for all x ∈ [0, 1] . Then,
g ∈ C [0, 1] and ‖g‖ = 1. Moreover, |Tg| = |g (0)| = 1, hence, ‖T‖ ≥ |Tg| = 1,
therefore ‖T‖ = 1.

Proposition 2.2. The norm defined above is also given by

‖T‖ = inf {C > 0 : ‖Tx‖ ≤ C ‖x‖ ,∀x ∈ D (T )} .
Demonstration. 1) Since T is continuous, then from propsition 2.1, there exists
C > 0, such that ‖Tx‖ ≤ C ‖x‖ , ∀x ∈ D (T ) .

For all C ∈ {C > 0 : ‖Tx‖ ≤ C ‖x‖ ,∀x ∈ D (T )} , we have

‖T‖ = sup
x∈D(T ),‖x‖≤1

‖Tx‖ ≤ sup
x∈D(T )

‖Tx‖ ≤ C.

Thus,
‖T‖ ≤ inf {C > 0 : ‖Tx‖ ≤ C ‖x‖ ,∀x ∈ D (T )} .

Conversely, denote inf {C > 0 : ‖Tx‖ ≤ C ‖x‖ ,∀x ∈ D (T )} = C, then, for all ε > 0,
there exists xε ∈ D (T ), such that

‖Txε‖ >
(
C − ε

)
xε.

Clearly, xε 6= 0, then,

∀ε > 0, ∃yε =
xε
‖xε‖

; ‖Tyε‖ >
(
C − ε

)
,

therefore,

∀ε > 0,∃yε =
xε
‖xε‖

; ‖T‖ = sup
‖yε‖≤1

‖Tyε‖ >
(
C − ε

)
.

Passing to the limit ε −→ 0, we infer that

‖T‖ ≥ C = inf {C > 0 : ‖Tx‖ ≤ C ‖x‖ ,∀x ∈ D (T )} ,
hence the equality ‖T‖ = C.
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2.1.2 Topology of L (X)

Let X be a Banach space and L (X) the space of all linear and bounded operators
on X, it is an algebra with respect the addition, the multiplication by scalars defined
above and the multiplication

TS (x) = T (S(x)), x ∈ {x ∈ D(S);Sx ∈ D(T )} .

The space L (X) can be endowed by three types of topologies:

1) Topology of uniform convergence: This topology is induced by the norm

‖T‖ = sup
‖x‖≤1

‖Tx‖

and it characterized by the following type of convergence

Tn −→ T uniformly in L (X)⇐⇒ lim
n−→∞

‖Tn − T‖ = 0.

L (X) is a Banach algebra with respect this topology.

2) Strong topology: This topology is characterized by the fact that a sequence
of operators (Tn)n∈N converges to the operator T , if

Tn
s→ T ⇐⇒ lim

n−→∞
‖Tnx− Tx‖ = 0, ∀x ∈ D (T ) .

3) Weak Topology: it characterized by the following type of convergence

Tn
∗
⇀ T ⇐⇒ lim

n−→∞
〈f, (Tn − T )x〉 = 0,∀x ∈ D (T ) ,∀f ∈ X ′.

These three topologies are classified as follows:
The uniform topology is stronger that the strong topology which is stronger than the
weak topology.

2.1.3 Closed operator

Definition 2.3. The operator A : D (A) ⊂ X −→ Y, is said to be closed if D (A)×
R (A) is closed in the space X × Y ; that is

∀ (xn) ⊂ D (A) : limxn = x, then, x ∈ D (A) , and limAxn = Ax.

Remark 2.1. Let A : D(A) ⊂ X −→ Y be an operator. We sometimes endowed the
domain D(A) by the norm

‖x‖D(A) = ‖x‖X + ‖Ax‖Y .
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Theorem 2.1. (closed Graph Theorem) Let X, Y be Banach spaces and A : D (A) ⊂
X −→ Y be a linear operator. If the graph G (A) is closed in the topology of D(A),
then, the operator A is bounded.

Demonstration. Since X × Y is a Banach space and G(A) is closed, then G(A) is
a Banach subspace of X × Y .
Define the linear transformation R : G(A) −→ D(A) by R(x,Ax) = x. Then, R is a
bijection between G and D(A). Moreover

‖R(x,Ax)‖ = ‖x‖ ≤ ‖x‖+ ‖Ax‖ = ‖(x,Ax)‖G(A).

Therefore, R is bounded and ‖R‖ ≤ 1. Consequently, from the open mapping theorem,
there exists S : D(A) −→ G(A) such that SR = IG(A) and RS = ID(A). In particular
Sx = (x,Ax), for all x ∈ D(A).
Thus, ‖Ax‖ ≤ ‖x‖ + ‖Ax‖ = ‖(x,Ax)‖ = ‖Sx‖ ≤ ‖S‖‖x‖, which shows that A is
bounded.

Remark 2.2. If A is a closed operator, then, KerA is closed in X.

2.1.4 Invertible operators

Definition 2.4. An operator T ∈ L (X, Y ) is said to be invertible if there exists
an operator S : R (T ) ⊂ Y −→ X, such that S ∈ L (Y,X) and ST = ID(T ) and
TS = IR(T ). In this case S is denoted T−1.

Example 2.2. For f ∈ C [0, 1] and defined Tf ∈ L (L2 [0, 1]) by

(Tfu) (x) = f (x)u (x) , u ∈ L2 [0, 1] .

Clearly, Tf ∈ L (L2 [0, 1]). Let f be the function defined by f (x) = 1 + x. Then, Tf
is invertible. Indeed, for g (x) = 1

x+1
, we have Tg ∈ B (L2 [0, 1]) . Morevove,

(TfTgu) (x) = f (x) g (x)u (x) = u (x)

and
(TgTfu) (x) = g (x) f (x)u (x) = u (x)

which shows that Tf is invertible and T−1f = Tg.

Theorem 2.2. Let X be a Banach space and T ∈ L (X) with ‖I − T‖ < 1, then, T
is invertible with

T−1 =
∑
n≥0

(I − T )n .

Proof. Since ‖I − T‖ < 1 the serie
∑
n≥0
‖I − T‖n converges. On the other hand

‖(I − T )n‖ ≤ ‖I − T‖n , then the serie
∑
n≥0
‖(I − T )n‖ converges and

∑
n≥0

(I − T )n

is absolutely convergent serie, let S be its limit and Sk =
k∑

n=0

(I − T )n, then we have

‖TSk − I‖ = ‖(I − (I − T ))Sk − I‖ =
∥∥∥(I − T )k+1

∥∥∥ ≤ ‖(I − T )‖k+1 .
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Thus,
0 ≤ lim

k−→∞
‖TSk − I‖ ≤ lim

k−→∞
‖(I − T )‖k+1 = 0.

Therefore, TS − I = lim
k−→∞

(TSk − I) = 0. Similarly ST − I= lim
k−→∞

(SkT − I) = 0,

which completes the proof.

Theorem 2.3. Let T be a linear operator from normed linear space X into normed
linear space Y . Then, T−1 exists and is continuous, if and only if there m > 0, such
that

‖Tx‖ ≥ m ‖x‖ , ∀x ∈ X.

Definition 2.5. Let X, Y be normed linear spaces. If an invertible operator T ∈
L (X, Y ) exists then X, Y are isomorphic, and T is an isomorphism (between X and
Y ).

Lemma 2.2. If the normed linear spaces X, Y , are isomorphic, then:

a) dimX <∞ if and only if dimY <∞, in which case dimX = dimY,

b) X is separable if and only if Y is separable,

c) X is complete (i.e., Banach) if and only if Y is complete (i.e., Banach).

Theorem 2.4. Soient X et Y deux espaces de Banach, alors si T ∈ L (X, Y ) est
bijectif, il est inversible.

2.2 Riesz représentation theorem

Let H be a Hilbert space over R or C, and ϕ ∈ H ′ be bounded linear functional on
H.

Definition 2.6. Let H be a Hilbert space over IK and let H ′ = L (H, IK) its dual.
Denote by 〈·|·〉 the inner product over H, and 〈·, ·〉 the duality pairing over H ′ ×H,
where for any ϕ ∈ H ′ and any v ∈ H, 〈ϕ, v〉 is the value of ϕ in v. The following is
called the Riesz Representation Theorem:

Theorem 2.5. For every ϕ ∈ H ′, there exists a unique f ∈ H, such that for every
v ∈ H we have

〈ϕ, v〉 = 〈v|f〉 ∀v ∈ H.
Moreover,

‖ϕ‖H′ = ‖f‖H .

Demonstration. Denote by

N (ϕ) = {v ∈ H; 〈ϕ, v〉 = 0}

the nul subspace of ϕ. N (ϕ) is a closed subspace of H.
If 〈ϕ, v〉 = 0 for every v ∈ H, then it suffices to choose f = 0.
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Assume that ϕ 6= 0, then, N(ϕ) 6= H, consequently, (N (ϕ))⊥ 6= {0} and H =
N(ϕ) ⊕ (N(ϕ))⊥ and there exists z ∈ (N (ϕ))⊥ such that 〈ϕ, z〉 6= 0, Clearly z 6= 0
and one can take

〈ϕ, z〉 = 1.

For every v ∈ H we have

〈ϕ, v − 〈ϕ, v〉 z〉 = 〈ϕ, v〉 − 〈ϕ, v〉 〈ϕ, z〉 = 0,

Thus, v − 〈ϕ, v〉 z ∈ N (ϕ) and since z ∈ (N (ϕ))⊥ one gets

〈v − 〈ϕ, v〉 z|z〉 = 0,

Set f =
z

‖z‖2
, then

〈v|z〉 = 〈ϕ, v〉 〈z|z〉 = 〈ϕ, v〉 ‖z‖2 .

Thus,

〈ϕ, v〉 =
〈v|z〉
‖z‖2

=

〈
v| z

‖z‖2

〉
= 〈v|f〉 .

This completes the proof of the first statement.
On the other hand, let ‖v‖ ≤ 1, then,

‖ϕ‖H′ = sup
‖v‖≤1

|〈ϕ, v〉| = sup
‖v‖≤1

|〈f |v〉| ≤ sup
‖v‖≤1

‖f‖ ‖v‖ ≤ ‖f‖H .

Set v = f
‖f‖ , then ‖v‖ = 1, we have

‖ϕ‖ ≥ |〈ϕ, v〉| = |〈ϕ, f〉|
‖f‖

=
〈f |f〉
‖f‖

= ‖f‖ ,

Thus, ‖ϕ‖H′ = ‖f‖H .

Remark 2.3. From the Riesz representation Theorem, any Hilbert space H is iden-
tified with its dual H ′ and the duality pairing 〈·, ·〉 can be showed as an inner product
over H.

Theorem 2.6. (Lax-Milgram) Let B : H ×H −→ IK be a bilinear continuous and
coercive form, then for any linear and continuous form L : H −→ K, there exists a
unique u ∈ H such that

B (u, v) = Lv, ∀v ∈ H.

Furthermore, if B is symmetric, u is satisfied the property

1

2
B (u, u)− Lu = min

v∈H

{
1

2
B (v, v)− Lv

}
.
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Exercise Sheet 2

Exercise 2.1. Assume that {cn}n≥1 ∈ `∞ and let T be the transformation defined by

T : `2 −→ `2

{xn} −→ {cnxn} .

1) Prove that T is linear continuous operator and determine its norm.
2) Suppose the inf {|cn| , n ≥ 1} > 0. Prove that T is bijective. Determine in this

case T−1 and calculate its norm.
3) Assume that one of the cn is zero. Show that T is neither injective nor surjective

and that R (T ) 6= `2.
4) Suppose that ∀n ≥ 1, cn 6= 0, but inf {|cn| , n ≥ 1} = 0. Show that T is injective

but not surjective and that R (T ) = `2.

Exercise 2.2. Let {cn}n≥1 ∈ `∞ and T : `1 −→ R be defined by T ({xn}) =
∑
n≥1

cnxn.

Show that T is continuous and determine its norm.

Exercise 2.3. Let k : [a, b]×[a, b] −→ R be a continuous function and A : C [a, b] −→
C [a, b] the operator defined by

(Af) (x) =

∫ b

a

k (x, y) f (y) dy.

1) Prove that A ∈ L (C [a, b]) .
2) Set k (x, y) = γ sin (x− y) . Show that if |γ| < 1, then for any g ∈ C ([a, b])

there exists a unique f ∈ C ([a, b]) such that

f (x) = g (x) +

∫ b

a

k (x, y) f (y) dy.

Exercise 2.4. Let P be the space of polynomials on t over [0, 1] and A : P −→ P be
definied A (p) = p′.

Show that A is not continuous.

Exercise 2.5. Prove that the set of all invertible operator is an open subspece of
L (H,K) .

Exercise 2.6. Prove that if A ∈ L (H,K) is invertible, then, for any x ∈ H, one
has ‖Ax‖ ≥ ‖A−1‖−1 ‖x‖ .

Exercise 2.7. Suppose that X is a Banach space, Y is a normed space and T ∈
L (X, Y ).
Prove that if there exists α > 0 such that ‖Tx‖ ≥ α‖x‖ for all x ∈ X, then R(T ) is
closed.



CHAPTER 2. BOUNDED OPERATORS ON HILBERT SPACES 22

2.3 The adjoint of an operator in a Hilbert space

Let A : D (A) ⊂ X −→ Y be an unbounded operator with dense domain D (A) = X.

Proposition 2.3. Define the set

D (A∗) : {ψ ∈ Y ′ : ∃c > 0 such that |〈ψ,Ax〉| ≤ c ‖x‖X ,∀x ∈ D (A)}

Then, for all ψ ∈ D (A∗) there exists a unique ϕ ∈ X ′ such that

〈ψ,Ax〉 = 〈ϕ, x〉 , ∀x ∈ D (A) .

Demonstration. D (A∗) is a linear subspace of Y ′. Let f : D (A) −→ Y be define
by f (x) = 〈ψ,Ax〉 , it is clear that f is linear and

|f (x)| = |〈ψ,Ax〉| ≤ c ‖x‖X .

From Hahn-Banach Theorem, we deduce that f can be prolonged linearly by a unique
ϕ : X −→ IR, such that

|ϕ (x)| ≤ c ‖x‖ , ∀x ∈ X,
consequently, ϕ ∈ X ′ and since ϕ is the prolongement of f , we get

〈ψ,Ax〉 = 〈ϕ, x〉 , ∀x ∈ D (A) .

Definition 2.7. The mapping

A∗ : D (A∗) ⊂ Y ′ −→ X ′

: ψ −→ ϕ = A∗ψ,

is called the adjoint operator of A and denoted A∗, it is a bounded operator that
satisfies

〈A∗ψ, x〉 = 〈ψ,Ax〉 , ∀ψ ∈ D (A∗) , ∀x ∈ D (A) .

Remark 2.4. It is necessary that D (A) be dense in X, to define A∗ correctly. Indeed,
suppose that there exist ϕ1, ϕ2 ∈ X ′ such that A∗ψ = ϕ1 et A∗ψ = ϕ2, then,

〈A∗ψ, x〉 = 〈ϕ1, x〉 = 〈ϕ2, x〉 , ∀x ∈ D (A)

therefore
〈ϕ1 − ϕ2, x〉 = 0, ∀x ∈ D (A)

which implies that ϕ1 − ϕ2 = 0, if and only if D (A) is dense in X.

Remark 2.5. D (A∗) can be not dense in Y ′.

Theorem 2.7. Let H and K be two Hilbert spaces over the same scalar field IK,
and let A ∈ L (H,K) be a linear and bounded operator. Then, there exists a unique
operator from A∗ ∈ L (K,H) such that

(Ax, y) = (x,A∗y) , ∀x ∈ H, ∀y ∈ K.
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Demonstration. Fix y ∈ K, and let f : H −→ R be defined by f (x) = (Ax, y) .
Clearly, f is linear, further we have

|f (x)| = |(Ax, y)| ≤ ‖Ax‖ ‖y‖ ≤ ‖A‖ ‖y‖ ‖x‖ = C ‖x‖ ,

which shows that f is continuous. Therefore, f ∈ H ′. On the other hand, using Riesz
representation theorem, we infer that there exists a unique z ∈ H such that

(Ax, y) = f (x) = (x, z) , ∀x ∈ H.

Put z = A∗y, we define a map A∗ : K −→ H which satisfies

(Ax, y) = (x,A∗y) , ∀x ∈ H,∀y ∈ K.

It remains to show that A∗ ∈ L (K,H), that is A∗ is linear and continuous.
First, for y1, y2 ∈ K and α ∈ IK, we have for any x ∈ H:

(x,A∗ (αy1 + y2)) = (Ax, αy1 + y2)

= α (Ax, y1) + (Ax, y2)

= α (x,A∗y1) + (x,A∗y2)

= (x, αA∗y1 + A∗y2) ,

therefore, A∗ (αy1 + y2) = αA∗y1 + A∗y2, which shows the linearity of A∗.
Secondly,

‖A∗y‖2 = (A∗y, A∗y) = (AA∗y, y) ,

by Chauchy–Schwarz’s inequality we deduce

‖A∗y‖2 ≤ ‖AA∗y‖ ‖y‖ ≤ ‖A‖ ‖A∗y‖ ‖y‖ .

If A∗y = 0, then, 0 = ‖A∗y‖ ≤ ‖A‖ ‖y‖ .
If A∗y 6= 0, dividing by ‖A∗y‖ we obtain

‖A∗y‖ ≤ ‖A‖ ‖y‖ , if A∗y 6= 0,

then,
‖A∗y‖ ≤ ‖A‖ ‖y‖ , ∀y ∈ K

which proves the boundedness of A∗ and that ‖A∗‖ ≤ ‖A‖ .
Finally, suppose that there exist two operators A∗1 et A∗2 satisfy

(Ax, y) = (x,A∗1y) = (x,A∗2y) , ∀x ∈ H, ∀y ∈ K,

then,
(x, (A∗1 − A∗2) y) = 0, ∀x ∈ H, ∀y ∈ K

which implies that (A∗1 − A∗2) y = 0, ∀y ∈ K, hence A∗1 = A∗2 and A∗ is unique.

Definition 2.8. The operator A∗ just constructed is called the adjoint operator of A.
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Example 2.3. Endowed R2 by the canonical basis {e1, e2} = {(1, 0) , (0, 1)} and let
A ∈ L (R2) given by

A (x1, x2) =

(
a11 a12
a21 a22

)(
x1
x2

)
.

Assume that A∗ is given by a matrix B = (bij) , that is

A∗ (y1, y2) = B

(
y1
y2

)
.

Recall that
(Ax, y) = (x,A∗y) ,

that is, (
a11x1 + a12x2
a21x1 + a22x2

)
·
(
y1
y2

)
=

(
x1
x2

)
·
(
b11y1 + b12y2
b21y1 + b22y2

)
,

then,

a11x1y1 + a12x2y1 + a21x1y2 + a22x2y2 = b11x1y1 + b12x1y2 + b21x2y1 + b22x2y2

which gives,
b11 = a11, b12 = a21, b21 = a12, b22 = a22.

Thus, (
a11 a12
a21 a22

)∗
=

(
a11 a21
a12 a22

)
.

Remark 2.6. Note that if A ∈ L (C2) , then the adjoint of A is given by

A∗ =

(
a11 a21
a12 a22

)
.

Example 2.4. Let k ∈ C [0, 1] and A ∈ L (L2 [0, 1]) defined by

(Af) (x) = k (x) f (x) .

We have
〈Af, g〉 = 〈f, A∗g〉 , ∀f, g ∈ L2 [0, 1] ,

that is ∫ 1

0

k (x) f (x) g (x) dx =

∫ 1

0

f (x)A∗g (x) dx,∀f, g ∈ L2 [0, 1] ,

therefore, A∗g (x) = k (x) g (x) , thus, A∗ = A.

Example 2.5. Let T : `2 (R) −→ `2 (R)

T (xn) = (0, x2, x3, · · · )
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〈T (xn) , (yn)〉 =
∞∑
n=2

xnyn

Now, suppose that T ∗ (yn) = (zn) , then,

〈(xn) , T ∗ (yn)〉 = 〈(xn) , (zn)〉 =
∞∑
n=1

xnzn =
∞∑
n=2

xnyn.

For

Definition 2.9. If A∗ = A we say that the operator A is self adjoint.

Remark 2.7. Clearly, I∗ = I.

Lemma 2.3. Let H,K and N by three Hilbert spaces over C and let λ, µ ∈ C,
A,B ∈ L (H,K) and T ∈ L (K,N). Therefore,

1) (λA+ µB)∗ = λA∗ + µB∗,

2) (AT )∗ = T ∗A∗.

Proof. Exercise.

Theorem 2.8. Let H,K be two Hilbert spaces over C and A ∈ L (H,K) , then,

1) (A∗)∗ = A,

2) ‖A∗‖ = ‖A‖ ,

3) the function F : L (H,K) −→ L (K,H) defined by F (A) = A∗ is continuous,

4) ‖A∗A‖ = ‖AA∗‖ = ‖A‖2 .

Demonstration. 1) For the definition, we have (x, (A∗)∗ y) = (A∗x, y) = (y, A∗x) =
(Ay, x) = (x,Ay) , ∀x ∈ H, ∀y ∈ K. Thus, (A∗)∗ = A.

2) In the proof of Theorem 2.7, we have shown that ‖A∗‖ ≤ ‖A‖ .
Applying this fact to A∗ we get ‖A‖ = ‖(A∗)∗‖ ≤ ‖A∗‖ then the equality followed.
3) From the above lemma, we have

‖F (R)− F (S)‖ = ‖R∗ − S∗‖ = ‖(R− S)∗‖ = ‖R− S‖ ,

then, for any ε > 0, it suffices to take δ = ε, and hence

∀ε > 0,∃δ > 0 : ‖R− S‖ < δ =⇒ ‖R∗ − S∗‖ < ε.

4) Firstly, we have
‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2 .

On the other hand

‖Ax‖2 = (Ax,Ax) = (A∗Ax, x) ≤ ‖A∗Ax‖ ‖x‖ ≤ ‖A∗A‖ ‖x‖2 ,
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therefore,

‖A‖2 =

(
sup
‖x‖≤1

‖Ax‖

)2

= sup
‖x‖≤1

‖Ax‖2 ≤ sup ‖A∗A‖ ‖x‖2 = ‖A∗A‖ .

Thus, ‖A∗A‖ = ‖A‖2 .

Lemma 2.4. Let H,K be two Hilbert spaces over C and A ∈ L (H,K) , then,

1) kerA = (ImA∗)⊥ ,

2) kerA∗ = (ImA)⊥ ,

3) kerA∗ = {0} if and only if ImA is dense in K.

Proof. 1) Let x ∈ kerA and z ∈ ImA∗ then ∃y ∈ K such that z = A∗y, we have

(x, z) = (x,A∗y) = (Ax, y) = (0, y) = 0,

this shows that x ∈ (ImA∗)⊥ and hence kerA ⊂ (ImA∗)⊥ . On the other hand,
suppose that x ∈ (ImA∗)⊥ . Since A∗Ax ∈ ImA∗, then

(x,A∗Ax) = 0,

(x,A∗Ax) = (Ax,Ax) = ‖Ax‖2 = 0,

therefore, Ax = 0, hence x ∈ kerA and (ImA∗)⊥ ⊂ kerA, consequently, kerA =

(ImA∗)⊥ . 2) From 1) we deduce, kerA∗ = (Im (A∗)∗)
⊥

= (ImA)⊥ . 3) Recall that(
F⊥
)⊥

= F and if F is closed,
(
F⊥
)⊥

= F. Suppose that kerA∗ = {0} then, from

2) we have (ImA)⊥ = {0} , then
(

(ImA)⊥
)⊥

= {0}⊥ which gives ImA = {0}⊥ = K.

Conversely, suppose that ImA = K, that is,
(

(ImA)⊥
)⊥

= K. Therefore

((
(ImA)⊥

)⊥)⊥
= K⊥ = {0} .

Since (ImA)⊥ is closed we have

((
(ImA)⊥

)⊥)⊥
= (ImA)⊥ = kerA∗. Consequently,

kerA∗ = {0}.

Corollary 2.1. Let H be a C–Hilbert space and A ∈ L (H) . The following state-
ments are equivalent

Corollary 2.1. 1) A is invertible,
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2 kerA∗ = {0} and there exists α > 0 such that ‖Ax‖ ≥ α ‖x‖ , ∀x ∈ H.

1) =⇒ 2) Suppose that A is invertible, then ImA = H and from number 3 of
the previous lemma, kerA∗ = {0} . On the other hand, since A is invertible A−1 is
bounded, then

∃c > 0 :
∥∥A−1y∥∥ ≤ c ‖y‖ .

But ImA = H, then

∀x ∈ H,∃y ∈ H : y = Ax, x = A−1y.

Thus, for α =
1

c
we have∥∥A−1y∥∥ ≤ c ‖y‖ ⇐⇒ α ‖x‖ ≤ ‖Ax‖ .

2) =⇒ 1) If kerA∗ = {0} then, ImA is dense in H. Let y ∈ H and {yn} ⊂ ImA be a
sequence that converges to y. Then, {yn} is a Cauchy sequence and

‖yn − ym‖ = ‖Axn − Axm‖ = ‖A (xn − xm)‖ ≥ α ‖xn − xm‖ ,

therefore {xn} is a Cauchy too. Since H is complete, {xn} converges to an x ∈ H.
Moreover, since A is continuous

y = lim
n−→∞

yn = lim
n−→∞

Axn = A
(

lim
n−→∞

xn

)
= Ax.

Consequently, y ∈ ImA and ImA is closed, which shows that ImA = H. On the
other hand, if x ∈ kerA, one has Ax = 0, then 0 = ‖Ax‖ ≥ α ‖x‖ ≥ 0, which shows
that A is injective, hence bijective. Since A is also continuous, we deduce by Banach
theorem that A is invertible.

Example 2.6. Let S ∈ L (`2) defined by

S (x1, x2, x3 · ··, ) = (0, x1, x2, x3, · · ·) .

We can prove that S∗ (y1, y2, y3, · · ·) = (y2, y3, · · ·) . Thus, (1, 0, 0, · · ·) ∈ kerS∗ which
shows that kerS∗ 6= {0}. Therefore, S is non invertible.

Lemma 2.5. Let A ∈ L (H) be a linear and continuous operator on the Hilbert space
H. Then, A is invertible if and only if A∗ est invertible. In this case, also we have
(A∗)−1 = (A−1)

∗
.

Suppose that A is invertible, then A−1 exists and we have AA−1 = A−1A = I,
then, (AA−1)

∗
= (A−1A)

∗
= I, consequently,(
A−1

)∗
A∗ = A∗

(
A−1

)∗
= I.

Thus, A∗ is invertible et (A∗)−1 = (A−1)
∗
.

Reciprocally, if A∗ is invertible, then, using the above argument, we deduce that
A = (A∗)∗ is invertible and

A−1 = ((A∗)∗)
−1

=
(
(A∗)−1

)∗
consequently, (A−1)

∗
= (A∗)−1 .
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2.4 Self adjoint and normal operators

We have already defined the self adjoint operator. Let us give the definition of normal
operator

Definition 2.10. let H be a Hilbert space and A ∈ L (H) . The operator A is said
to be normal if

A∗A = AA∗.

Example 2.7. Let k ∈ C [0, 1] and consider the complex Hilbert space L2 [0, 1] . Let
A ∈ L (L2 [0, 1]) be defined by

(Af) (x) = k (x) f (x) ,

then
(A∗f) (x) = k (x)f (x)

and

(A∗Af) (x) = (A∗kf) (x) = k (x)k (x) f (x) = k (x) k (x)f (x) = (AA∗f) (x) .

Thus,
(A∗Af) = (AA∗f) ,

which shows that A is normal.

Lemma 2.6. Let S (H) be the set of all self adjoint operators over H. Then, for all
λ, µ ∈ R, λS + µT ∈ S (H) and S (H) is a closed linear subspace of L (H) .

Proof. 1) Let λ, µ ∈ R and S, T ∈ S (H) . We have

(λS + µT )∗ = λS∗ + µT ∗ = λS + µT.

2) Moreover, let {Tn} be a sequence of self–adjoint operators which converges to
T ∈ L (H) . since the function T −→ T ∗ is continuous, then, {T ∗n} converges to T ∗.
But T ∗n = Tn then {T ∗n} converges to T . By the uniqueness of the limit we have
T ∗ = T.

Lemma 2.7. Let H be a complex Hilbert space and T ∈ L (H) , then,
1) TT ∗ et T ∗T are self-adjoint operators,
2) there exist two self-adjoint operators R, S such that T = R + iS.

Proof. 1) (TT ∗)∗ = (T ∗)∗ T ∗ = TT ∗ et (T ∗T )∗ = T ∗ (T ∗)∗ = T ∗T. 2) Set R =
T + T ∗

2

and S =
T − T ∗

2i
then T = R + iS et

R∗ =

(
T + T ∗

2

)∗
=
T ∗ + T

2
= R

and

S∗ =

(
T − T ∗

2i

)∗
=
T ∗ − T
−2i

= S.
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Lemma 2.8. Let H be a complex Hilbert space, A ∈ L (H) and λ ∈ C. Then, A is
normal if and only if (A− λI) is normal.

Proof. Si A est normal, alors

(A− λI)∗ (A− λI) =
(
A∗ − λI

)
(A− λI)

= A∗A− λA∗ − λA+ λλI

= AA∗ − λA− λA∗ + λλI

= A
(
A∗ − λI

)
− λI

(
A∗ − λI

)
= (A− λI)

(
A∗ − λI

)
= (A− λI) (A− λI)∗ .

Reciprocally, if (A− λI) is normal, then, A = (A− λI)− (−λ) I is normal.

Lemma 2.9. Let A ∈ L (H) be a normal operator. Then,

1) ‖Ax‖ = ‖A∗x‖ , ∀x ∈ H.

2) If there exists α > 0 such that ‖Ax‖ ≥ α ‖x‖ , ∀x ∈ H, then kerA∗ = {0} .

Proof. 1) Let x ∈ H, since A∗A = AA∗, we have A∗Ax = AA∗x and hence

〈A∗Ax, x〉 = 〈AA∗x, x〉

and
〈Ax,Ax〉 = 〈A∗x,A∗x〉 ⇐⇒ ‖Ax‖2 = ‖A∗x‖2 .

2) Let y ∈ kerA∗, then, A∗y = 0 and by virtue of 1) one gets

0 = ‖A∗y‖ = ‖Ay‖ ≥ α ‖y‖

therefore ‖y‖ = 0, which implies that y = 0. Thus, kerA∗ = {0} .

Corollary 2.2. Let A ∈ L (H) be a normal operator, the following statments are
equivalent

1) A is invertible,

2) there exists α > 0, such that ‖Ax‖ ≥ α ‖x‖ , ∀x ∈ H.

Proof. From corollary 2.1 and number 2) in the previous lemma.

Definition 2.11. An operator A ∈ L (H) is said to be unitary if A∗A = AA∗ = I.
An isomory is an operator A ∈ L (H) that satisfies ‖Ax‖ = ‖x‖ , ∀x ∈ H, the

norm of an isomerty is equal 1, that is ‖A‖ = 1.
We denote by U (H) the set of all unitary operators over H.

Remark 2.8. A unitary oprator is invertible and its inverse is its adjoint.
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Theorem 2.9. Let A,B ∈ L (H) , then,
1) A∗A = I if and only if A is isomerty.
2) B is unitary if and only if B is an isometry from H into H.

Demonstration. 1) Suppose that A∗A = I, then,

‖Ax‖2 = 〈Ax,Ax〉 = 〈x,A∗Ax〉 = 〈x, x〉 = ‖x‖2 .

Reciprocally, if A is an isometry then

〈A∗Ax, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 = ‖x‖2 = 〈x, x〉 = 〈Ix, x〉, ∀x ∈ H

therefore, A∗A = I.
2) Assume that B is a unitary operator, then, from 1) B is an isometry, and

moreover, ∀y ∈ H, y = B (B∗y) ∈ Im H, then Im H = H.
Reciprocally, if B is an isometry from H into H, from 1) we deduce that, B∗B = I,

and since Im H = H we have,

∀y ∈ H, x ∈ H; y = Bx

therefore,
BB∗y = BB∗ (Bx) = B (B∗Bx) = Bx = y

and consequently B is unitary.

Lemma 2.10. Let X be a complex inner product space and S, T ∈ (X). Then, S = T
if and only if 〈Tx, x〉 = 〈Sx, x〉, ∀x ∈ D(T ) ∩D(S).

Proof. Exercise.

Lemma 2.11. Let U(H) be the set of all unitary operators over H, then
1) If A ∈ U then A∗ ∈ U and ‖A‖ = ‖A∗‖ = 1,
2) if A,B ∈ U , then, AB ∈ U and A−1 ∈ U ,
3) U (H) is closed in L (H) .

Proof. 1) Since (A∗)∗ = A and A ∈ U , one gets

A∗A∗∗ = A∗∗A∗ = AA∗ = I

which shows that A∗is unitary.
Moreover, ‖AA∗‖ = ‖A‖2 = ‖A∗‖2 = ‖I‖ = 1, then = ‖A‖ = ‖A∗‖ = 1.
2) A−1 = A∗, thus, A−1 ∈ U .
Assume that A,B ∈ U , then

(AB)(AB)∗ = ABB∗A∗ = A(BB∗)A∗ = AIA∗ = I.

3) Let (An) be a convergent sequence of unitary operators and let A be its limit.
Since the function T → T ∗ is continuous, then A∗n → A∗. Further, we have

AA∗ = lim
n→∞

(AnA
∗
n) = I,

and
A∗A = lim

n→∞
(Å∗nAn) = I.
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Exercise Sheet 3

Exercice 1. Let T : `2 −→ `2 be defined by

T (x1, x2, x3, · · ·) = (0, 4x1, x2, 4x3, x4, · · ·) .

Determine T ∗ the adjoint of T.
Solution. Let x = (xn) , y = (yn) ∈ `2 and z = (zn) = T ∗ (yn) . From the definition

we have
〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, z〉 ,

that is,
4x1y2 + x2y3 + 4x3y4 + · · · = x1z1 + x2z2 + x3z3 + · · ·

therefore,
x1z1 = 4x1y2, x2z2 = x2y3, x3z3 = 4x3y4, · · ·

and
T ∗ (yn) = (4y2, y3, 4y4, · · ·)

Exercice 2. Let H be a Hilbert space with the inner product 〈·, ·〉 , a, b ∈ H and
T, S ∈ L (H) defined by Tx = 〈a, b〉x, Sx = 〈x, a〉 b. Determine T ∗ and S∗.

Solution. Let x, y ∈ H and z = T ∗y, such that

〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, z〉 ,

then,

〈〈a, b〉x, y〉 = 〈x, z〉
〈x, z〉 = 〈a, b〉 〈x, y〉

=
〈
x, 〈a, b〉y

〉
= 〈x, 〈b, a〉 y〉 ,∀x, y ∈ H,

therefore, z = T ∗y = 〈a, b〉y = 〈b, a〉 y.
Let w = S∗y, then,

〈Sx, y〉 = 〈x, S∗y〉 = 〈x,w〉
〈〈x, a〉 b, y〉 = 〈x,w〉 , ∀x, y ∈ H,

〈x, a〉 〈b, y〉 = 〈x,w〉〈
x, 〈b, y〉a

〉
= 〈x,w〉

〈x,w〉 = 〈〈x, a〉 b, y〉 = 〈x, a〉 〈b, y〉 = 〈x, a〉 〈y, b〉 = 〈x, 〈y, b〉 a〉 .

Thus, w = S∗y = 〈b, y〉a = 〈y, b〉 a.
Exercice 3. Prove that kerT = kerT ∗T.
Solution. Let x ∈ kerT, then, Tx = 0 hence, T ∗Tx = 0. Consequently, x ∈

kerT ∗T , then kerT ⊂ kerT ∗T.
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Reciprocally, if x ∈ kerT ∗T, then

0 = 〈x, T ∗Tx〉 = 〈Tx, Tx〉 = ‖Tx‖2 ,

therefore, Tx = 0 and x ∈ kerT. Thus, kerT ∗T ⊂ kerT.
Exercice 4. Let T : `2 −→ `2 define by T {xn} = {cnxn}, where {cn} ∈ `∞.
Is T normal.
Solution. First, we have

〈T {xn} , {yn}〉 = 〈{cnxn} , {yn}〉 =
∑

cnxnyn =
∑

xncnyn =
∑

xncnyn

〈T {xn} , {yn}〉 = 〈{xn} , T ∗ {yn}〉 =
∑

xnzn

therefore, T ∗ {yn} = {cnyn} .
On the other hand, we have

T ∗T {xn} = T ∗ {cnxn} = {cncnxn}

and
TT ∗ {xn} = T {cnxn} = {cncnxn}

that is T ∗T = TT ∗. Thus, T is normal.
Exercice 5. Let T ∈ L (H) such that ‖T ∗x‖ = ‖Tx‖ , ∀x ∈ H. Prove that T is

normal.
Solution.

〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 = ‖T ∗x‖2 = 〈T ∗x, T ∗x〉 = 〈TT ∗x, x〉

Therefore, T ∗T = TT ∗.



Chapter 3

Compact operators

3.1 Introduction

Let (X, T ) be a topological space. A subset K ⊂ X, is said to be compact if every
open cover {Ui}i∈I of K has a finite subcover {Ui}i∈I0 .

Lemma 3.1. Let (X, d) be a metric space and K ⊂ X. Then, K is compact if and
only if every sequence (un) ⊂ K has a convergent subsequence (unk

) with limit ` ∈ K.

Definition 3.1. A set K is said to be relatively compact if K is compact.

Lemma 3.2. Let X be an infinite dimensional normed linear space, then, the unit
ball

B := {x ∈ X : ‖x‖ ≤ 1}

is never compact.

Let x0 ∈ X and Span{x0} be the subspace generates by x0. Then, Span{x0} is
finite dimensional subspace of X, consequently, Span{x0} is closed and Span{x0} 6=
X.

From Riesz’s Lemma, we deduce that there exists x1 ∈ X, ‖x1‖ = 1 such that

‖x1 − αx0‖ >
3

4
, ∀α ∈ R.

Similarly, Span{x0, x1} is closed finite dimensional subspace ofX, then Span{x0, x1} 6=
X and there exists x2 ∈ X, ‖x2‖ = 1 such that

‖x2 − αx0 − βx0‖ >
3

4
, ∀x ∈ X, ∀α, β ∈ R.

We continue in the same way, we construct a unitary sequence {xn} that satisfies

‖xn − xm‖ >
3

4
, for all n 6= m. Therefore, we can’t extract any convergent sequence

from {xn} which shows that B is not compact.

33
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3.2 Compact operators

Definition 3.2. Let X, Y be normed spaces. A linear operator T ∈ L (X, Y ) is said
to be compact if the image by T of every bounded set B of X is relatively compact in
Y. The set of all compact operators from X into Y is denoted by K (X, Y ) .

Proposition 3.1. Let X, Y be normed spaces and T ∈ L (X, Y ) . The following
statements are equivalent:

1 T is compact.

2) The image of the unit ball BX (0, 1) of X is relatively compact in Y.

3) Every bounded sequence {xn} in X has a subsequence xnk
such that {Txnk

} con-
verges in Y .

Demonstration. Clearly 1)=⇒2).
2)=⇒3) Suppose that 2) holds, then there exists r > 0, such that {xn} ⊂ BX (0, r) =

rBX (0, 1) , therefore, T {xn} ⊂ rT (BX (0, 1)) which is compact, since T {xn} is
closed, then compact, consequently T {xn} is relatively compact.

3)=⇒1) Let B ⊂ X be a bounded subset of X and {yn} a sequence of T (B). For
all n ∈ N∗, there exists zn ∈ T (B) such that ‖yn − zn‖ < 1

2n
, consequently, there

exists xn ∈ B such that zn = Txn. Since {xn} ⊂ B is bounded, {zn} has a convergent
subsequence {znk

} . Thus
lim

nk−→∞
‖ynk

− znk
‖ = 0,

consequently, {ynk
} converges to the same limit as {znk

} , which shows that T (B) is
relatively compact.

Lemma 3.3. Every compact operator T ∈ K (X, Y ) is continuous.

Proof. Suppose that T is not continuous, then, there exists a sequence {xn} of
unit vectors such that ‖Txn‖ ≥ n, for all n. Since T is compact, one can ex-
tract a subsequence {xnk

} such that {Txnk
} converges to y ∈ Y, but this con-

tradicts the fact that ‖Txnk
‖ ≥ nk. Consequently T is continuous (bounded) and

K (X, Y ) ⊂ L (X, Y ) .

Theorem 3.1. The set K (X, Y ) is a closed subspace of L (X, Y ) for the operator
norm.

Demonstration. 1) Let S, T ∈ K (X, Y ) and α, β ∈ C. Let {xn} be a bounded
sequence on X. Since S is compact, there exists a subsequence {xnk

} such that
{Sxnk

} convergents. On the other hand, since T is compact, there exists a subse-
quence

{
xnkm

}
for which

{
Txnkm

}
converges. Thus,

{
αSxnkm

+ βTxnkm

}
converges.

Therefore αS + βT is compact.
2) Let {Tn} be a sequence of compact operators that converges to T , lim

n−→∞
‖Tn − T‖ =

0. We will show that T is compact˙ For all ε > 0, there exists N ∈ N such that

∀n ≥ N ; ‖Tn − T‖ <
ε

2
.
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Therefore,

∀n ≥ N, ∀x ∈ BX (0, 1) ; ‖Tnx− Tx‖ <
ε

2
.

Take n ≥ N and let {Bo (yi, ε)}i∈I where yi ∈ Y, be an open cover of T (BX (0, 1)),
then,

{
Bo

(
yi,

3ε
2

)}
i∈I is an open cover of Tn (BX (0, 1)) . Since Tn is compact, there ex-

ists a finite subrecover
{
Bo

(
yi,

3ε
2

)}
i∈I0

of Tn (BX (0, 1)) , consequently, {Bo (yi, 2ε)}i∈I0
recover T (BX (0, 1)) . Thus, T is compact.

Proposition 3.2. Let T ∈ L (X, Y ) and S ∈ L (Y, Z). If at least one of the opera-
tors S, T is compact then ST is compact.

Proof. Let {xn} be a bounded sequence in X. If T is compact then, there exists a
subsequence on {xnk

} such that {Txnk
} converges in Y , and, since S is continuous,

the sequence {STxnk
} still convergent.

If T is not compact, then {Txn} still bounded and, since S is compact there exist a
subsequence {STxnk

} such that {STxnk
} converges, therefore ST is compact.

Definition 3.3. An operator T is said to be of finite rank, if its range (image) R (T )
is of finite dimension. In this case we note dimR(T ) = r(T ).

Proposition 3.3. 1) An operator of finite rank is compact.
2) If dimX or dimY is finite, then L (X, Y ) = K (X, Y ).

Proof. 1) Let {xn} be a bounded sequence in X, then {Txn} is bounded in R (T ).
Since dimR (T ) <∞, from Bolzano-Weistrass theorem, we deduce that {Txn} has a
convergent subsequence. Thus T is compact.
2) If dimY < ∞, then dimR (T ) ≤ dimY < ∞. If dimX < ∞, then dimR (T ) ≤
dimX, and the result follows from the statement 1).

Theorem 3.2. Let {Tn} ⊂ L (X, Y ) be a sequence of bounded operators of finite
range and let T ∈ L (X, Y ) be its limit, then T is compact.

Proof. Since every operator of finite range is compact, and the set K (X, Y ) is closed,
T est compact.

Example 3.1. Let T ∈ L (`2) be defined by: T{xn} = {n−1xn}.
For all k ∈ N∗ define Tk{xn} = {ykn} such that

ykn =

{
n−1xn, 1 ≤ n ≤ k,
0, n > k.

Every operator Tk is linear bounded and of finite range, thus compact. On the other
hand,

lim
k→∞
‖(T − Tk){xn}‖2 = lim

k→∞

∑
n≥k+1

|xn|2

n2
≤ lim

k→∞

1

(k + 1)2

∑
|xn|2 ≤ lim

k→∞

‖{xn}‖
(k + 1)2

= 0.

Therefore, lim
n→∞

Tk = T which shows that T is compact.
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Remark 3.1. In general, the converse is not true if Y is only a Banach space.
However, if Y is a Hilbert space, the converse is also valid.

Theorem 3.3. Let X be a linear normed space, H a Hilbert space and T ∈ K (X,H)
a compact operator. Then, there exists a sequence {Tn} of finite rank operators which
converges to T in L (X,H).

Demonstration. 1) If T itself is of finite rank, there is no thing to prove.
2) Suppose that T is not of finite rank. Then, R (T ) is a closed separable subspace
of H. Consequently, it is a separable Hilbert subspace. Let {en} be an orthonormal
basis of R (T ).
For each k ≥ 1 let Mk := Span {e1, e2, ..., ek} and Pk the orthogonal projection of
R(T ) on Mk and Tk = PkT . Since R(Tk) ⊂Mk, Tk is of finite rank.
We will prove that lim

k→∞
‖Tk − T‖ = 0. Suppose that this does not hold. Thus, we can

extract a subsequence {Tkl} and there exists ε > 0 such that ‖Tkl − T‖ ≥ ε, for all
kl ∈ N∗. Therefore, there exists a sequence {xkl} ⊂ X of unit vectors such that

‖(Tkl − T )xk‖ ≥
ε

2
, ∀kl ∈ N∗.

Since T is compact, one can extract from {xkl} a subsequence which we still denoted
by {xkl} such that {Txkl} converges to y ∈ H. We have

(Tkl − T )xkl = (Pkl − I)Txkl = (Pkl − I)y + (Pkl − I)(Txkl − y)

= −
∞∑

n=kl+1

(y, en)en + (Pkl − I)(Txkl − y),

consequently,

ε

2
≤ ‖(Tkl − T )xkl‖+ (

∞∑
n=kl+1

(y, en)2)1/2 + (‖Pkl‖+ 1)‖Txkl − y‖ → 0,

which is impossible. Thus, lim
k→∞
‖Tk − T‖ = 0.

Lemma 3.4. Let X be linear normed space of infinite dimensional, then the identity
operator is never compact.

Proof. Since dimX = ∞, from the lemma 3.2, there exists a sequence {xn} ⊂ X of
unit vectors which has no convergent subsequence, then {Ixn} = {xn} doesn’t have
any convergent subsequence.

Corollary 3.1. If X is an infinite dimensional linear normed space and T ∈ K(X)
a compact operator, then T is not invertible.

Proof. Suppose that T is invertible, then I = T−1T is compact, which contradicts
the lemma 3.4.
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Theorem 3.4. Let T ∈ K (X, Y ) then R(T ) and R(T ) are separable.

Demonstration. It is well known that a compact subset of a metric space is separable
and that a subset of a separable set is also separable.
For every n ∈ N∗ we set Rn = T (B(0, n)) the image by T of the ball of radius n. Since
T is compact Rn is relatively compact, then separable. Consequently, R(T ) = ∪

n≥1
Rn

is separable. On the other hand, every dense subset in R(T ) is also dense in R(T ),
hence R(T ) is also separable.

3.3 The adjoint of compact operator

Lemma 3.5. Let H be a Hilbert space and let T ∈ L (H) be an operator. Then,
r(T ) = r(T ∗). (Both finite or infinite dimensional).

Demonstration. Suppose that r(T ) <∞. For every y ∈ H we write the orthogonal
decomposition of y with respect to ker(T ∗), y = u + v where u ∈ ker(T ∗) and v ∈
(ker(T ∗))⊥ = R(T ). Since r(T ) < ∞ we have R(T ) = R(T ). Thus, T ∗y = T ∗(u +
v) = T ∗u+T ∗v = T ∗v. Consequently, R(T ∗) = T ∗(R(T )) which implies that r(T ∗) ≤
r(T ) <∞.
Applying this result for T ∗ and recalling that (T ∗)

∗
= T we conclude that r(T ) ≤

r(T ∗) <∞, thus the equality follows.
If one of r(T ) or r(T ∗) is infinite the other can’t be finite.

Theorem 3.5. Let H be a Hilbert space and TL (H), then T is compact if and only
if T ∗ is compact.

Proof. Suppose that T is compact, then, there exists a sequence of finite rank oper-
ators that converges to T . The adjoint T ∗n de chaque opérateur ests of any Tn is of
finite rank because of r(T ∗) = r(T ); On the other hand

lim
n→∞
‖T ∗n − T ∗‖ = lim

n→∞
‖Tn − T‖ = 0

therefore T ∗ is compact as limit of a sequence of finite rank operators.
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Exercise Sheet 4
Master I

Exercise 1.
Recall that an orthogonal projection in a Hilbert space H is an operator P such that
P = P ∗ = P 2.
An operator T ∈ H is said to be positive if 〈Tx, x〉 ≥ 0, ∀x ∈ H.
Let P : C3 −→ C3 by defined by

P (x, y, z) = (x, y, 0).

Prove that P is a positive projection.
Exercise 2.

Let M be a closed subset of a Hilbert space H. For any x ∈ H let x = u+ v be the
orthogonal decomposition with respect to M of x, that is u ∈M , v ∈M⊥.
Let P : H −→ H by defined by Px = u.
Prove that P ∈ L (H), P is projection, ‖P‖ ≤ 1 and that R(P ) = M and ker(P ) =
M⊥.

Exercise 3.
Let H be a Hilbert space with the inner product 〈·, ·〉, and let a, b ∈ H. Define
T ∈ L (H) by Tx = 〈x, a〉b. Show that T is compact.

Exercise 4.
Let H be a Hilbert space and T ∈ L (H). Prove that if T ∗T is compact, then T and
T ∗ are compact.

Exercise 5.
Let H be a Hilbert space and (ek)k≥1 an orthonormal basis of H. Define an operator
T by

T

(∑
k≥1

xkek

)
=
∞∑
k=2

1

k
xkek−1.

Show that T is compact and determine T ∗.
Exercise 6.

Let k be a continuous function k : [0, 1] × [0, 1] −→ R. Define the operator T ∈
L (C([0, 1])) by

Tf(t) :=

∫ 1

0

k(t, s)f(s)ds.

1) Show that for any f ∈ C ([0, 1]) we have Tf ∈ C ([0, 1]) and that ‖T‖ =

sup
t∈[0,1]

∫ 1

0

|k(t, s)|ds.

2) Show that T is a compact operator.
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Solution

Exercise 1.
Clearly, P is linear. Moreover, since C3 is finite dimensional, P is continuous. Or
‖P (x, y, z)‖2 = |x|2+|y|2 ≤ |x|2+|y|2+|z|2, which shows that ‖PU‖ ≤ ‖U‖, therefore,
P is continuous.
On the other hand,

〈P (x, y, z), (u, v, w)〉 = xu+ yv = 〈(x, y, z), P (u, v, w)〉.

Thus, P ∗ = P (P is self-adjoint). Moreover, P 2(x, y, z) = P (x, y, 0) = (x, y, 0) =
P (x, y, z) which shows that P 2 = P .

Exercise 2.
First, we prove that P is linear and continuous.
Let x, y ∈ H and x = u + v, y = z + w then for all α ∈ C we have αx + y =
(αu+ z) + (αv+w). Since M is a subspace αu+ z ∈M and αv+w ∈M⊥, therefore
P (αx+ y) = αu+ z = αPx+ Py. Thus P is linear. Moreover, we have

‖x‖2 = 〈u+ v, u+ v〉 = 〈u, u〉 = ‖u‖2,

then, ‖Px‖2 = ‖u‖2 = ‖x‖2, which shows that, P is continuous.
Next, we prove that P is an orthogonal projection.

〈Px, y〉 = 〈u, z + w〉 = 〈u, z〉

and
〈x, Py〉 = 〈u+ v, z〉 = 〈u, z〉

Thus, P ∗ = P.
Finally, since u ∈ M then u = u + 0 and Pu = u, therefore, P 2x = PPx = Pu =
u = Px.

Clearly,P (H) ⊂ M . Moreover, if x ∈ M then Px = x, then,M ⊂ P (M),
which shows that M = R(P ). On the other hand, since ker(P ) = (Im(P ∗))⊥ =
(Im(P ))⊥ = M⊥.

Exercise 6. Let f ∈ C([0, 1]) and set ‖f‖1 =
∫ 1

0
|f(x)|dx, then

‖f‖1 =

∫ 1

0

|f(x)|dx ≤ ‖f‖∞
∫ 1

0

dx = ‖f‖∞ <∞.

Next, let ε > 0. Since k is a continuous function on the compact set [0, 1] × [0, 1],
it is actually uniformly continuous. Thus, we can choose δ > 0 such that whenever
| (t, s)− (t′, s′) | < δ,



Chapter 4

Spectrum of an operator

4.1 Spectrum of a bounded operator

Definition 4.1. Let H be a complex Hilbert space and T ∈ L (H) a bounded operator.
The set of complex numbers λ such that the operator T −λI is invertible is called the
resolvent set of T and denoted ρ(T ),

ρ (T ) := {λ ∈ C; T − λI est inversible} .

The elements of ρ (T ) are called regular points of T and for any λ ∈ ρ(T ) the operator
(T − λI)−1 is bounded and is called the revolent operator and denoted R(λ, T ) at the
point λ.

The spectrum of de T is the complement set of ρ(T ) and it denoted σ (T )

σ (T ) := C− ρ (T ) = {λ ∈ C; T − λI n’est pas inversible} .

Example 4.1. Let µ ∈ C and T = µI. We have T − λI = (µ− λ) I. Thus, T − λI
is invertible if and only if λ 6= µ, then σ (T ) = {µ} et ρ (T ) = C − {µ} .

Definition 4.2. Let H be a complex Hilbert space and T ∈ L (H) an operator. A
complex number λ ∈ C is called an eigenvalue of T, if there exists x ∈ H, x 6= 0
such that Tx = λx. Such an x is called eigenvector associated to λ. The set of all
eigenvalues of T is denoted V P (T ) .

Lemma 4.1. Each eigenvalue of T belongs to the spectrum of T, that is V P (T ) ⊂
σ (T ) .

Proof. Suppose that λ ∈ V P (T ). Since there exists x 6= 0 such that Tx = λx,
then, x ∈ ker (T − λI) consequently, ker (T − λI) 6= {0} , and then (T − λI) is not
invertible.

Lemma 4.2. Suppose that H is finite dimensional and T ∈ L (H). Thus σ (T ) =
V P (T ) .

40
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Proof. It suffices to prove that σ(T ) ⊂ V P (T ).
In finite dimensional case, we have dimH = dim (R (T )) + dim ker (T ) . Let λ ∈ σ (T )
then, (T − λI) is not invertible. So T −λI is either non-injective then ker (T − λI) 6=
{0} , or non surjective, then dim (R (T )) 6= dimH. Consequently, ker (T − λI) 6= {0}.
Thus, there exists 0 6= x ∈ ker (T − λI) therefore, Tx = λx and λ ∈ V P (T ) .

Remark 4.1. In the case when dimH = +∞, it will be exists λ ∈ σ (T ) which is not
an eigenvalue.

Example 4.2. Let S ∈ L (`2) be defined by

S (xn) = (0, x1, x2, · · ·) .

S is not invertible, because R (S) 6= `2. Thus, 0 ∈ σ (S) . But 0 can not be an eigen-
value of T , because there is no x 6= 0 that satisfies Sx = 0x.

Theorem 4.1. Let H be a Hilbert space and T ∈ L (H), then,

1) If |λ| > ‖T‖ , λ /∈ σ (T ) ,

2) σ (T ) is closed in C.

Demonstration. 1) If |λ| > ‖T‖ , then ‖λ−1T‖ < 1 consequently, I − λ−1T is
invertible, and T − λI = − 1

λ
(T − λI) is also invertible, then λ /∈ σ (T ) .

2) Define F : C −→ L (H) by F (λ) = T − λI. We have ‖F (λ)− F (µ)‖ =
‖(µ− λ) I‖ = |λ− µ|, then F is continuous (it suffices to choose α = ε in the
definition of continuity). Let C be the set of all non-invertible operators. It is a closed
set because the set of all invertible operators is open. Consequently, σ (T ) = F−1 (C)
is closed.

Remark 4.2. The spectrum of an operator T is a closed bounded set, then compact
set included in C. It is in the circle of center at the origin and radius ‖T‖ .

Lemma 4.3. Let T ∈ L (H), then

ρ (T ∗) =
{
λ ∈ C : λ ∈ ρ (T )

}
,

σ (T ∗) =
{
λ ∈ C : λ ∈ σ (T )

}
.

Proof. If λ ∈ ρ (T ), then T − λI is invertible, consequently, (T − λI)∗ = T ∗ − λI is

invertible. Thus, λ ∈ ρ (T ∗). Similarly, if λ ∈ ρ (T ∗) then λ = λ ∈ ρ (T ). Therefore,
λ ∈ ρ (T )⇐⇒ λ ∈ ρ (T ∗) which is equivalent to λ ∈ σ (T )⇐⇒ λ ∈ σ (T ∗) .

Example 4.3. Let S : `2 −→ `2 be defined by S (x1, x2, x3, · · ·) = (0, x1, x2, x3, · · ·).
Then: if λ ∈ C, |λ| < 1 so λ is an eigenvalue of S∗ and σ (S) = {λ ∈ C; |λ ≤ 1|}.

Solution. 1) Let λ ∈ C, |λ| < 1. So that λ is an eigenvalue of S∗, it suffices that
exists 0 6= x ∈ `2, such that S∗x = λx, then

(x2, x3, x4, · · ·) = (λx1, λx2, λx3, · · ·) ,
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consequently,
(x2, x3, x4, · · ·) =

(
λx1, λ

2x1, λ
3x1, · · ·

)
, x1 6= 0.

So that (λx1, λ
2x1, λ

3x1, · · ·) ∈ `2 it is necessary that

x21
∑
n≥1

|λn|2 = x21
∑
n≥1

|λ|2n <∞,

which satisfies only for |λ| < 1. Thus, λ is an eigenvalue of S∗ with eigenvector
x = (λ, λ2, λ3, · · ·) .

2) We have {λ ∈ C : |λ| < 1} ⊂ σ (S∗), but σ (S∗) is closed, then

{λ ∈ C : |λ| < 1} = {λ ∈ C : |λ| ≤ 1} ⊂ σ (S∗) .

From the above lemma we have,
{
λ ∈ C : |λ| ≤ 1

}
⊂ σ (S) then

{
λ ∈ C : |λ| ≤ 1

}
=

{λ ∈ C : |λ| ≤ 1} ⊂ σ (S) .
On the other hand, since ‖S‖ = 1. If |λ| > 1, then λ /∈ σ (S) consequently,

σ (S) = {λ ∈ C : |λ| ≤ 1} .

Theorem 4.2. Let H be a Hilbert space over C, and T ∈ L (H). then,

1) For any polynomial p, we have σ (p (T )) = p (σ (T )) = {p (λ) ;λ ∈ σ (T )} .

2) If T is invertible σ (T−1) = {λ−1 : λ ∈ σ (T )} .

Demonstration. 1) Let q (z) = p (z)−p (λ) , since q (λ) = 0, then q (z) = (z − λ) r (z)
and q (T ) = (T − λI) r (T ) , where r (z) is a polynomial.

If λ ∈ σ (T ) then (T − λI) is not invertible, consequently, q (T ) = p (T )−p (λ) I =
(T − λI) r (T ) is not invertible, therefore, p (λ) ∈ σ (p (T )) .

Reciprocally, let λ ∈ σ (p (T )) and define the polynomial q (z) = p (z) − λ. The
polynomial p (z) can be written q (z) = c (z − µ1) (z − µ2) · · · (z − µn) for some c 6= 0
and µ1, µ2, · · ·, µn ∈ C. Since λ ∈ σ (p (T )) then q (T ) = p (T )− λI is not invertible,
accordingly, there exists 1 ≤ i ≤ n such that T −µiI is not invertible. Therefore, µi ∈
σ (T ) . On the other hand, q (µi) = p (µi)−λ = 0, which gives λ = p (µi) ∈ P (σ (T )) .

2) Since T is invertible, then 0 /∈ σ (T ) . Thus, every λ ∈ σ (T ) can be written
λ = µ−1, and we have

T−1 − µI = −µT−1 (T − λI) ,

T − λI = −λT
(
T−1 − µI

)
where −µT−1 and λT are invertibles. Consequently, T−1−µI is not invertible if and
only if T − λI is not invertible. Thus,

µ = λ−1 ∈ σ
(
T−1

)
⇐⇒ λ ∈ σ (T )

and σ (T−1) = {λ−1 ∈ C : λ ∈ σ (T )} .

Corollary 4.1. Let U ∈ L (H) be a unitary operator, then the spectrum of U is

σ (U) = {λ ∈ C : |λ| = 1} .
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Proof. Since U is unitary, then ‖U‖ = ‖U∗‖ = 1 and U−1 = U∗. By the use of
Theorem 4.2, we get

σ (U) = {λ ∈ C : |λ| ≤ 1} , σ (U∗) = {λ ∈ C : |λ| ≤ 1} .

On the other hand

σ (U) =
{
λ ∈ C : λ−1 ∈ σ

(
U−1

)
= σ (U∗)

}
=
{
λ ∈ C :

∣∣λ−1∣∣ ≤ 1
}

= {λ ∈ C : |λ| ≥ 1} .

Therefore, the result follows.

Definition 4.3. Let H be a Hilbert space, T ∈ L (H) and σ (T ) the spectrum of T .

1) The spectral radius of T , denoted by rσ(T ), is the real number given by

rσ (T ) := sup {|λ| ;λ ∈ σ (T )} .

2) The numerical range of T , denoted by W (T ), is defined by

W (T ) := {〈Tx, x〉 ; ‖x‖ = 1} .

Example 4.4. If U ∈ L (H) is unitary, then, rσ (U) = 1.

Remark 4.3. Clearly, we have rσ (T ) ≤ ‖T‖ .

Theorem 4.3. Let T ∈ L (H) then,

rσ (T ) = lim
n−→∞

‖T n‖
1
n = inf

n≥1
‖T n‖

1
n .

Demonstration. Note by r = inf
n≥1
‖T n‖

1
n , then, it is clear that lim

n−→∞
‖T n‖

1
n ≥ r.

Let’s prove that

lim
n−→∞

‖T n‖
1
n = r.

It suffices to prove that lim
n−→∞

‖T n‖
1
n ≤ r.

For all ε > 0, there exists m ≥ 1 such that

‖Tm‖
1
m < r + ε.

Any n ∈ N∗ can be written in a unique way n = mp+ q avec 0 ≤ q ≤ m− 1. Thus

‖T n‖
1
n =

∥∥Tmp+q∥∥ 1
n ≤ ‖Tmp‖

1
n ‖T q‖

1
n

≤ ‖Tm‖
p
n ‖T‖

q
n ≤ (r + ε)

mp
n ‖T‖

q
n .

When n −→ ∞, then p −→ ∞ and consequently
mp

n
=

mp

mp+ q
−→ 1 and

q

n
−→ 0.

Therefore, we get

lim
n−→∞

‖T n‖
1
n ≤ r + ε.
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Since ε is arbitrarely one gets lim
n−→∞

‖T n‖
1
n ≤ r and consequently lim

n−→∞
‖T n‖

1
n = r.

On the other hand, since ‖T n‖ ≤ ‖T‖n we get lim
n−→∞

‖T n‖
1
n ≤ ‖T‖ .

Let λ ∈ C, |λ| > r, there exists δ > 0 such that |λ| = r + δ. Soit ε et n tels que

ε < δ and ‖T n‖
1
n < r + ε. Therefore∥∥∥∥Tλ

∥∥∥∥n =

(
‖T‖
|λ|

)n
≤
(
r + ε

r + δ

)n
.

The serie of general term T
λ

converges and we have

− (T − λI)
∑
n≥0

(
T

λ

)n
= − lim

k−→∞
(T − λI)

1

λ

k∑
n=0

(
T

λ

)n
= I − 1

λ
lim
k−→∞

(
T

λ

)k
= I.

Consequently T − λI is invertible and λ ∈ ρ (T ) . This shows that r ≥ rσ (T ) , which
completes the proof.

4.2 Spectrum of some operators

Lemma 4.4. Let H be a complex Hilbert space and let T ∈ L (H) be a normal
operator, then

σ (T ) ⊂ W (T ).

Proof. Let λ ∈ σ (T ) , since T − λI is normal and non invertible, we have

∀α > 0,∃x ∈ H; ‖(T − λI)x‖ < α ‖x‖ ,

therefore, we can choose a sequence {xn} with ‖xn‖ = 1 such that

lim
n−→∞

‖(T − λI)xn‖ = 0,

consequently

lim
n−→∞

|〈(T − λI)xn, xn〉| ≤ lim
n−→∞

‖(T − λI)xn‖ ‖xn‖ = 0,

lim
n−→∞

〈(T )xn, xn〉 − lim
n−→∞

λ 〈xn, xn〉 = 0.

Thus,
lim
n−→∞

〈(T )xn, xn〉 = λ,

which shows that λ ∈ W (T ) and the proof is completes.

Theorem 4.4. Let T ∈ L (H) be a self-adjoint operator, then

1) W (T ) ⊂ R,

2) σ (T ) ⊂ R,
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3) at least ‖T‖ or −‖T‖ ∈ σ (T ) ,

4) rσ (T ) = sup {|λ| : λ ∈ W (T )} = ‖T‖ .

5) for any λ ∈ W (T ) we have inf σ (T ) ≤ λ ≤ supσ (T ) .

Demonstration. 1) Since T is self-adjoint, then 〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉, there-
fore 〈Tx, x〉 ∈ R.

2) T is self-adjoint hence, T is normal, and σ (T ) ⊂ W (T ) ⊂ R.
3) If T = 0, then 0 ∈ σ (T ) . Suppose that T 6= 0 and ‖T‖ = 1, then, T 2 is normal

and there exists a sequence {xn} of unit vectors satisfies lim
n−→∞

‖Txn‖ = 1. On the

other hand we have∥∥(I − T 2
)
xn
∥∥2 =

〈(
I − T 2

)
xn,
(
I − T 2

)
xn
〉

= ‖xn‖2 +
∥∥T 2xn

∥∥2 − 2
〈
T 2xn, xn

〉
≤ ‖xn‖2 + (‖T‖ ‖Txn‖)2 − 2

〈
T 2xn, xn

〉
≤ 2− 2 〈Txn, Txn〉

consequently lim
n−→∞

‖(I − T 2)xn‖2 = 0, there is no α > 0 satisfies ‖(I − T 2)x‖ ≥
α ‖x‖ then I − T 2 is not invertible, therefore 1 ∈ σ (T 2) = (σ (T ))2 , which entails
that 1 ∈ σ (T ) ou −1 ∈ σ (T ) .

If ‖T‖ 6= 1, we set S = ‖T‖−1 T then ‖S‖ = 1 and proceed as before.
4) From 3) and the previous lemma we conclude that ‖T‖ ≤ rσ (T ) ≤ sup {|λ| : λ ∈ W (T )} .
From the inequality of Cauchy Schwarz we get |〈Tx, x〉| ≤ ‖Tx‖ ‖x‖ ≤ ‖T‖ ‖x‖2 ,

then sup {|λ| : λ ∈ W (T )} ≤ ‖T‖ , which proves 4).
5) Let λ ∈ W (T ) and y ∈ H, such that ‖y‖ = 1 and λ = 〈Ty, y〉 . Let α =

inf σ (T ) and β = supσ (T ) . Then, σ (βI − T ) = β − σ (T ) ⊂ [0, β − α] consequently
rσ (βI − T ) ≤ β − α. Suppose λ < α, then

〈(βI − T ) y, y〉 = β − λ > β − α.

But from 4) β−α = rσ (βI − T ) = sup {〈(βI − T )x, x〉 , ‖x‖ = 1} ≥ 〈(βI − T ) y, y〉 =
β − λ, this is a contradiction.

Suppose that λ > β, we get σ (T − αI) = σ (T )−α ⊂ [0, β − α] and rσ (T − αI) ⊂
[0, β − α] . But

〈(T − αI) y, y〉 = 〈Ty, y〉 − α 〈y, y〉 = λ− α ≥ β − α.

Contradiction, which completes the proof.

Corollary 4.2. Let A be a self adjoint matrix with eigenvalues {λ1, λ2, · · ·λn} then,
‖A‖ = sup {|λ1| , |λ2| , · · ·, |λn|} .



CHAPTER 4. SPECTRUM OF AN OPERATOR 46

4.2.1 Positive operator

Definition 4.4. Let T ∈ L (H). We say that T is positive if T is self-adjoint and
〈Tx, x〉 ≥ 0, ∀x ∈ H.

If T is positive, we write T ≥ 0, It T − S is positive we write T ≥ S.

Example 4.5. 0, I et TT ∗ are positive.

Lemma 4.5. If T is self adjoint, then T is positive, if and only if σ (T ) ⊂ [0,+∞[ .

Proof. Suppose that T is positive, then σ (T ) ⊂ W (T ) ⊂ [0,+∞[ . If σ (T ) ⊂ [0,+∞[
one get 0 = inf σ (T ) ≤ 〈Tx, x〉 ≤ supσ (T ) and hence T is positive.

4.2.2 Projections

Definition 4.5. An operator P ∈ L (H) is said to be orthogonal projection if P =
P ∗ = P 2.

Example 4.6. P : C3 −→ C3, P (x, y, z) = (x, y, 0) . Since C3 is finite dimensional,
P is continuous.

〈P (x, y, z) , (u, v, w)〉 = xu+ yv = 〈(x, y, z) , P (u, v, w)〉 ,

then P = P ∗. Moreover, clearly P = P 2.

Lemma 4.6. an orthogonal projection is positive.

Proof. 〈Px, x〉 = 〈P 2x, x〉 = 〈Px, P ∗x〉 = 〈Px, Px〉 = ‖Px‖2 .

4.3 Spectrum of compact operator

In what follows, we let H be a complex Hilbert space and T ∈ K (H) a compact
operator.

Lemma 4.7. If H is infinite dimensional and T ∈ K (H) , then, 0 ∈ σ (T ) .

Proof. If 0 /∈ σ (T ) then, T is invertible, which is in contradiction with the corollary
3.1 of compact operators chapter.

Lemma 4.8. If H is not separable, then 0 ∈ σp (T ) = V P (T ) is an eigenvalue of T .

Proof. Since T is not separable, then Im (T ) 6= H, consequently, ker (T ) = Im (T )
⊥
6=

{0} . Therefore, there exists 0 6= e ∈ ker (T ) , T e = 0. which shows that 0 is an
eigenvalue of T .

Lemma 4.9. Let λ 6= 0, then, ker (T − λI) is of finite dimensional.
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Proof. Note that since T − λI is bounded, then ker (T − λI) is closed, therefore
ker (T − λI) is a Hilbert subspace of H. Suppose that dim (ker (T − λI)) =∞, then,
ker (T − λI) is an infinite Hilbert space. Consequencly, there exists an orthonormal
sequence {en} ⊂ ker (T − λI) . Note that en ∈ ker (T − λI) then Ten = λen, hence,
for any n 6= m,

‖λen − λem‖2 = 〈λen − λem, λen − λem〉 = 2λ2.

The sequence {λen} is not a Cauchy sequence, therefore is not convergent, and T is
not a compact operator, which is not true.

Theorem 4.5. For any λ 6= 0, Im (T − λI) is closed and

Im (T − λI) =
(
ker
(
T ∗ − λI

))⊥
.

Demonstration. Let {yn} be a sequence from Im (T − λI) that converges to y ∈ H
and let {xn} be the sequence given by yn = (T − λI)xn.
Since ker (T − λI) is closed, then H = ker (T − λI) ⊕ (ker (T − λI))⊥, then the or-
thogonal decomposition of xn with respect to ker (T − λI) is xn = un + vn where
un ∈ ker (T − λI) and vn ∈ (ker (T − λI))⊥ .

Our aim is to prove that {vn} is bounded.
Suppose that {vn} is not bounded, then, we can extract from (vn) a subsequence, which
we keep denoted by {vn} for simplicity, such that ‖vn‖ 6= 0 and lim

n−→∞
‖vn‖ =∞. Set

wn = vn/ ‖vn‖ , then {wn} ⊂ (ker (T − λI))⊥ and ‖wn‖ = 1, the sequence {wn} is
bounded and we have

(T − λI)wn = (T − λI)
xn
‖vn‖

=
yn
‖vn‖

.

Thus, lim
n−→∞

(T − λI)wn = lim
n−→∞

yn
‖vn‖

= 0.

Since T is compact, we can extract a subsequence {wnk
} such that {Twnk

} converges.
We infer then that

lim
n−→∞

wnk
=

1

λ

(
lim
n−→∞

(T − λI)wnk
− Twnk

)
=

1

λ
lim
n−→∞

Twnk

which shows that {wnk
} converges to w = lim

n−→∞
wnk

with ‖w‖ = 1.

Moreover, we have
(T − λI)w = lim

n−→∞
(T − λI)wnk

= 0

then, w ∈ ker (T − λI) . But {wnk
} ⊂ (ker (T − λI))⊥ and consequently

‖w − wnk
‖2 = 〈w − wnk

, w − wnk
〉 = 2,

which is in contraduction with lim
n−→∞

wnk
= w. Consequently {vn} must be bounded.

Recall that T is compact, then, we can suppose that {Tvnk
} converges. Therefore

lim
n−→∞

vnk
= lim

n−→∞

1

λ
(Tvnk

− (T − λI) vnk
) = lim

n−→∞

1

λ
(Tvnk

− ynk
)
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and hence {vnk
} converges to v.

We have
y = lim

n−→∞
(T − λI) vnk

= (T − λI) v

which shows that y ∈ Im (T − λI) and finally, Im (T − λI) is closed.

Corollary 4.3. If λ 6= 0, then

Im (T − λI) = ker
(
T ∗ − λI

)⊥
and

Im
(
T ∗ − λI

)
= ker (T − λI)⊥ .

Proof. It suffices to use the well known results : Im (A) = ker (A∗)⊥ and Im (A∗) =
ker (A)⊥ .

Lemma 4.10. Let T ∈ K (H) , then, ker (T − I) = {0} ⇐⇒ Im (T − I) = H.

Proof. Let’s prove that ker (T − I) = {0} =⇒ Im (T − I) = H. Suppose that
Im (T − I) 6= H.
Set H1 = Im (T − I)  H, then H1 is closed and the restriction of T on H1 is compact,
therefore H2 = (T − I)H1 is closed and furthermore T is injective and H2  H1.
By continuing the construction as above, we construct a decreasing sequence of closed
subspeces H1 ⊃ H2 · ·· ⊃ Hn.
From Riesz’s Lemma, there exists a sequencee {xn} xn ∈ Hn such that ‖xn‖ = 1 and

‖xn − y‖ >
1

2
, ∀y ∈ Hn+1.

For any n > m we have (Txn − xn)− (Txm − xm) + xn ∈ Hm, then

‖Txn − Txm‖ = ‖((Txn − xn)− (Txm − xm) + xn)− xm‖ >
1

2
,

which is absurd, since T is compact. Therefore Im (T − I) = H.
Next, let’s prove that Im (T − I) = H =⇒ ker (T − I) = {0} . Suppose that Im (T − I) =
H, then ker (T ∗ − I) = Im (T − I)⊥ = {0} . Since T ∗ is compact, we can apply the
first part of the proof on T ∗, we entail then that Im (T ∗ − I) = H and consequently,
ker (T − I) = {0} . The proof is completed.

Let’s admit without proof the followinf Lemma.

Lemma 4.11. Let {λn} ⊂ σ (T ) / {0} be a sequence of distinct elements such that
λn −→ λ. Then, λ = 0.

Theorem 4.6. Let H be an infinite dimensional Hilbert space and let T ∈ K (H),
then,

1) If λ ∈ σ (T ) \{0}, then λ ∈ σP (T ) = V P (T ) .
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2) The spectrum of T is either:

i) σ (T ) = {0} , or

ii) σ (T ) \ {0} is finite, or

iii) σ (T ) \ {0} is a convergent sequence to 0.

Demonstration. 1) If λ ∈ σ (T ) is not an eigenvalue, then ker (T − λI) = 0, and
from Lemma 4.10, Im (T − λI) = H. Consequently, T − λI is invertible, hence
λ ∈ ρ (T ) and this contradicts the fact that λ ∈ σ(T ).

2) For n ≥ 1, let En be given by

En = σ (T ) ∩
{
λ ∈ C; |λ| ≥ 1

n

}
.

En is a compact subset of σ (T ) . If En contains an infinity of distinct elements, we can
extract from En a convergent sequence to an element λ 6= 0 which contadicts the result
of Lemme 4.11. Therefore, En is either empty or finite. Since σ (T ) / {0} = ∪

n≥1
En

we can arrange the elements of σ (T ) / {0} in a decreasing sequence {|λn|} .
If σ (T ) / {0} is infinite, the sequence {|λn|} converges to 0.

4.3.1 Spectrum of compact self–adjoint operator

Corollary 4.4. If T is compact and σ (T ) = {0} then T = 0.

Proposition 4.1. Suppose that H is separable and let T ∈ K (H) be a compact
self–adjoint operator. Then, H admits a Hilbertian basis of eigenvectors of T.

Demonstration. Let σ (T ) / {0} = {λ1, λ2, · · ·, λn, ··}. Denote by λ0 = 0 and set
En = ker (T − λnI) . We have dimE0 ≤ ∞ and dimEn <∞ for all n ≥ 1.

1) The eigen spaces En are orthogonal anddisjoints of each others. Indeed, if
u ∈ En and v ∈ Em with n 6= m, we have Tu = λnu et Tv = λmv then

〈Tu, v〉 = λn 〈u, v〉 = 〈u, Tv〉 = λm 〈u, v〉

therefore 〈u, v〉 = 0.
2) Let F be the space generated by (En)n≥0 . Then, F is dense in H. Indeed, we

have T (F ) ⊂ F, further, if u ∈ F⊥ and v ∈ F we get

〈Tu, v〉 = 〈u, Tv〉 = 0.

Thus, T
(
F⊥
)
⊂ F⊥.

3) Let T0 be the restriction of T on F⊥, T0 is compact and self–adjoint. Moreover,
if λ ∈ σ (T0) / {0} then λ ∈ V P (T0) and there exists a sequence 0 6= u ∈ F⊥ such
that T0u = λu. Consequently, λ = λn for n ≥ 0 and therefore u ∈ En ∩ F⊥ = {0}
which is absurd. Thus, σ (T0) = {0} and T0 = 0. Consequently, F⊥ ⊂ kerT ⊂ F and
we get F⊥ = {0} which proves that F is dense in H.

4) The Hilbertian basis of H is the union of Hilbertian bases of En.



Chapter 5

Unbounde operators in Banach
spaces

5.1 Introduction

Let X be a Banach space. In general an operator T : X → X is not necessarly
defined on the whole space X but only on a subspace D(T ) called the domain of T .

Definition 5.1. Let D(T ) be a subspace of X. An unbounded operator T : D(T ) ⊂
X → X is a linear map T from D(T ) into X. D(T ) is the domai of T .
The operator T is said to be continuous (bounded), if there exists a positive constant
C such that

‖Tx‖ ≤ ‖x‖, ∀x ∈ D(T ).

Definition 5.2. The graph of the operator T is the set

G (T ) = {(x, y) ∈ X ×X : x ∈ D (T ) , y = Tx} .

Definition 5.3. The operator T : D(T ) ⊂ X → X is said to be closed if: for any
convergent sequence (xn) ⊂ D(T ) with xn → x, and Txn → y, we have x ∈ D (T )
and y = Tx.

Proposition 5.1 (Closed graph theorem). Let T : D(T ) ⊂ X → X be a linear
operator, if G (T ) is closed in X ×X then T is closed.

Proposition 5.2. Let X be a Banach space, and T : D (T ) ⊂ X → X be a bounded
linear operator, then T is closed.

Demonstration. Let (xn) ⊂ D(T ) with xn → x, and Txn → y. Since T is bounded,
then

y = lim
n→+∞

Txn = T ( lim
n→+∞

xn) = Tx.

Consequently, x ∈ D(T ) and y = Tx.

50
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Remark 5.1. Usually, D(T ) is endowed with the norm

‖x‖D(t) = ‖x‖X + ‖Tx‖X ,

called graph norm.
If D(T ) is equipped with the graph norm, then any linear operator is bounded,

‖Tx‖X ≤ ‖x‖X + ‖Tx‖X = ‖x‖D(t).

In what follows we suppose that D(T ) is endowed with the graph norm and the
operator T is closed.

Definition 5.4. The resolvent set of the operator T is set

ρ(T ) := {λ ∈ C : T − λI : D(T )→ X is bijective} .

For any λ ∈ ρ(T ), the inverse (T − λI)−1 is, by the closed graph theorem, a
bounded operator on X and is called the resolvent of T at λ and noted R (λ, T ) or
R (λ) if no confusion is feared.

Proposition 5.3. Let X be a Banach space, then
T is closed if and only if D(T ) is a Banach subspace of X ×X.

Lemma 5.1. For λ ∈ ρ(T ) we have

λR (λ, T ) = TR (λ, T )− I.

Demonstration.

T (T − λI)−1 = (T − λI + λI) (T − λI)−1

= (T − λI) (T − λI)−1 + λI (T − λI)−1

= I + λR (λ, T ) .

As a result we deduce that R (λ, T )T = TR (λ, T ) , because

R (λ, T )T = R (λ, T ) (T − λI + λI)

= I +R (λ, T ) (λI) = I + λR (λ, T ) .

Lemma 5.2. Let λ, µ ∈ ρ (T ) then R (λ, T ) and R (µ, T ) commute and

R (λ, T )−R (µ, T ) = (λ− µ)R (λ, T )R (µ, T ) .

Demonstration.

(λ− µ)R (µ, T )R (λ, T ) = R (µ, T ) (λI − µI)R (λ, T )

= R (µ, T ) [(T − µI)− (T − λI)]R (λ, T )

= [I −R (µ, T ) (T − λI)]R (λ, T )

= R (λ, T )−R (µ, T ) .
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Thus

R (µ, T )R (λ, T ) =
R (λ, T )−R (µ, T )

(λ− µ)

=
R (µ, T )−R (λ, T )

(µ− λ)

= R (λ, T )R (µ, T ) .

Definition 5.5. As for the case of bounded operators, the spectrum of the operator
T is the set

σ(T ) := C− ρ(T ) = {λ ∈ C; (T − λI) is not invertible} .

The set σ(T ) is divided on three parts:

1) Punctual spectrum

σP (T ) = {λ ∈ C; (T − λI) is not injective} .

2) Continuous spectrum

σC(T ) =

{
λ ∈ C; (T − λI) is injective,

Im(T − λI) 6= E and is dense in X

}
.

3) Residual spectrum

σR(T ) =

{
λ ∈ C; (T − λI) is injective,

Im(T − λI) 6= E and is not dense in X

}
.

Example 5.1. On X = C [0, 1] define T, S by Tf = Sf with domain

D (T ) = C1 [0, 1] and D (S) =
{
f ∈ C1 [0, 1] ; f (1) = 0

}
.

Then σ (T ) = C, because for all λ ∈ C, there exists f (x) = eλx such that

(T − λI) f (x) = 0.

σ (S) = Φ

because, for all f ∈ C [0, 1] ,

R (λ, S) f (x) = −
∫ 1

x

eλ(x−y)f (y) dy.

−S
∫ 1

x

eλ(x−y)f (y) dy = −λ
∫ 1

x

eλ(x−y)f (y) dy + f (x)

(S − λI)

∫ 1

0

eλ(x−y)f (y) dy = f (x) .
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University of El Oued

Faculty of Exact sciences 2021/2022
Department of Mathematics Master 1 Maths
Date: May 29th 2022 Duration: 1 Hour

Finish Exam on Spectrum Theory course

Exercise 1. (12 pts)
Let H be a complex Hilbert space and let A ∈ L (H) be a linear bounded operator.
Suppose that there exist two self–adjoint operators S, T such that A = S + iT.

1) Determine S and T in terms of A and A∗.

2) Prove that
AA∗ −A∗A = 2i(ST − TS).

3) Show that A is normal if and only if ST = TS.

3) Suppose that A is normal.

i) Compute AA∗ in term of S2 + T 2 and prove that :

A is invertible if and only if S2 + T 2 is invertible.

ii) Deduce that in this case (A normal) we have

A−1 = A∗(S2 + T 2)−1.

Exercise 2. (8 pts)

Let H be the Hilbert space H = L2([0, 1]) and define the operator T : H −→ H
by

T f(x) :=

∫ x

0

(x− t)f(t)dt.

i) Compute the integral

I =

∫ x

0

|x− t|2dt.

ii) Prove that T is continuous and ‖T‖ ≤ 1√
3
. (use Cauchy Shwarz).

iii) Let g ∈ L2([0, 1]) be given. Prove that the equation

f(x) = g(x) +

∫ x

0

(x− t)f(t)dt,

has a unique solution, and express the solution as a function on T and g.

iv) Deduce that 1 ∈ ρ(T ), the resolent set of T .
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University of El Oued

Faculty of Exact sciences 2021/2022
Department of Mathematics Master 1 Maths
Date: June 21st 2022 Duration: 1 Hour

Replay Exam on Spectrum Theory course

Exercise 1. (8 pts)
Let H be a complex Hilbert space and let T ∈ L (H) be a linear bounded operator.

a) Prove that x ∈ H, x 6= 0 is an eigenvector of T if and only if |〈Tx, x〉| =
‖Tx‖‖x‖.

b) Deduce that(
T has an eignenvalue λ,

with |λ| = ‖T ‖,

)
⇐⇒ ∃x 6= 0; ‖x‖ = 1 and |〈T x, x〉| = ‖T ‖

Note: Recall that (|〈y, x〉| = ‖y‖‖x‖)⇐⇒ (∃λ ∈ C; y = λx).

Exercise 2. (12 pts)
Let A : `2(R) −→ `2(R) be the operator defined by

A (x1, x2, x3, x4 · · · , ) = (0, 4x1, x2, 4x3, x4, · · · )

1) Prove that A is bounded and deduce that

‖A(xn)‖`2 ≤ 4‖(xn)‖`2 .

2) Calculate ‖Ax0‖ for x0 = (1, 0, 0, · · · ) and prove that ‖A‖ = 4.
3) Find A2 and calculate ‖A2‖. Then compare ‖A2‖ and ‖A‖2.
4) Determine A∗ the adjoint of A.
5) Is the operator A normal.
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