Forward Chaining Algorithm

knowledge base = {

goal =

update facts = list(facts)
agenda = list(facts)
while len(agenda) = @:
current fact = agenda.pop(0)
if current fact == goal:
print("Goal reached!")
break
elif current fact knowledge base:
new facts = knowledge base[current fact]
for x new facts
if x facts:
update facts.append(x)
agenda.append(x)
if goal update facts
print|(|"Goalnc

Define the knowledge base (rules and
knowledge base = {

'A': ['BY, 'C'],

'D': ['E'],

=4 (G

'G': ['H', 'I'],

W[,

T KT,

"F': ['L']
}

Define the initial facts
facts = ['A", 'D", 'G"]

Define the goal
goal = 'L’

facts)

Implement the forward chaining algorithm

update facts = list(facts)
agenda = list(facts)
while len(agenda) = 0:

current _fact = agenda.pop(@)

if current fact == goal:
print("Goal reached!")
break

elif current fact in knowledge base:

new facts =
for x in new facts :
if ® not in facts:
update facts.append(x)
agenda.append(x)
if goal not in update facts:
print("Goalnot reached!")

knowledge base[current fact]

Backward Chaining Algorithm

'B

goal

backward chaining(kb, goal, facts):
if goal facts:
return
for fact facts:
if fact kb:
for rule kb[fact]:
if backward chaining(kb, rule, facts):

return

if backward chaining(knowledge base, goal, set(['A', 'D', 'G"'])):
print("Goal reached!")

print("Goal no

T,

kward chaining(kb, goal, facts):
- goal facts:
return
r rule F
if rule[l] == goal:
if all(backward chaining(kb, premise, facts) for premise in rule[8]):

result = backward chaining(knowledge base, goal, set(['A
print(result)

Define the knowledge base (rules and facts)
knowledge base = [

(['A"], 'B"),
(['A', 'C'], 'D*),
(['B'1., 'E"),
(['o', 'E*1l, 'F'),
(['F'1, 'G")

]

Define the goal
goal = 'G'

Implement the backward chaining algorithm
def backward chaining(kb, goal, facts):
if goal in facts:
return True
for rule in kb:
if rule[1l] == goal:
if all(backward chaining(kb, premise, facts) for premise in rule[@e]):
return True
return False

Test the algorithm
result = backward chaining(knowledge base, goal, set(['A', 'C']))
print(result)

