Python

Department of Computer Science
University of El-oued

3-Mar-23

Introduction

= Most recent popular
(scripting/extension) language
= although origin ~1991

= heritage: teaching language (ABC)

= object-oriented

3-Mar-23

Python philosophy

= Coherence
= not hard to read, write and maintain

= power

3-Mar-23

Python features

Lutz, Programming Python

no type declarations

simpler, shorter, more flexible

automatic memory management

garbage collection

high-level data types and
operations

fast development

object-oriented programming

code structuring and reuse, C++

classes, modules, exceptions

"programming-in-the-large"
support

dynamic loading of C modules

simplified extensions, smaller
binaries

3-Mar-23

Python features

Lutz, Programming Python

interactive, dynamic nature incremental development and
testing

access to interpreter information metaprogramming, introspective
objects

compilation to portable byte-code | execution speed, protecting source
code

3-Mar-23

Python

= elements from C++, Modula-3
(modules), ABC

= same family as Perl, Tcl, Scheme, REXX,
BASIC dialects

3-Mar-23

Uses of Python

= shell tools
= system admin tools, command line programs

= rapid prototyping and development
= graphical user interfaces

= database access

= distributed programming

= Internet scripting

3-Mar-23

Python structure

= modules: Python source files or C extensions
= import, top-level via from, reload

= statements

= control flow

= create objects

= jndentation matters — instead of {}
= objects

= everything is an object

3-Mar-23

Basic operations

= Assignment:
= s7ze = 40
ma=b =c=73
= Numbers
= integer, float
= complex numbers: 1j+3, abs(z)
= Strings
= 'hello world', '1t\'s hot'
= "bye world"

3-Mar-23

String operations

= concatenate with + or neighbors
=word = 'Help' + X

= word = 'Help' 'a
= subscripting of strings

= '"Hello'[2] = 'I'

= glice: "Hello'[1:2] = ‘el

= word[-1] - last character

= Jlen(word) =2 5

3-Mar-23

Lists

= lists can be heterogeneous

= a = ['spam', 'eggs', 100, 1234, 2*2]
= Lists can be indexed and sliced:

= a[0] = spam

= a[:2] = ['spam’, 'eggs']
= Lists can be manipulated

= a[2] = a[2] + 23

= 2[0:2] = [1,12]

= a[0:0] = []

= len(a) 25

3-Mar-23

Basic programming

a,b =0, 1
non-zero = true
while b < 10:
formatted output, without \n
print (b)
multiple assignment
a,b = b, a+b

3-Mar-23

Control flow: if

X = 1nt(raw_input("Please enter #:"))
1f x < O:

Xx =0

print ('Negative changed to zero')
elif x ==

print ('Zero')
el1f x ==

print ('Single’)
else:

print ('More')
= no case statement

3-Mar-23

Control flow: for

a =["'cat', "window', 'defenestrate']
for x 1n a:
print (x, len(x))

= no arithmetic progression, but
= range(10) - [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
= for 1 in range(len(a)):
print (1, a[1])
= do not modify the sequence being iterated
over

3-Mar-23

Loops: break, continue, else

* break and continue like C

= e|se after loop exhaustion
for n in range(2,10):
for x in range(2,n):
if n % x ==
print (n, 'equals', x, '"*', n/x)
break
else:
loop fell through without finding a factor
print (n, "1s prime*‘)

3-Mar-23

Defining functions

def fib(n):
"""Print a Fibonacci series up to n."""
a, b =0, 1
while b < n:
print (b)
a, b =0Db, a+b

>>> fib(2000)

= First line is docstring
= first look for variables in local, then global
= need global to assign global variables

3-Mar-23

Lambda forms

= anonymous functions

= may not work in older versions
def make_incrementor(n):
return lambda x: X + n

f = make_incrementor(42)
(0)
(1)

3-Mar-23

List methods

= append(x)
= extend(L)
= append all items in list (like Tcl lappend)
* insert(7,x)
= remove (x)

= pop(CLi]l), popQ)
= create stack (FIFO), or queue (LIFO) = pop(0)

» 1ndex(x)
= return the index for value x

3-Mar-23

List methods

= count(x)

= how many times x appears in list
= sort()

= sort items in place
= reverse()

= reverse list

3-Mar-23

Functional programming tools

» f1lter(function, sequence)
def f(x): return x%2 !'= 0 and x%3 ==
filter(f, range(2,25))

» map(function, sequence)
= call function for each item
= return list of return values

» reduce(function, sequence)
= return a single value
= call binary function on the first two items
= then on the result and next item
= jterate

3-Mar-23

List comprehensions (2.0)

= Create lists without map (),
filter(), Tlambda

= = expression followed by for clause +
zero or more for or of clauses

>>> vec = [2,4,6]

>>> [3*x for x 1n vec]

[6, 12, 18]

>>> [{x: x**2} for x 1n vec]

[{2: 4}, {4: 16}, {6: 36}]

3-Mar-23

List comprehensions

= cross products:
>>> vecl = [2,4,6]

>>> vec2 = [4,3,-9]

>>> [x*y for x 1n vecl for y 1n vec2]
[8,6,-18, 16,12,-36, 24,18,-54]

>>> [x+y for x 1n vecl for y 1n vec2]
[6,5,-7,8,7,-5,10,9,-3]

>>> [vecl[i1]*vec2[i1] for 1 1in
range(len(vecl))]

[8,12,-54]
>>> [x * y for (x,y) 1n zip(vecl,vec?2)]

3-Mar-23

List comprehensions

= can also use 1°:

>>> [3*X for x 1n vec 1f x > 3]
[12, 18]

>>> [3*Xx for x 1n vec 1f x < 2]

]

3-Mar-23

del - removing list items

= remove by index, not value

= remove slices from list (rather than by
assigning an empty list)

>>a = [-1,1,66.6,333,333,1234.5]

>>> del al[0]

>>> d

[1,66.6,333,333,1234.5]

>>> del a[2:4]

>>> a
[1,66.6,1234.5]

3-Mar-23

Tuples and sequences

= |ists, strings, tuples: examples of
seqguence type

= tuple = values separated by commas

>> t = 123, 543, 'cat'

>>> t[0]

123

>>> T

(123, 543, 'cat')

3-Mar-23

Tuples

= Tuples may be nested

>> u = t, (1,2)

>>> U

((123, 542, ‘cat’), (1,2))

= kind of like structs, but no element names:

= (X,y) coordinates
= database records

= like strings, immutable - can't assign to
individual items

3-Mar-23

Tuples

= Empty tuples: ()
>>> empty = ()
>>> len(empty)
0

= one item - trailing comma
>>> singleton = 'foo',

3-Mar-23

Tuples

= sequence unpacking - distribute
elements across variables

>>> t = 123, 543, 'cat'

>>> X, Y, 2z =1

>>> X

123

= packing always creates tuple

= unpacking works for any sequence

3-Mar-23

Dictionaries

= |ike Tcl or awk associative arrays
= indexed by keys
= Keys are any immutable type: e.qg., tuples
= but not lists (mutable!)

= uses 'key: value' notation
= {'hgs' : 7042,

>>> te]
>>> te

>>> te

3-Mar-23

['cs']

= 7000

"Tlennox':

7018}

Dictionaries

= no particular order

= delete elements with del
>>> del tel['foo']

= keys() method - unsorted list of keys

>>> tel.keys()
['cs', '"lennox', 'hgs']

3-Mar-23

Conditions

= chained comparisons: a less than b AND b
equals c:
a<b==c

= and and or are short-circuit operators:
= evaluated from left to right
= stop evaluation as soon as outcome clear

3-Mar-23

Conditions

= Can assign comparison to variable:
>>> sl,s2,s3="", 'foo', 'cat'
>>> non_nhull = sl or s2 or s3
>>> non_nul |
foo

= Unlike C, no assignment within
expression

3-Mar-23

Comparing sequences

= unlike C, can compare sequences (lists,
tuples, ...)
= |exicographical comparison:
= compare first; if different > outcome
= strings use ASCII comparison

= can compare objects of different type, but
by type name (list < string < tuple)

3-Mar-23

Comparing sequences

(1,2,3) < (1,2,4)

[1,2,3] < [1,2,4]

'ABC' < 'C' < 'Pascal' < 'Python’
(1,2,3) == (1.0,2.0,3.0)

(1,2) < (1,2,-1)

3-Mar-23

Modules

= collection of functions and variables,
typically in scripts

= definitions can be imported

= file name is module name + .py

= e.g., create module f1bo.py

def fib(n): # write Fib. series up to n

def fib2(n): # return Fib. series up to n

3-Mar-23

Modules

= import module:
import fibo

= Use modules via "name space”:
>>> T1bo.T1b(1000)
>>> T1bo.__name__
"fibo’

= can give it a local name:
>>> fi1ib = fibo.f1b
>>> fi1b(500)

3-Mar-23

Modules

= function definition + executable statements
= executed only when module is imported

= modules have private symbol tables

= avoids name clash for global variables

= can import into name space:
>>> from fibo import fib, fib2
>>> f1b(500)

= can import all names defined by module:
>>> from fibo import *

3-Mar-23

Module listing

= use dir() for each module
>>> dir(fibo)
[’ name ' 'fib!, 'fib2']

3-Mar-23

Exercice et Solution

= Implémentez une fonction

trier(classeur, valeur) qui place une

valeur dans un dictionnaire en fonction de
son signe

= classeur = {'négatifs':[], 'positifs':[] }

= def trier(classeur, valeur):
return classeur

3-Mar-23

SOLUTION

= def trier(classeur, valeur):

1f valeur >=0:
classeur['positifs'].append(valeur)

else:
classeur['négatifs'].append(valeur)
return classeur

= trier(classeur, 9)

3-Mar-23

