Aérodynamique

I Résultante et Moment

1-1 Trièdres de référence

L'aérodynamique est la science qui s'intéresse aux écoulements autour d'un objet. Cet objet est appelé mobile quand il se déplace dans un fluide au repos ou maquette lorsqu'il est fixe et le fluide est en mouvement. En aérodynamique, nous utilisons essentiellement deux repères : un lié au mobile ou à la maquette, l'autre lié à la vitesse de l'écoulement.

Par définition :

- Trièdre lié à l'avion (Norme X02-105 décembre 49) : O est dans le plan de symétrie Ox_{1} dirigé vers l'avant parallèle à l'axe de référence, Oy_{1} perpendiculaire au plan de symétrie, dirigé à droite, Oz_{1} perpendiculaire au plan $\mathrm{Ox}_{1} \mathrm{y}_{1}$ vers le bas.
- Trièdre lié à la vitesse : Ox direction et sens de la vitesse, , Oz perpendiculaire au plan $O x y_{1}$ vers le bas, Oy perpendiculaire au plan $O x z$ vers la droite.

C'est ce dernier trièdre que l'on utilise pour projeter la résultante des forces aérodynamiques car il sépare la composante dissipative des deux autres conservatives. En effet, la puissance dissipée P par les forces aérodynamiques \vec{R} est le produit scalaire : $P=\vec{R} \cdot \vec{C}=R x . C$ où C est le module de la vitesse \vec{C}

I-2 Composantes de la résultante et du moment des forces aérodynamiques

Comme nous venons de le dire, nous utilisons le trièdre Oxy lié à la vitesse pour projeter la résultante :

- La traînée : $R x$ est la projection de \vec{R} sur Ox
- La dérive : Ry est la projection de \vec{R} sur Oy
- La portance: $R z$ est la projection de \vec{R} sur Oz

Nous utilisons $\mathrm{Ox}_{1} \mathrm{y}_{1} \mathrm{z}_{1}$ pour les composantes du moment :

- Le roulis $M x_{1}$ est la composante de \vec{M} sur Ox_{1}
- Le tangage $M y_{1}$ est la composante de \vec{M} sur Oy_{1}
- Le lacet $M z_{1}$ est la composante de \vec{M} sur Oz_{1}

L'analyse dimensionnelle montre que les composantes de la résultante peuvent s'écrire : $R_{i}=\frac{1}{2} \rho C_{i} S C^{2}$ et les moments : $M_{i}=\frac{1}{2} \rho C m_{i} S l C^{2}$ où C_{i} et $C m_{i}$ sont des coefficients adimensionnels.

Démonstration : $R_{i} \equiv M L T^{-2}, C^{2} \equiv L^{2} T^{-2}, S \equiv L^{2}, \rho \equiv M L^{-3}, M_{i} \equiv M L^{2} T^{-2}$
Donc : $\rho C^{2} S \equiv M L^{-3} L^{2} T^{-2} L^{2} \equiv M L T^{-2} \equiv R_{i}$
Et : $\quad \rho S l C^{2} \equiv M L^{-3} L^{2} L L^{2} T^{-2} \equiv M L^{2} T^{-2} \equiv M_{i}$

Ils portent le nom de la composante (exemple $C x$ est le coefficient de traînée) et ne dépendent que du nombre de Reynolds Re et du nombre de Mach M. S est une surface de référence. On verra que l'on utilise soit, pour les surfaces portantes, «la surface alaire» (alaire veut dire «des ailes») soit pour les corps dont la surface frontale est du même ordre que la surface portante (fuselages, carrosseries d'automobiles, carènes de sous marins...) le «maître couple». C'est, comme son nom l'indique, la plus grande section transversale.

I-3 Définitions géométriques

a) le profil

On appelle :
-i : angle d'incidence, v_{A} : angle d'attaque, v_{F} : angle de fuite

- e/l est l'épaisseur relative et f/l la courbure relative

