Query execution

Cost estimation

Source: https://cs186berkeley.net/

Introduction (recall)

Parsing & Optimization: Parse and check SQL and translate
into an efficient relational query plan

Query Parsing & Optimization

Relational Operators

Relational Operators; Execute query
by operating on records and files

Files and Index Management
Organize tables and Records as
groups of pages in logical (in buffer memory) file

Buffer Management: provide the Disk Space Management:
illusion of operating in memory
Purpose

Page Page Page
1 2 3 e Map pages to locations on disk

e Load pages from disk to memory
e Save pages back to disk &
ensuring writes

Disk Space Management Block Block Block
| 1 2 3 e Read/write a page
/’ e Allocate/de-allocate logical
oS pages

Higher levels call upon this layer to:

Heap Files: is a physical layer for data storage ifa table, it is structured as
unordered collection of records (tuples)

To access a heap file for querying or managing data, API for higher layers of the
DBMS: can only READ and WRITE pages.

Clustered Heap Files: Records and pages are grouped in some meaningful way
Sorted Files: Pages and records are in strict sorted order

Index Files: contain pointer to records in other files

Question of this course: “How? At what cost?” to:

e Insert/delete/modify record
e Fetch a particular record

e Scan all records
o Possibly with some conditions on the records to be retrieved

Heap Files & Sorted Files

Heap File

9 KD £ B0 I

Sorted File

15 B 0 [0 00

For illustration, records are just integers

B: Number of data blocks = 5
R: Number of records per block = 2

D: (Average) time to read/write disk block =
soms

Cost of Operations: Scan?

Heap File Sorted File
Scan all tuples (records) B*D B*D
Equality search 2B*D (Log,B)*D
Range search B*D ((Log, B)+#pages) * D
Insert 2*D ((log2 B)+B)*D
Delete (B/2+1)*D (log2B)+B)*D

B: Number of data blocks (pages) =5
R: Number of records per block (page) = 2

D: (Average) time to read/write disk block (page) = 5ms

Heap File

Assume for equality selection => exactly one match

Find the tuple having the key 8 in a heap file

e P(i): Probability that key is on page i is 1/B
e T(i): Number of pages touched if the selected key is in page |

Therefore the expected number of pages touched is:

[for i from 1 to B] (cost of reading page i) * (prob that key is on page i)

EB:T@)P(@ :iz’l ik T

B 2B 2

Sorted File

55 EJE 3 D0

Find the tuple having the key 8 in a sorted file

The used method for searching the page containing the searched tuple is binary
search

Similar to binary search in an array but here each access is a page read

Pages touched in binary search Log,(B) (worst case = average case)

Range Search

Find tuples their values Between 7 and 9: Heap File
Always touch all blocks. Why?

=> to get all tuples that belongs to the range (for real number, strings or integers with
duplicates in the searched value)

Find Records Between 7 and 9: sorted file

e Find beginning of range
e Scan right or left page after page until the end of the range

Cost = Log2(B) + #pages containing the range

Insertion

Assuming Single record for insert Heap File

e Stick at end of file

e Cost=2"D (read last page, append,
Insert 4.5: Sorted File
Find location for record. Cost = (log2B) *
Insert and shift rest of file. Average cost=(B/2)*2*D=B*D
Total: find cost + insert and shift cost = (log2B) *D + B * D = ((log2B) + B) * D

Deletion

Heap file
e Find the record: average case to find the record: B/2 reads
e Delete the record from the found page page
e \Write the page
e Cost=(B/2+1)*D (why +1? =>for W)
Sorted File
e Find location for record. Cost = log2B
e Delete record in page a Gap
e Read the rest into memory, shift by 1 record, and write back: 2 * (B/2) = B
e Total: find cost + delete and shift cost = (log2B) *D + B * D = ((log2 B) + B) * D

Can we do better?

* Indexes!

Index

An index is data structure that enables fast lookup and modification of data
entries by search key

e Lookup: may support many different operations; Equality, 1-d range, 2-d

region, ...
e Search Key: any subset of columns in the relation

o Do not need to be unique
o e.g., (firsthame) or (firsthame, lastname)

e Data Entries: items stored in the index

o Contain a way access a record: a pair (key recordid) ...
m Pointers to records in Heap Files; assume a pair (key, recordid)

Many Types of indexes exist: B+-Tree, Hash, R-Tree, GiST, .

(20, Tim) (7, Dan) (5,Kay) (3, Jim) (27, Joe) (34, Kit) (1, Kim) (42, Hal)

Dynamic Tree Index

 Always Balanced

» High fanout

» Support efficient insertion & deletion

» Grows at root not leaves!

 “+"? B-tree that stores data entries in leaves only

* Helps with range search

means that

All tuples in range

KL <=K< Kgrareintree P, |5

Example of a B+ Tree

Key = Pointer to record

EERN HEEN SN GEER el sEEa

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Property 1: Nodes in a B+ tree must obey an occupancy invariant

e Guarantees that lookup costs are bounded
e Invariant: each interior node is full beyond a certain minimum: typically, at

least half full

o This minimum, d, is called the order of the tree
o Guarantee: d <= # entries <= 2d. Eg d=2, 2 <= # entries <=4

e Root doesn’t need to obey this invariant
Property 2: Leaves need not be stored in sorted order

e Next and prev. pointers help examining them in sequence

B+ Trees and Scale

Key = Pointer to record

How many records can this height 1 B+ tree index?

e Max entries = 4; Fan-out (# of pointers) =5
e Height 1: 5 (pointers from root) x 4 (slots in leaves) = 20 Records

B+ Trees and Scale

How many records can this height 3 B+ tree index?

e Fan-out = 5; Max entries =4
e Height 3: 5 (root) x 5 (level 2) x 5 (level 3) x 4 (leaves) = 5% x 4 = 500 Records

B+ Trees in Practice

« Say 128KB pages, with around 40B per (val, ptr) pair

« Max entries = roughly 128KB/40B = approx. 3000 2000 2000
* Max fanout = 3000+1 = approx. 3000 2000
« Say 2/3 are filled on average 2000

* Average fan-out/entries = approx. 2000 2000

« At these capacities

« Height 1: 2000 (pointers from root) x 2000 (entries per leaf) = 20002 = 4,000,000

» Height 2: 2000 (pointers from root) x 2000 (pointers from level 2) x 2000 (entries
per leaf) = 2000° = 8,000,000,000 records!!

« Core takeaway: Even depths of 3 allow us to index a massive # of records!

Searching the B+ Tree

Find key = 27 (7 i~i_ i i

» Find split on each 20511885 i 8 Q)
node (Binary Search)

“Folowporterto rext (T YT JEde] [JEPL JEEFLEEE
node /
Page 2 Page 3 Page 5 Page 7 Page 9

Page 1 Page 2 Page3 Page 4

(5, Kay) 3, Jim) (27, Joe) (34, Kit) (1, Kim) (42, Hal)

Searching the B+ Tree

Find keys >=27

. Page 1
* Find 27 first, then
traverse leaves following
“next” pointers in leaf

124 130/}

» This is an example of a
range scan: find all
values in [a, b]

CEENE GEGE RN CEEN DSl SRR

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

 Benefit: no need to go
back up the tree! Saves
l/Os

L EVA-BYY-ET Y-

Insertion into a B+ Tree
Inserting 26*

* Find the correct leaf

[l | Qolo] | Qufes] [fssl]s

93 11978124 830 |

e |f there is a room in the
leaf, just add the entry

 Sort the leaf page by key s s [el T m@.. ﬁ ﬁﬁﬁﬁ

L EVA-BYY-ENY-

I | 5 5 5 6 E R

84(-

Root Node Root Node Jo
0
g

o BN R e 19'| 20° 2 |27 | 29" r|zys|r !1 ‘|16 !!19“ 20°

\\-4 M M |\

Root Node Jo
Root Node 7

r 14| 16" 19°| 20° 0y

\ > 13 s |77 | & 147) 16° 191 20°

5) No room in parent, create new indew node

B ARA 13 R ia7 1o N izg

CEEE CHGHE CEEE CEEE S5

| |

.’.sj..13.

CEENE VEEN CENE CCRE SN B0

Sorting

Algorithms and Costs

Why Sort?

e Eliminating duplicates (DISTINCT)
e Grouping for summarization (GROUP BY)
e Upcoming sort-merge join algorithm

o Explicitly requested: ordering

o For ordered outputs (ORDER BY)

o First step in bulk-loading tree indexes

Problem: sort 100GB of data with 8 GB of RAM.

o why not virtual memory?

e Two themes
1. Single-pass streaming data through RAM
2. Divide (into RAM-sized chunks) and Conquer

Sorting: Two-Way
e Pass 0 (conquer a batch): @

read a page, sort it, write it. e

only one buffer page is used \»M
a repeated “batch job”
results in N sorted blocks

e Pass 1,23, ..., etc. (merge via streaming):
o requires 3 buffer pages
o merge pairs of runs into runs twice as long
o a streaming algorithm
m Drain/fill buffers as the data streams through them

O O O O

RAM

Output Input Buffer

Input Buffer

Two-Way External Merge Sort

34 [6.2] [94] [87] [56] [34] [2 ! Input file
2 E 24 bs E L|'_|J B s * Conquerand Merge
3.4| |2 4.9 1-page runs .
e e 1 o sort subfiles and merge
23 ;; ;Z E 2-page runs e Each pass we read + write each
4,6 3 3 . .
~— . PASS 2 page in file (2N)
2.3 mr e N pages in the file.
_;E 3.5 el o So, the number of passes is:
89 (Log, N) + 1
T FASSS e So total cost is: 2N((Log2 N) + 1)
1,2
2,3
3,4 8-page runs
4,5
6,6
7,8
9

General External Merge Sort

We got more than 3 buffer pages. How can we utilize them?
Big batches in pass 0, many streams in merge passes

e To sort a file with N pages using B buffer pages:
o Pass 0: use B buffer pages. Produce (N/B) sorted runs of B pages each.

o Pass1,?2, ..., etc.. merge B-1 runs at a time.
Pass 0 Pass 1, ...
P o N
\-/ _/
_/ \\/
Conquer Sorted Runs Merge Sorted Runs

length B (last run’s length is variable) Length B(B-1) (last run’s length is variable)

Cost of External Merge Sort

Number of passes: 1+(Log ,(N/B))

Total I/Os = (I/Os per pass) * (# of passes) = 2*N*1+(Log, ,(N/B))

E.g., with 5 buffer pages, to sort 108 page file:

Pass 0: 108/5 = 22 sorted runs of 5 pages each (last run is only 3 pages).
Pass 1: 22/4 = 6 sorted runs of 20 pages each (last run is only 8 pages)
Pass 2: 6/4=2 sorted runs, 80 pages and 28 pages

Pass 3: Sorted file of 108 pages

Formula check: 1+ log, 22 = 1+3 => 4 passes \

of Passes of External Sort

(Total I/O is 2N * # of passes)

N B=3 |B=5 (B=9 |B=17|B=129|B=257
100 ¥ -4 3 2 1 1
1,000 10 |5 -4 3 2 2
10,000 13 |'7Z 5 4 2 2
100,000 17 | 9 6 5 B 3
1,000,000 20 | 10 7 5 3 3
10,000,000 23 | 12 8 6 4 5
100,000,000 | 26 | 14 9 7% 4 4
1,000,000,000| 30 | 15 10 8 5 4

Few runs can already sort large amounts of datal

Memory Requirement for External Sorting

How big of a table can we sort in exactly two passes?

e Each “sorted run” after Phase 0 is of size B
e Can merge up to B-1 sorted runs in Phase 1

nswer: B(B-1) ~ B2 data in two passes, using size B space

Sort X amount of data in about B =\x buffer space (if we run only 2 passes)

