
Query execution

Cost estimation

Source: https://cs186berkeley.net/

Introduction (recall)

Parsing & Optimization: Parse and check SQL and translate
into an efficient relational query plan

Relational Operators; Execute query plan
 by operating on records and files

Files and Index Management
Organize tables and Records as
groups of pages in logical (in buffer memory) file

Buffer Management: provide the
illusion of operating in memory

Disk Space Management:

Purpose

● Map pages to locations on disk
● Load pages from disk to memory
● Save pages back to disk &

ensuring writes

Higher levels call upon this layer to:

● Read/write a page
● Allocate/de-allocate logical

pages

Heap Files: is a physical layer for data storage ifa table, it is structured as
unordered collection of records (tuples)

To access a heap file for querying or managing data, API for higher layers of the
DBMS: can only READ and WRITE pages.

Clustered Heap Files: Records and pages are grouped in some meaningful way

Sorted Files: Pages and records are in strict sorted order

Index Files: contain pointer to records in other files

Question of this course: “How? At what cost?” to:

● Insert/delete/modify record
● Fetch a particular record
● Scan all records

○ Possibly with some conditions on the records to be retrieved

Heap Files & Sorted Files

B: Number of data blocks = 5

R: Number of records per block = 2

D: (Average) time to read/write disk block =
5ms

Cost of Operations: Scan?

Heap File Sorted File

Scan all tuples (records) B * D B * D

Equality search ½ B * D (Log2 B) * D

Range search B * D ((Log2 B)+#pages) * D

Insert 2 * D ((log2 B)+B)*D

Delete (B/2 + 1) * D ((log2 B) + B) * D

B: Number of data blocks (pages) = 5

R: Number of records per block (page) = 2

D: (Average) time to read/write disk block (page) = 5ms

Equality selection

Assume for equality selection => exactly one match

Find the tuple having the key 8 in a heap file

● P(i): Probability that key is on page i is 1/B
● T(i): Number of pages touched if the selected key is in page i

Therefore the expected number of pages touched is:

[for i from 1 to B] (cost of reading page i) * (prob that key is on page i)

Find the tuple having the key 8 in a sorted file

The used method for searching the page containing the searched tuple is binary
search

Similar to binary search in an array but here each access is a page read

Pages touched in binary search Log2(B) (worst case ≈ average case)

Range Search

Find tuples their values Between 7 and 9: Heap File

Always touch all blocks. Why?

=> to get all tuples that belongs to the range (for real number, strings or integers with
duplicates in the searched value)

Find Records Between 7 and 9: sorted file

● Find beginning of range
● Scan right or left page after page until the end of the range

Cost = Log2(B) + #pages containing the range

Insertion

Assuming Single record for insert

Ex. Insert 4.5: Heap File

● Stick at end of file
● Cost = 2*D (read last page, append,

write the page)

Insert 4.5: Sorted File

Find location for record. Cost = (log2B) * D

Insert and shift rest of file. Average cost = (B/2) * 2 * D = B * D

Total: find cost + insert and shift cost = (log2B) * D + B * D = ((log2B) + B) * D

Deletion

Heap file

● Find the record: average case to find the record: B/2 reads
● Delete the record from the found page page
● Write the page
● Cost = (B/2 + 1) * D (why +1? => for W)

Sorted File

● Find location for record. Cost = log2B
● Delete record in page à Gap
● Read the rest into memory, shift by 1 record, and write back: 2 * (B/2) = B
● Total: find cost + delete and shift cost = (log2B) * D + B * D = ((log2 B) + B) * D

Can we do better?

• Indexes!

Index

An index is data structure that enables fast lookup and modification of data
entries by search key

● Lookup: may support many different operations; Equality, 1-d range, 2-d
region, …

● Search Key: any subset of columns in the relation
○ Do not need to be unique
○ e.g., (firstname) or (firstname, lastname)

● Data Entries: items stored in the index
○ Contain a way access a record: a pair (key recordId) …

■ Pointers to records in Heap Files; assume a pair (key, recordId)

Many Types of indexes exist: B+-Tree, Hash, R-Tree, GiST, .

Assumptions

Dynamic Tree Index

• Always Balanced

• High fanout

• Support efficient insertion & deletion

• Grows at root not leaves!

• “+”? B-tree that stores data entries in leaves only

• Helps with range search

Example of a B+ Tree

Property 1: Nodes in a B+ tree must obey an occupancy invariant

● Guarantees that lookup costs are bounded
● Invariant: each interior node is full beyond a certain minimum: typically, at

least half full
○ This minimum, d, is called the order of the tree
○ Guarantee: d <= # entries <= 2d. Eg d=2, 2 <= # entries <= 4

● Root doesn’t need to obey this invariant

Property 2: Leaves need not be stored in sorted order

● Next and prev. pointers help examining them in sequence

B+ Trees and Scale

How many records can this height 1 B+ tree index?

● Max entries = 4; Fan-out (# of pointers) = 5
● Height 1: 5 (pointers from root) x 4 (slots in leaves) = 20 Records

B+ Trees and Scale

How many records can this height 3 B+ tree index?

● Fan-out = 5; Max entries = 4
● Height 3: 5 (root) x 5 (level 2) x 5 (level 3) x 4 (leaves) = 53 x 4 = 500 Records

B+ Trees in Practice

Searching the B+ Tree

Find key = 27

• Find split on each
node (Binary Search)

• Follow pointer to next
node

Searching the B+ Tree

Find keys >=27

• Find 27 first, then
traverse leaves following
“next” pointers in leaf

• This is an example of a
range scan: find all
values in [a, b]

• Benefit: no need to go
back up the tree! Saves
I/Os

Insertion into a B+ Tree
Inserting 26*

• Find the correct leaf

• If there is a room in the
leaf, just add the entry

• Sort the leaf page by key

2) if there is no enough room, create
new leaf1) Find the correct leaf

3 Split the leaf and redistribute entries
evenly

4) Fix next/prev leaf pointers

5) No room in parent, create new indew node

Sorting
Algorithms and Costs

Why Sort?

● Eliminating duplicates (DISTINCT)
● Grouping for summarization (GROUP BY)
● Upcoming sort-merge join algorithm

○ Explicitly requested: ordering
○ For ordered outputs (ORDER BY)
○ First step in bulk-loading tree indexes

Problem: sort 100GB of data with 8GB of RAM.

○ why not virtual memory?
● Two themes

1. Single-pass streaming data through RAM
2. Divide (into RAM-sized chunks) and Conquer

● Pass 0 (conquer a batch):
○ read a page, sort it, write it.
○ only one buffer page is used
○ a repeated “batch job”
○ results in N sorted blocks

● Pass 1, 2, 3, …, etc. (merge via streaming):
○ requires 3 buffer pages
○ merge pairs of runs into runs twice as long
○ a streaming algorithm

■ Drain/fill buffers as the data streams through them

Sorting: Two-Way

Two-Way External Merge Sort

● Conquer and Merge:
○ sort subfiles and merge

● Each pass we read + write each
page in file (2N)

● N pages in the file.
○ So, the number of passes is:

(Log2 N) + 1
● So total cost is: 2N((Log2 N) + 1)

General External Merge Sort

We got more than 3 buffer pages. How can we utilize them?

Big batches in pass 0, many streams in merge passes

● To sort a file with N pages using B buffer pages:
○ Pass 0: use B buffer pages. Produce (N/B) sorted runs of B pages each.
○ Pass 1, 2, …, etc.: merge B-1 runs at a time.

Cost of External Merge Sort

Number of passes: 1+(LogB-1(N/B))

Total I/Os = (I/Os per pass) * (# of passes) = 2*N*1+(LogB-1(N/B))

E.g., with 5 buffer pages, to sort 108 page file:

Pass 0: 108/5 = 22 sorted runs of 5 pages each (last run is only 3 pages).

Pass 1: 22/4 = 6 sorted runs of 20 pages each (last run is only 8 pages)

Pass 2: 6/4=2 sorted runs, 80 pages and 28 pages

Pass 3: Sorted file of 108 pages

Formula check: 1+ log4 22 = 1+3 => 4 passes √

of Passes of External Sort
(Total I/O is 2N * # of passes)

Few runs can already sort large amounts of data!

Memory Requirement for External Sorting

How big of a table can we sort in exactly two passes?

● Each “sorted run” after Phase 0 is of size B
● Can merge up to B-1 sorted runs in Phase 1

nswer: B(B-1) ~ B2 data in two passes, using size B space

Sort X amount of data in about B =√x buffer space (if we run only 2 passes)

