
Query execution stages

Case of PostgreSQL

Source: https://postgrespro.com

Parsing

First, the query text is parsed, so that the server understands exactly what needs to be done.

Lexer and parser. The lexer is responsible for recognizing lexemes in the query string (such as SQL
keywords, string and numeric literals, etc.), and

the parser makes sure that the resulting set of lexemes is grammatically valid. The parser and lexer are
implemented using the standard tools Bison and Flex.

The parsed query is represented as an abstract syntax tree.

A tree will be built in backend memory. The figure below shows the tree in a highly simplified form. The
nodes of the tree are labeled with the corresponding parts of the query.

RTE istands for "Range Table Entry." The name "range table" in the PostgreSQL source code refers to
tables, subqueries, results of joins—in other words, any record sets that SQL statements operate on.

Semantic analyzer. The semantic
analyzer determines whether there are
tables and other objects in the database
that the query refers to by name, and
whether the user has the right to access
these objects. All the information required
for semantic analysis is stored in the
system catalog.

The semantic analyzer receives the parse
tree from the parser and rebuilds it,
supplementing it with references to specific
database objects, data type information,
etc.

TransformationNext, the query can be transformed (rewritten).

Transformations are used by the system core for
several purposes. One of them is to replace the
name of a view in the parse tree with a subtree
corresponding to the query of this view.

pg_tables from the example above is a view

Planning
SQL is a declarative language: a query specifies what to retrieve, but not how to retrieve it.

Any query can be executed in a number of ways. Each operation in the parse tree has multiple execution
options.

 For example, you can retrieve specific records from a table by reading the whole table and
discarding rows you don't need, or you can use indexes to find the rows that match your query.

Data sets are always joined in pairs. Variations in the order of joins result in a multitude of execution
options.

Then there are various ways to join two sets of rows together. For example, you could go through
the rows in the first set one by one and look for matching rows in the other set, or you could sort
both sets first, and then merge them together. Different approaches perform better in some cases
and worse in others.

The optimal plan may execute faster than a non-optimal one by several orders of magnitude. This is why
the planner, which optimizes the parsed query, is one of the most complex elements of the system.

Plan tree. The execution plan can also be
presented as a tree, but with its nodes as
physical rather than logical operations on data.

The image shows the main nodes of the tree. The same nodes are marked with arrows in the EXPLAIN
output.

The Seq Scan node represents the table read operation, while the Nested Loop node represents the join
operation. There are two interesting points to take note of here:

● One of the initial tables is gone from the plan tree because the planner figured out that it's not
required to process the query and removed it.

● There is an estimated number of rows to process and the cost of processing next to each node.

Plan search. To find the optimal plan, PostgreSQL utilizes the cost-based query optimizer. The optimizer
goes through various available execution plans and estimates the required amounts of resources, such as
I/O operations and CPU cycles. This calculated estimate, converted into arbitrary units, is known as the
plan cost. The plan with the lowest resulting cost is selected for execution.

The trouble is, the number of possible plans grows exponentially as the number of joins increases, and
sifting through all the plans one by one is impossible even for relatively simple queries. Therefore,
dynamic programming and heuristics are used to limit the scope of search. This allows to precisely solve
the problem for a greater number of tables in a query within reasonable time, but the selected plan is not
guaranteed to be truly optimal because the planner utilizes simplified mathematical models and may use
imprecise initial data.

Ordering joins. A query can be structured in specific ways to significantly reduce the search scope (at a
risk of missing the opportunity to find the optimal plan):

● Common table expressions are usually optimized separately from the main query.
● Queries from non-SQL functions are optimized separately from the main query. (SQL functions can

be inlined into the main query in some cases.)
● In PostgreSQL there are some patamets that quide the optimizer in generating the execution plan:

a. The join_collapse_limit parameter together with explicit JOIN clauses,
b. as well as the from_collapse_limit parameter together with sub-queries

● may define the order of some joins, depending on the query syntax.

The query below calls several tables within a FROM clause with no explicit joins:

The parse tree for this query:

In this query, the planner will consider all possible join orders.

In the next example, some joins are explicitly defined by the JOIN clause:

The parse tree reflects this:

The planner collapses the join tree, effectively transforming it
into the tree from the previous example. The algorithm
recursively traverses the tree and replaces each JOINEXPR
node with a flat list of its components.

Selecting the best plan. In general, the plan must optimize
the retrieval of all rows that match the query.

Selecting the best plan.

PostgreSQL addresses this by calculating two cost components. They are displayed in the query plan
output after the word "cost":

Sort (cost=21.03..21.04 rows=1 width=128)

The first component, startup cost, is the cost to prepare for the execution of node of the query (node: part
of the query that contain join, selection or sorting) ; the second component, total cost, represents the total
node execution cost.

The planner selects the plan with the least total cost.

Cost calculation process.

To estimate a plan cost, each of its nodes has to be individually estimated. A node cost depends on the
node type (reading from a table costs much less than sorting the table) and the amount of data processed
(in general, the more data, the higher the cost). While the node type is known right away, to assess the
amount of data we first need to estimate the node's cardinality (the amount of input rows) and selectivity
(the fraction of rows left over for output). To do that, we need data statistics: table sizes, data distribution
across columns.

Execution

An optimized query is executed in accordance with the plan.

Execution starts at the root node. The root node (the sorting
node SORT in the example) requests data from the child node.
When it receives all requested data, it performs the sorting
operation and then delivers the data upward, to the client.

Some nodes (such as the NESTLOOP node) join data from
different sources. This node requests data from two child nodes.
Upon receiving two rows that match the join condition, the node
immediately passes the resulting row to the parent node (unlike
with sorting, which must receive all rows before processing
them). The node then stops until its parent node requests
another row. Because of that, if only a partial result is required
(as set by LIMIT, for example), the operation will not be
executed fully.

