Physical Structure of Database

Case of PostgreSQL

Source: https://www.interdb.jp/pg/

Database physical structure

Each table or index whose size is less than 1GB is a single file stored under the
database directory it belongs to. Tables and indexes as database objects are
internally managed by individual OIDs, while those data files are managed by the
variable, relfilenode.

When the file size of tables and indexes exceeds 1GB, PostgreSQL creates a new file named like
relfilenode.1 and uses it. If the new file has been filled up, next new file named like relfilenode.2 will be
created, and so on.

each table has two associated files suffixed respectively with

' fsm' free space map and Each FSM stores the information about the free space capacity of each page
within the corresponding table or index file.

" vm'visibility map the Visibility Map (VM) was introduced to improve the efficiency of removing dead
tuples.

database cluster / e

base directory: $PGDATA/
global/ pg_logical/ pg stat/ pg_tblspc/

12891/ 12896/ 16384/ 16385/ <:| - .
(templateO)(templete1) (postgres) (sampledb) (testdb) database subdirectories

18740
(sampletbl)
L S5 o

files of tables, indexes, free-space maps, and visibility maps

pwd
/var/lib/postgresql/data
1s

base pg_dynshmem pg logical pg replslot pg stat pg tblspc pg wal postgresqgl.conf
global pg_hba.conf pg_multixact pg_serial pg_stat_tmp pg_twophase pg xact postmaster.opts
pg commit _ts pg ident.conf pg notify pg _shapshots pg subtrans PG VERSION postgresqgl.auto.conf postmaster.pid

SELECT datname, oid FROM pg_database

datname _, oid é
pwd name 4 [PK] oid
/var/lib/postgresqgql/data/base 1 postgres 13757
s 2 flights 16384
1 13756 13757 16384 16385 pgsql tmp
3 template 1
'Flights' is a table in the database ‘demo” B template0 13756
SELECT relname, oid, relfilenode FROM pg_class 5 demo 16385
WHERE relname = 'flights’;
i i I id Ifilenod
- relname , oi relfilenode
/var/lib/postgresql/data/base/16385 camie 7 | [PKjsid 8 /

1s 16414* .
16414 16414 fsm 16414 vm 1 flights 16414 16414

Internal Layout of a Heap Table File

PostgreSQL use fixed page size (commonly 8 kB), and does not allow tuples to span multiple pages.
s aA heap file is an unordered collection of pages where tuples that are stored in random order.

Inside the data file (heap table and index, as well as the free space map and visibility map), it is divided
into pages (or blocks) of fixed length, the default is 8192 byte (8 KB). Those pages within each file are
numbered sequentially from 0, and such numbers are called as block numbers. If the file has been filled
up, PostgreSQL adds a new empty page to the end of the file to increase the file size.

The data are loaded per page or block by: page number (page#) and page size.
The pointer of the page, called page offset, is calculated by

Offset = Page# x PageSize

block number

table file

page
Oth {8192mw31 o

page
ISR S 192 (byte)

1T

_ page
Nth{8192wWBJ

Header Info

pd Isn

pd_special

pd_pagesize
version

pd_checksum

pd_prune
_xid

pd_flags
]

2}

pd_lower

|

N
line pointers

nd_upper

Tuple 2

Tuple 1

S——————

heap tuples
(record data)

free space
(hole)

heap tuple(s) — A heap tuple is a record data itself. They are stacked in order from the bottom of the page.

header data — A header data defined by the structure PageHeaderData is allocated in the beginning of the page. It is 24

byte long and contains general information about the page. The major variables of the structure are described below.

e pd Isn—This variable stores the LSN of XLOG record written by the last change of this page. It is an 8-byte
unsigned integer, related to the WAL (Write-Ahead Logging) mechanism.
® pd checksum — This variable stores the checksum value of this page. (Note that this variable is supported in
version 9.3 or later; in earlier versions, this part had stored the timelineld of the page.)
e pd lower, pd upper —pd_lower points to the end of line pointers, and pd_upper to the beginning of the newest
heap tuple.
® pd special — This variable is for indexes. In the page within tables, it points to the end of the page. (In the page
within indexes, it points to the beginning of special space which is the data area held only by indexes and
contains the particular data according to the kind of index types such as B-tree, GiST, GiN, etc.)
An empty space between the end of line pointers and the beginning of the newest tuple is referred to as free space or hole.
To identify a tuple within the table, tuple identifier (TID) is internally used. A TID comprises a pair of values: the block
number of the page that contains the tuple, and the offset number of the line pointer that points to the tuple.

typedef struct PageHeaderData @src/include/storage/bufpage.h

/*

sk

/*

{
/* XXX LSN is member of *any*
XLogRecPtr pd_lsn;
uintl6 pd checksum;
uintlé6 pd _flags;

LocationIndex pd_lower;
LocationIndex pd_upper;
LocationIndex pd_special;

/*
/*
/*
/*

block, not only page-organized ones */
LSN: next byte after last byte of xlog
record for last change to this page */
checksum */

flag bits, see below */

offset to start of free space */
offset to end of free space */

offset to start of special space */

uintl6 pd pagesize version;
TransactionId pd_prune_xid;/* oldest prunable XID, or zero if none */

ItemIdData pd _linp[1];
} PageHeaderData;

/*

beginning of line pointer array */

typedef PageHeaderData *PageHeader;

typedef uint64 XLogRecPtr;

Tuple structure

A heap tuple comprises three parts, i.e. the HeapTupleHeaderData structure, NULL bitmap, and user data
HeapTupleHeaderData
A

ARG
o ~—

t xmin |t xmax | t _cid t ctid |t infomask2 |t infomask| t_hoff NULL bitmap User data

e t xmin holds the txid of the transaction that inserted this tuple.

e t xmax holds the txid of the transaction that deleted or updated this tuple. If this tuple has not been deleted or
updated, t xmax is set to 0, which means INVALID.

e t cid holds the command id (cid), which means how many SQL commands were executed before this command was
executed within the current transaction beginning from 0. For example, assume that we execute three INSERT
commands within a single transaction: 'BEGIN; INSERT; INSERT; INSERT; COMMIT;'. If the first command
inserts this tuple, t cid is set to 0. If the second command inserts this, t cid is set to 1, and so on.

e t ctid holds the tuple identifier (tid) that points to itself or a new tuple. TID, is used to identify a tuple within a table.
When this tuple is updated, the t ctid of this tuple points to the new tuple; otherwise, the t_ctid points to itself.

Writing Heap Tuples

Suppose a table composed of one page which contains just one heap tuple. The pd_lower of this page

points to the first line pointer, and both the line pointer and the pd_upper point to the first heap tuple.

(a) Before insertion of Tuple 2

pd Isn pd checksum pd flags pd_lower pd upper
pd_special pd_pagesize. pd_prune

version xid

Tuple 1

When the second tuple is inserted, it is placed after the first one. The second line pointer is pushed onto
the first one, and it points to the second tuple. The pd_lower changes to point to the second line pointer,
and the pd_upper to the second heap tuple. Other header data within this page (e.g., pd_lIsn,
pg_checksum, pg_flag) are also rewritten to appropriate values;

(b) After insertion of Tuple 2

pd Isn pd_checksum pd_ flags pd lower »d upper

pd pagesize pd prune
pd spec1a| version _xid

t xmin t xmax t _cid t ctid userdata

Page Header

-- : Tuple_1 99 100 0 (0,2) ‘A

Tuple_2 100 0 0 (0,2) 'B'
Tuple_2 Tuple_1
txid = 99
BEGIN; t xmin t xmax t_cid t ctid userdata
INSERT INTO tbl VALUES(A'); EEE) Tuple_t % | o |o] ©1 -
COMMIT;

Time

Time

txid = 111

BEGIN;
DELETE FROM tbl_d;

COMMIT;

txid = 100

BEGIN;

UPDATE tbl SET data ='B";

UPDATE tbl SET data = 'C';

Tuple_2 <
‘ Tuple_3 100

- Tuple_1

t xmin

t xmax t_cid t_ctid

100 11 | 0

t_xmin

t xmax t_cid

t_ctid

—99—

— 100 [O

©

100

0 | 0] (02

t xmin

t xmax t_cid

et
t ctid

99

100 | 0 | (0,2)

100

—100— 0 \(0,3)

o [1] 03

user data

user data

user data

Reading Heap Tuples

Two typical access methods, sequential scan and B-tree index scan, are outlined here:

Sequential scan — All tuples in all pages are sequentially read by scanning all line pointers in
each page.

B-tree index scan — An index file contains index tuples, each of which is composed of an index
key and a TID pointing to the target heap tuple. If the index tuple with the key that you are
looking for has been found, PostgreSQL reads the desired heap tuple using the obtained TID
value.

For example, in the Figure below, TID value of the obtained index tuple is ‘(block = 7, Offset =
2)’. It means that the target heap tuple is 2nd tuple in the 7th page within the table, so
PostgreSQL can read the desired heap tuple without unnecessary scanning in the pages.

) Sequential Scan (b) Index Scan

SELECT * FROM tbl; SELECT * FROM tbl WHERE col = "Queen’;

IndexTuple
[Key="Queen’,TID= (block=7,Offset=2) - - - |

eade cade
1 23 1 2 | 3
7 th page \‘
Tuple 3 Tuple 2 Tuple 3
Tupfe 1 Tuple 1
CalcC Calc
1 2 3 1 2 3
8 th page
J Tuple 3 ’ Tuple 2 | 4,.""Tuple 1 Tuple 3 Tuple 2 Tuple 1

a

