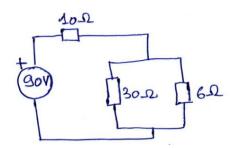
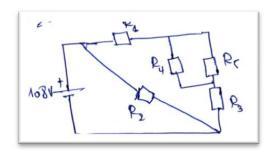

Niveau: 2ème année GE

Série N⁰ 1:

Exercice 1-1: Calculer R des circuits suivants :

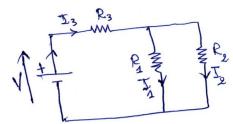


Exercice 1-2 : Pour les figures suivantes, calculer la résistance équivalente entre A et B.



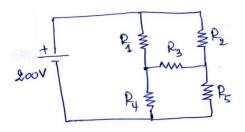
Exercice 1-3:

1- Trouver la puissance dissipée dans chacune de résistance.

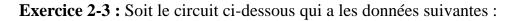


2- Le circuit ci-après est raccordé à une génératrice dont la tension est de 108 V. Trouver le courant et la tension pour chacun des éléments du circuit. $R_1=1$ Ω , $R_2=4$ Ω , $R_3=3$ Ω , $R_4=72$ Ω , $R_5=9$ Ω .

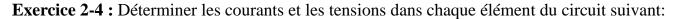
3- Calculer l'intensité du courant I₁, I₂ et I₃ du circuit ci-contre :

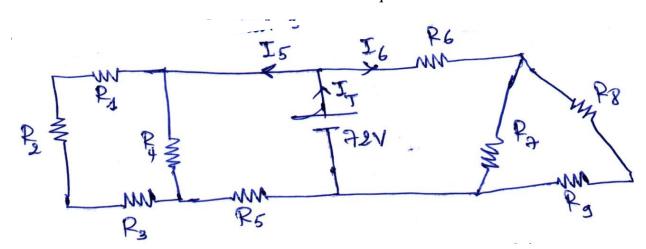

On donne : V=12 V, R_1 =330 Ω , R_2 =220 Ω , R_3 =820 Ω .

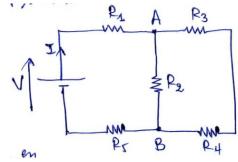
Série N⁰ 2:


Exercice 2-1: Trouver les tensions et les courants dans chacune des branches du circuit suivant :

Avec, $R_1=8 \Omega$, $R_2=12 \Omega$, $R_3=10 \Omega$, $R_4=24 \Omega$, $R_5=6 \Omega$.


Exercice 2-2: Soit le circuit suivant :


- 1- Quelle est la valeur du courant qui traverse R₅.
- **2-** Pour I_4 =6 mA, calculer I_2 .
- 3- Soit V_1 =4.7 V, calculer V_5 .
- 4- Déduire I₃.
- 5- Etablir l'expression de V_2 en fonction de V_3 et V_4 .
- **6-** Calculer V_3 pour V_4 =1.2 V. **Sachant que :** V=12 V, V_{AB} =4 V, I=10 mA, R_1 =470 Ω, R_2 =1 kΩ.


V=15 V, R_1 = R_5 =1 kΩ, R_2 =2 kΩ, R_3 =2 kΩ, R_4 =0.75 kΩ.

- **1-** Calculer R_T et I_T .
- **2-** Calculer V_3 aux bornes de R_3 ; puis V_4 et V_5 .
- **3-** Trouver I_1 , I_2 , I_3 , I_4 et I_5 .
- **4-** Calculer la puissance totale P_T puis P₁, P₂, P₃, P₄ et]
- **5-** On remplace R₄ par un court-circuit ; est-ce-que la puissance totale dissipée P_T va augmenter ou diminuer ? Pourquoi ?

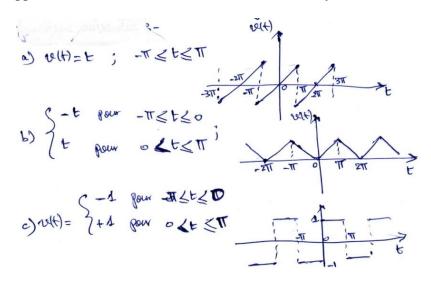
On donne: $R_1=4 \text{ k}\Omega$, $R_2=8 \text{ k}\Omega$, $R_3=R_5=R_6=12 \text{ k}\Omega$, $R_4=24 \text{ k}\Omega$, $R_7=9 \text{ k}\Omega$, $R_8=3 \text{ k}\Omega$, $R_9=6 \text{ k}\Omega$.

Re

Niveau : 2^{ème} année GE

Série N⁰ 3:

Exercice 3-1:


1- Calculer la valeur moyenne est la valeur efficace des fonctions suivantes :

a-
$$v(t) = V_M \sin \omega t + \frac{V_M}{3} \sin 3\omega t$$

b-
$$v(t) = V_M \cos^2(\omega t + \alpha)$$

c-
$$v(t) = V_M^2 \cos(\omega t) \cos(2\omega t + \alpha)$$

2- Déterminer le développement en série de Fourier (SF) et la valeur moyenne et efficace des fonctions suivantes :

Exercice 3-2 : Ces questions sont indépendantes l'une de l'autre.

1- Faire une représentation temporelle des signaux suivants :

$$x(t) = A\sin\omega t$$
, $y(t) = B\sin\left(\omega t - \frac{\pi}{4}\right)$, $z(t) = C\cos\omega t$ Avec, $A = \frac{B}{2} = 2C$

- 2- Une tension sinusoïdale u(t) possède une période T=2 ms et une valeur de crête U_{Max} =311 V qui est atteinte au temps 0.2 ms.
- 1- Ecrire l'équation de cette tension. Représenter-la.
- 3- Une puissance moyenne de 675 W est dissipée par une résistance de 3 Ω parcourue par un courant sinusoïdal.
- 2- Quelle est la valeur efficace de la tension aux bornes de cette résistance ?
- **4-** Démontrer que la valeur moyenne d'une grandeur sinusoïdale est nulle.

Exercice 3-3: Un ruban de ferro-nickel, de résistivité $\rho=8\times10^{-7}$ Ω m, de longueur l=12 m, de largeur l'=1.5 m et d'épaisseur e=0.2 mm, est placé entre deux bornes reliées à une source de courant (à choisir son sens) qui maintient entre elles une tension alternative de valeur efficace U=120 V.

1- Calculer:

a/ La résistance du ruban.

b/ l'intensité efficace du courant.

2- Tracer la tension et le courant pour *f*=50 Hz.

Exercice 3-4: la tension mesurée par un Voltmètre aux bornes d'une inductance indique 100 V, soit L=0.12 H et f=50 Hz. Calculer X_L , I_{eff} et Q_L .

Niveau: 2ème année GE

Série N⁰ 4:

Exercice 4-1: Dans un circuit RLC série, le condensateur a une capacité de 300 μ F, la bobine a une inductance de L=5 mH, et la résistance de 10 Ω . Le générateur est le réseau de distribution (U_{Max}=325 V, *f*=50 Hz).

- 1) Calculer X_L, X_C et l'impédance du circuit Z.
- 2) Calculer l'amplitude du courant et le déphasage φ.
- 3) Faire la représentation (construction) de Fresnel.
- 4) Déterminer la période propre (de résonance) du circuit.
- 5) Réaliser le diagramme d'impédance en déduisant Z graphiquement.
- 6) Calculer P, Q, S et FP.

Exercice 4-2: Un réseau monophasé 230V/50Hz alimente une résistance de 10 Ω et une charge inductive de 3273.5 VA qui consomme 2024.2 W.

- 1- Calculer Z et L.
- 2- Calculer le courant (module et argument) fourni par le réseau.
- **3-** Tracer la construction de Fresnel des courants et des tensions.
- **4-** Calculer le facteur de puissance de l'installation.

Exercice 4-3 : Un petit commerce est alimenté par le réseau électrique V=240 V et f=50 Hz. Il comprend associés en parallèle :

- **3-** 20 lampes de 100 W;
- 4- Un chauffage résistif de 2.2 kW;
- 5- Deux moteurs monophasés de P_u =0.75 kW (puissance utilisé ou utile), de rendement η =0.78 et un facteur de puissance du moteur FP_m=cos ϕ _m=0.75.

Calculer, lorsque l'ensemble fonctionne simultanément :

- 1- La puissance active et réactive absorbées par le petit commerce.
- **2-** L'intensité et le facteur de puissance de l'ensemble.

Exercice 4-4: Considérons un moteur monophasé alimenté par une tension sinusoïdale à 50 Hz de valeur efficace de 220 V. Ce moteur constitue une charge inductive qui peut être représentée par une impédance complexe \underline{Z} =R+jX avec X=X_L, où la résistance R=42 Ω et la réactance X_L=26 Ω ; calculer:

- 1- L'impédance Z et la valeur efficace du courant.
- **2-** La puissance active, réactive et apparente.
- 3- Le FP. Quelle est la valeur d'un condensateur C qui doit placer en série avec R et L pour obtenir un $\cos\varphi=0.9$?

Exercice 4-5 : Une résistance $R=100~\Omega$ est branchée en série avec un condensateur de capacité $C=10~\mu F$.

- **1- a-** Calculer X_C (f=50Hz).
 - **b-** Déduire l'impédance Z.
- **2-** On applique aux bornes du dipôle la tension : $u(t) = 220\sqrt{2}\sin\left(100\pi t\right)$ déterminer le courant qui correspond $i(t) = I\sqrt{2}\sin\left(100\pi t \varphi\right)$

Série N⁰ 5:

Exercice 5-1 : Un alternateur triphasé à 50 Hz génère une tension sinusoïdale de 34600 V entre les lignes. Calculer :

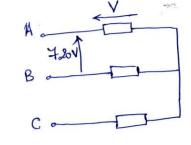
- 1) La tension efficace entre une ligne et le neutre.
- 2) La tension de crête (maximale) entre deux lignes.
- 3) L'intervalle de temps qui sépare U_{abMax} et U_{bcMax}.

Exercice 5-2: Une ligne triphasée à 550 V (tension composée) alimente trois résistances identiques montées en étoile. Quelle est la tension et le courant aux bornes de chaque résistance ? ($R=26.5 \Omega$).

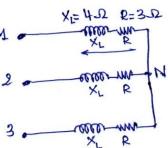
Exercice 5-3 : Trois impédances identiques montées en triangle sur une ligne triphasée à 680 V tirent un courant de 10 A. Calculer :

- a) Le courant dans chaque impédance et la tension à ses bornes.
- b) La valeur des impédances.

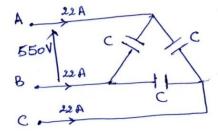
Exercice 5-4 : Trois résistances égales montées en étoile sur une ligne triphasée à 720 V dissipent une puissance totale de 3300 W. Calculer :


- 1. Le courant dans chaque ligne.
- 2. La valeur de chaque résistance.

Exercice 5-5: Pour le circuit suivant ; calculer :


- 1) Le courant dans chaque ligne.
- 2) La tension aux bornes des inductances.
- 3) L'inductance L utilisée et le FP.

On donne aussi : U=440 V et f=50Hz.


1- complet de l'usine.

Niveau: 2ème année GE

Exercice 5-6 : Une ligne triphasée à 550 V (60 Hz), alimente trois condensateurs identiques montés en triangle. Le courant de ligne est de 22 A. Calculer la capacité de chaque condensateur.

Exercice 5-7 : Soit une charge triphasée composée d'impédance Z correspondant à la mise en série d'une résistance R de 15 Ω et d'une inductance L de 32 mH. Cette charge est connectée en triangle et alimentée par un réseau triphasé symétrique de 380 V (valeur efficace de la tension composée). On désire de déterminer :

- 1- La puissance active fournie par ce réseau.
- **2-** La puissance réactive fournie par ce réseau.
- 3- La puissance apparente fournie par ce réseau.
- **4-** La représentation vectorielle des tensions pour une phase.