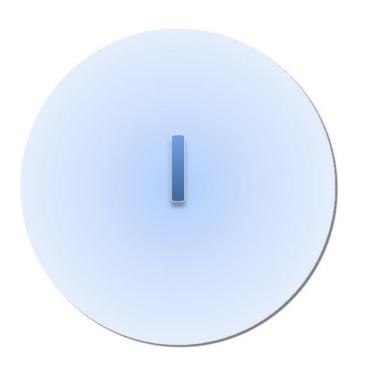
سلسلة الدوس و المحاضرات

مدغل الم فيزيا، الصالة الصلبة الجزء اللأول

موجه إلى طلبة السنة الثالثة فيزاء



المركني بيان المركاط المركاط

بسسم الله الرحمن الرحيم , الحسد لله رب العالمين , والصلاة والسسلام على أشرف المرسلين , وعلى آله وصعبه أجمعين

لقد بين لنا الله من خلال النظام الكوني, استمرادية المواد كأشياء, وتكراد الظواهر كعلاقات سببية, لنراقبها وندركها وننتفع بها في حياتنا بعد أن نقف على حقيقة سلوكها, ونستدل بها على قدرته ووحدانيته, مصداقا لقولته تعالى سنويهم آياتنا في الأفاق وفي أنفسهم حتى بيتبين لهم أنه الحق....(53) سورة فصلت والفيزياء تعد دائبا في مقدمة العلوم المعنية بدراسة المواد والظواهرالطبيعية المختلفة, وهي التي تقود التقدم العلمي والتقني للبشر فنظرة سريعة لما يتم حولنا من إنحازات في مجالات عدة كارتياد الفضاء, و ثورة المعلومات, ونظم الاتصالات, وغيرها كفيلة بإلقاء الضوء على الدور العظيم الذي تضلع به الفيزياء.

وفيزياء الحالة الصلبة موضوع هذا الكتاب هي أحد فروع الفيزياء المعنى بالبعث في طبيعة المواد الصلبة وخصائصها المختلفة: الميكانيكية والكهربية و المغناطيسية والحرارية والضوئية وغيرها.

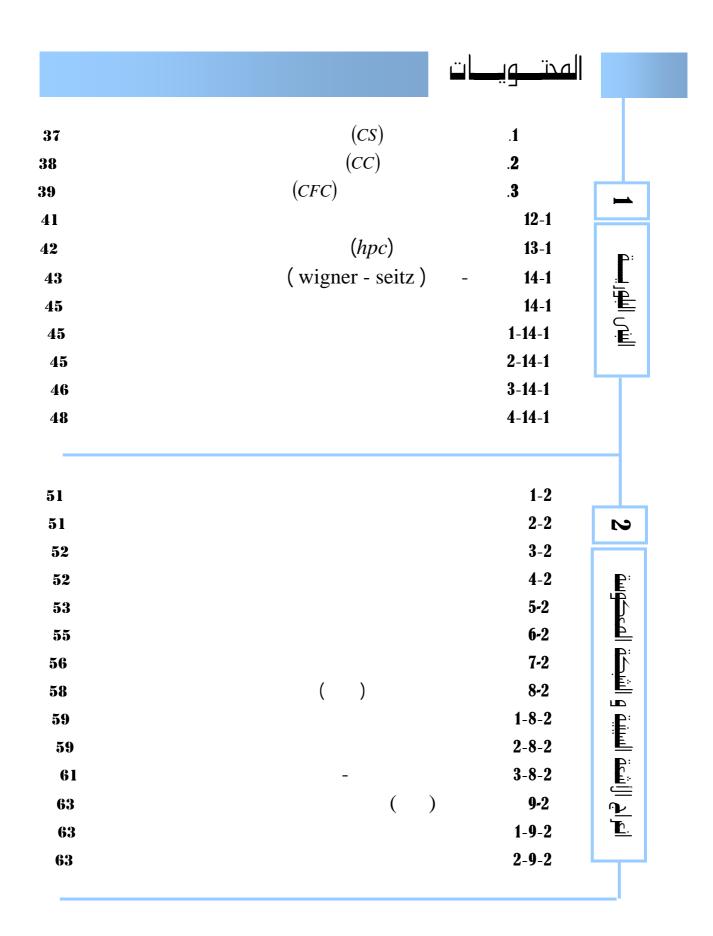
والأجسام الصلبة قد تكون بلورية فتشكل مملكة مترامية الأطراف, رعاياها من المعادن والمواد العازلة و أشباه الموصلات والموصلات الفائقة, وغيرها. وهي تسلك في المظروف المختلفة ضروبا متباينة من السلوك الذي يوحي بمجالات تطبيقية شاسعة. كما أنها قد تكون غيربلورية, ولها هي الأخرى تطبيقاتها الحاصة والكتاب الذي بين أيدينا محاول أن يصعب القارئ العربي في جولة قصية إلى دنيا فيزياء الأجسام الصلبة, حيث اختيرت محتوياته بعناية لكي تلبي احتياجات المقرد الدراسي لمقياس الفيزياء الصلبة في المؤد الشائي وكلاهما خاص بطلاب السنة الثالثة فيزياء P.I.M.D, وقد صيغت خصول هذا الكتاب بشكل مترابط بجعل القارئ لا يجد صعوبة في الفهم و الاسترسال من فصل لآخر.

والله نسأل أن يعيننا على عرض محتويات كتابنا هذا بجزأيه الأول والثاني بالطريقة التي تيسرللقارئ فهمها واستيعابها. ونأمل أن يوجهنا القارئ الكريم إذا ما صادفته هنة أو ملحوظة يرى إضافتها هنا أو هناك .. متمثلين قول القائل:

إن تجر عيبا نسر الخللا جل من لا عيب نيه وعلا

المحتويات

5				
15			1-1	
15			-	
15			-	
16			2-1	
17			3-1	
18			4-1	
18			1-4-1	
20			2-4-1	
20	()	3-4-1	
21			4-4-1	\perp
22			5-4-1	—
22			6-4-1	
23			7-4-1	P:
24			5-1	النبس البلوريسة
25			8-1	<u>=</u>
29			9-1	E
30			10-1	Ц,
30			1-10-1	
33		-	2-10-1	
33			3-10-1	
34			4-10-1	
34			5-10-1	
35			6-10-1	
36	()	7-10-1	
36	()	8-10-1	
37			11-1	



المحتويات

ယ

الروابط اللورية و الخصائص العرونية

N () 3-9-2 66 انعراج الأشعة السينية والشبكة المعكوسة 4-9-2 68 5-9-2 70 6-9-2 71 7-9-2 74 8-9-2 75 9-9-2 **78** 10-2 80 11-2 83

89	1-3
89	2-3
92	3-3
96	4-3
98	5-3
99	6-3
103	6-3
105	9-3
105	1-9-3
109	2-9-3
111	3-9-3
114	3-9-3

115	5-9-3
118	6-9-3
120	7-9-3
122	7-9-3

1-4 137 2-4 137 3-4 () 139 1-3-4 141 2-3-4 145 4-4 () 147 5-4 154 6-4 159 7-4 162 1-7-4 162

4

اهتزازات الشبكة البلورية و الخصائص العرارية

لمحتــويـــات

163 - 165 - 168 - 172 2-7-4 173 3-7-4 175 4-7-4 176 178 183

विश्वी पिमबा

البنى البلورية

1-1 مقدمة

أ - المواد الصلبة البلورية

•

%99

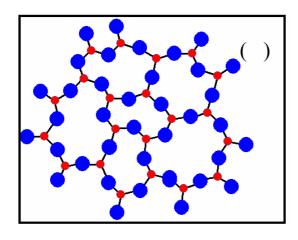
•

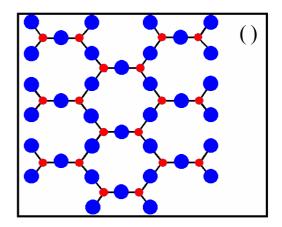
п

. ب- المواد الصلبة اللابلورية

.(1.1)

15





() - () : :(1.1)

п

. . .

.

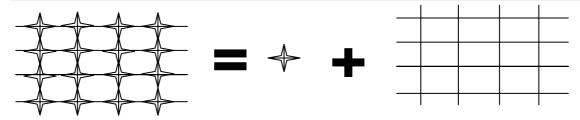
1-2|لشبكة البلورية

```
1-3 البنية البلورية:
                                                                                                                          (
                                                                                                                         -1
                                                                                                                         -2
                                                                                                                         -3
                                                                                                                         -4
                         ( )
                                           .( )
(
                            .((3.1)
                                   شبكة بلورية + قاعدة (أساس) = بنية بلورية
                                        )\vec{r}'
     (
                                                                                        \vec{r}
(1-1)
                                                     \bar{r}' = \vec{r} + \vec{R}
                                        (
                                                                                         (
                                                                                                  )
(2-1)
                                  \vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3
                                                                                                          \vec{a}_3 \vec{a}_2 \vec{a}_1:
```

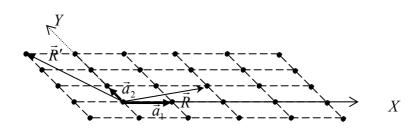
. ((4.1)

17

 n_3 n_2 n_1



:(3.1)



 $\vec{R}' = -\vec{a}_1 + 3\vec{a}_2$ $\vec{R} = 2\vec{a}_1 + \vec{a}_2$: (4.1)

1-4 التناظر البلوري

()

1-4-1 التناظر الدوراني

$$\theta = \frac{2\pi}{n}$$

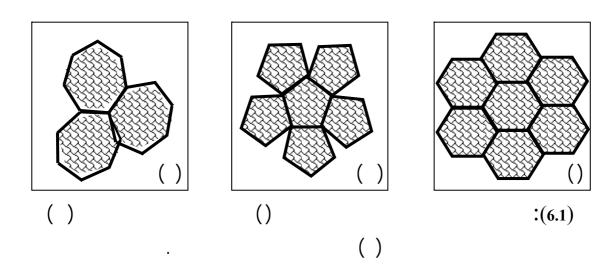
$$n A_n$$
 ((5.1)) 6.4.3.2.1

 \vec{R}

البنى البلوس ية

 $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ π 2π

 $\begin{array}{c} .(6.1) \\ A_6 \ A_4 \ A_3 \ A_2 \\ \hline \\ 1 \ 2 \ 3 \ 4 \ 6 \\ \hline \\ . \ (5.1) \end{array}$

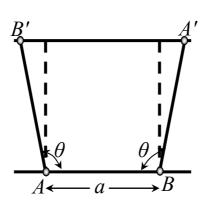


(3-1) $B'A' = AB(1 + 2\cos(\theta)) = a(1 + 2\cos(\theta))$ $a \qquad A'B' \qquad AB \qquad A'B'$ $\theta \qquad 0 \pm 1 \pm 2 \qquad 2\cos(\theta)$

$$\theta = \frac{360^{\circ}}{n}$$

 $.90^{\circ} \ 120^{\circ} \ 60^{\circ} \ 0^{\circ} \ 360^{\circ} \ 180^{\circ}$

.

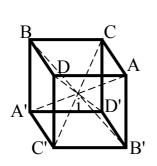


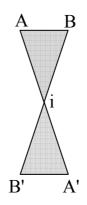
:(7.1)

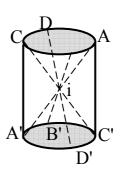
1-4-2 التناظر الانقلابي:

 \vec{r}

.c (c) . —
$$-\bar{n}$$







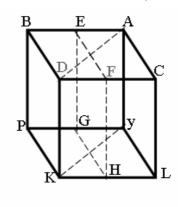
. :(8.1)

1-4-1 التناظر الانعكاسي(المرآتي) وفق مستو:

.m .
)AYKD ADBPYK ACDKYL (9.1)
ACFEGYLH (

البنى البلوس ية

.()EFHG EFDBPGHK



. :(9.1)

1-4-4 التناظر الدوراني الانقلابي:

C A_n . n \overline{n} \overline{A}_n

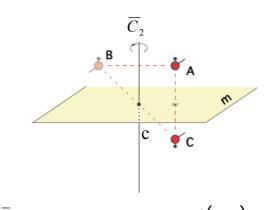
 \overline{A}_2 (10.1)

.*m*

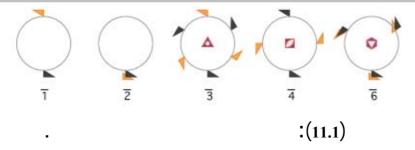
 $\overline{A}_6 \ \overline{A}_4 \ \overline{A}_3 \ \overline{A}_2$

c

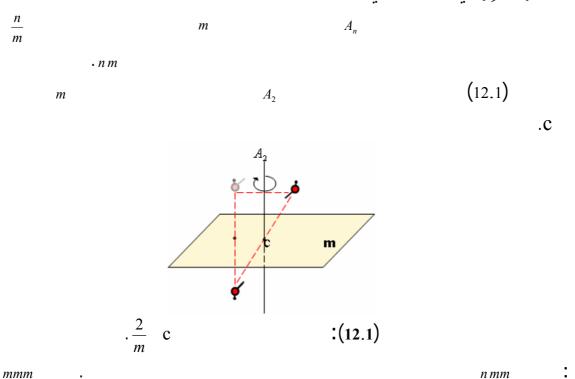
.(11.1) .



 $.\overline{2} m$:(10.1)



1-4-5 التناظر الدوراني الانعكاسي:



1-4-6 تمثيل عمليات التناظر بالممتدات:

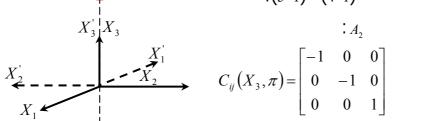
22

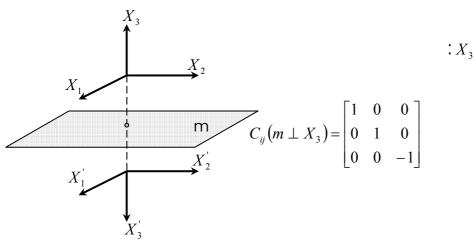
(4-1)
$$\begin{bmatrix} C_{ij} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$$

(5-1)
$$C_{ij} = \cos(X_i, X_j)$$

j = 1,2,3 i = 1,2,3 .

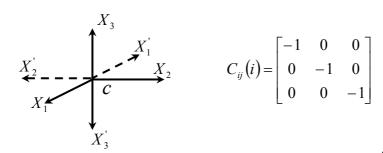
:(5-1) (4-1)





: c .2

.1



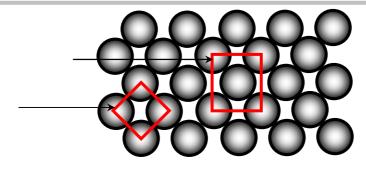
1-4-1 الزمرة النقطية و الزمرة الفضائية:

:

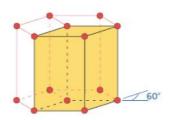
```
. n
                                                                                                                     . m
                                                                                                                                 . i
                                                                                                                                          1-5 خلية الوحدة:
                         \vec{a}_3 \vec{a}_2 \vec{a}_1
(6-1)
                                                                    V_e = \vec{a}.(\vec{b} \times \vec{c})
                                                                                                                                     (13.1)
                               (1+\frac{1}{4}\times 4=2)
                                                                                    \left(\frac{1}{4} \times 4 = 1\right)
                                                                        (14.1)
```

•

البنى البلوسية



:(13.1)



:(14.1)

8-1 تصنيف الشبكات البلورية الفضائية:

" Bravais"

(((()) 230 32 .(2.1) (1.1)

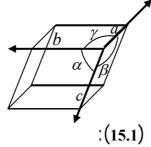
(

(s) .(BC) (C) **(**F**)**)

(

 \vec{c} \vec{b} \vec{a}) $c \ b \ a$ (c) - (15.1)

 $\boldsymbol{\gamma} = \left(\vec{a}, \vec{b}\right) \quad \boldsymbol{\beta} = \left(\vec{c}, \vec{a}\right) \quad \boldsymbol{\alpha} = \left(\vec{c}, \vec{b}\right) \qquad \boldsymbol{\gamma} \quad \boldsymbol{\beta} \quad \boldsymbol{\alpha} \qquad \left(\vec{a}_3 \quad \vec{a}_2 \quad \vec{a}_1 \right)$



 $\alpha \neq \beta \neq \gamma \neq \frac{\pi}{2}$ $a \neq b \neq c$:

1- الفئة الثلاثية الميل:

 $(c = \overline{1})$

 $a \neq b \neq c$:

2- الفئة أحادية الحيل:

b a

 $-A_{2}$

 $\alpha = \gamma = \frac{\pi}{2} \neq \beta$

 $\frac{2}{m}$ $\frac{A_2}{m}c$:

(c)

 $a \neq b \neq c$:

3- الفئة المعينية المستقيمة:

 $\alpha = \gamma = \beta = \frac{\pi}{2}$

 $\frac{2}{m}\frac{2}{m}\frac{2}{m} \qquad \frac{A_2}{m}\frac{A_2}{m}\frac{A_2}{m}c :$

(c)

 $a = b \neq c$:

4- الفئة الرباعية:

 $\alpha = \gamma = \beta = \frac{\pi}{2}$

 A_4

 $\frac{1}{m} \frac{2}{m} \frac{2}{m} \frac{2}{m} \frac{A_4}{m} \frac{2A_2}{2m} \frac{2A_2}{2m} c$:

(c)

((16.1)

 $\alpha = \gamma = \beta = \frac{\pi}{2}$ a = b = c:

5- الفئة المكعبة:

) $\frac{4}{m}\bar{3}\frac{2}{m}$ $\frac{3A_4}{m}4A_3\frac{6A_2}{6m}c$:

。 45 و

((17.1)

a=b=c : : الفئة الثلاثية -6

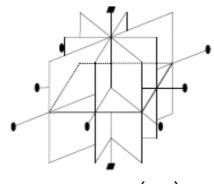
 $- \qquad \qquad \alpha = \gamma = \beta \neq \frac{\pi}{2}$

- - A₂

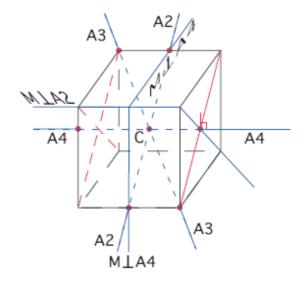
 $\frac{1}{3}\frac{2}{m} A_3 \frac{3A_2}{3m}c$: (c)

 $\alpha = \gamma = \frac{\pi}{2}, \beta = 120^{\circ}$ a = b = c : : : : : : : -7

 $\frac{6}{m} \frac{2}{m} \frac{2}{m} \frac{2}{m} \frac{A_6}{m} \frac{3A_2}{3m} \frac{3A_2}{3m} c :$



:(16.1)



. :(17.1)

	Face centrée	Corps centrée	Base centrée	Simple	
$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq \pi/2$					Triclinique
$a \neq b \neq c$ $\alpha = \gamma = \pi/2 \neq \beta$					Monocliniqu e
$a \neq b \neq c$ $\alpha = \beta = \gamma = \pi/2$					Orthorhombi que
$a = b \neq c$ $\alpha = \beta = \gamma = \pi/2$					Quadratique
$a = b = c$ $\alpha = \beta = \gamma = \pi/2$					Cubique
$a = b = c$ $\alpha = \beta = \gamma$ $\neq \pi/2, <120^{\circ}$					Rhomboédriq ue
$a = b \neq c$ $\alpha = \beta = \pi/2, \gamma = 120^{\circ}$					Hexagonal

:(1.1)

1		с	1	Triclinique
2	A_2	$\frac{A_2}{m}c$	$\frac{2}{m}$	Monoclinique
4		$\frac{A_2}{m} \frac{A_2}{m} \frac{A_2}{m} c$	$\frac{2}{m}\frac{2}{m}\frac{2}{m}$	Orthorhombique
2		$\frac{A_4}{m} \frac{2A_2}{2m} \frac{2A_2}{2m} c$ $\frac{3A_4}{m} 4A_3 \frac{6A_2}{6m} c$	$\frac{4}{m}\frac{2}{m}\frac{2}{m}$	Quadratique
3		$\frac{3A_4}{m}4A_3\frac{6A_2}{6m}c$	$\frac{4}{m}\overline{3}\frac{2}{m}$	Cubique
1		$A_3 \frac{3A_2}{3m} c$	$\frac{\bar{3}}{m}$	Rhomboédrique
1		$\frac{A_6}{m} \frac{3A_2}{3m} \frac{3A_2}{3m} c$	$\frac{6}{m}\frac{2}{m}\frac{2}{m}$	Hexagonal

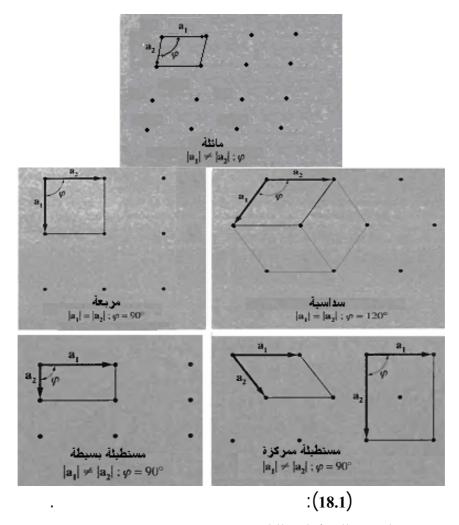
:(2.1)

1-9 تصنيف الشبكات البلورية المستوية:

(c) $b \ a \qquad \qquad . \varphi = \left(\vec{a}, \vec{b}\right) \qquad \varphi \qquad \qquad b \ a \qquad .$

 $\frac{2\pi}{4} \qquad \qquad 2\pi \quad \pi$ $\qquad \qquad \cdot \qquad \qquad \frac{2\pi}{6} \quad \frac{2\pi}{3} \qquad \cdot \qquad \cdot$ $\qquad \qquad \cdot 2mm \qquad \qquad \cdot 4mm \qquad \qquad \cdot$

.((16.1)) 6*mm*



1-10 التعريف ببعض خصائص الشبكات البلورية:

1-10-1 تحديد مواضع و متجهات المستويات البلورية:

. - -

c,b,a

"Miller "

(X,Y,Z) : •

 $\vec{c}, \vec{b}, \vec{a}$

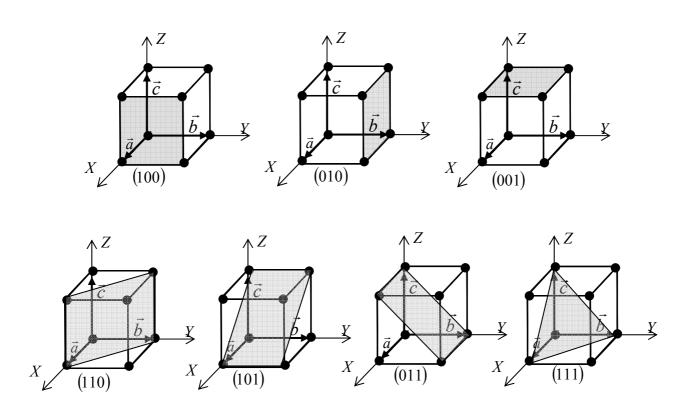
```
البنى البلومرية
```

```
(X,Y,Z)
                                                                                           .c,b,a
                                                                             .(hkl):
                                                                                         (-)
                                                         (19.1)
                                   (X,Y,Z)
               (3a : 2b : 1c)
                                                                         ABC
                                                                (\frac{1}{3}, \frac{1}{2}, 1)
  (\frac{2}{6}, \frac{3}{6}, \frac{6}{6})
                        (6)
                  .(236)
                                   h=2,k=3,l=6
                                                             :(19.1)
                                   .ABC
               . {hkl}
                          (\overline{1}00), (0\overline{1}0), (00\overline{1}), (100), (010), (001)
                                                                                  {001}
(20.1)
           [100]
                       (X)
                                                  \cdot [uvw]
                  :((21.1)
                                                                                          (Y)
                                         ) [001]
                                                    (Z)
                                                                               .[010]
                                                                           \langle uvw \rangle
                                          \langle 110 \rangle
        l = w, k = v, h = u
                                       (hkl)
                                                                [uvw]
```

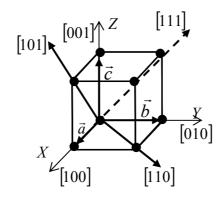
31

.(110) [110] (100)

 $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$: (xyz) . $(\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0), (0, \frac{1}{2}, \frac{1}{2})$:



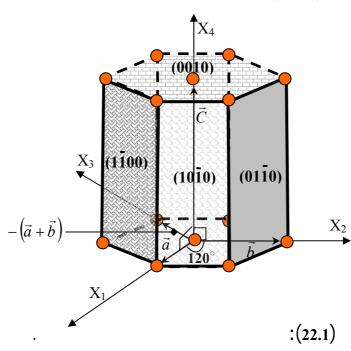
:(20.1)



:(21.1)

1-10-2 قرائن ميلر- برافي للفئة السداسية:

(1/2:1/2:-1:1/3): (2,2,-1,3) (X1,X2,X3,X4). $(hkil) = (3,3,\overline{6},2)$ 6:



1-10-3 المسافة الفاصلة بين المستويات البلورية المتوازية:

 d_{hkl} a $\vdots \quad a \qquad l, k, h$ $d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$ $\vdots \quad (111) \quad (110) \quad (100)$

33

(8-1)
$$d_{100} = \frac{a}{\sqrt{1+0+0}} = a$$

{100} .a

(9-1)
$$d_{110} = \frac{a}{\sqrt{1+1+0}} = \frac{a}{\sqrt{2}} = \frac{a}{1.4}$$

. {100} {110}

(10-1)
$$d_{111} = \frac{a}{\sqrt{1+1+1}} = \frac{a}{\sqrt{3}} = \frac{a}{1.7}$$
 {111}

ملاحظة: d_{hkl}

1-10-4 كثافة المستويات البلورية:

(hkl)

: . σ_{hkl}

(11-1)
$$\sigma_{hkl} = \sum_{i} \frac{n_{hkl}^{i} S_{a}^{i}}{S_{hkl}}$$

$$(hkl) : S_{hkl}, i : S_a^i, (hkl) i : n_{hkl}^i:$$

1-10-5 معادلة مستوي بلوري:

$$D, C, B, A Ax + By + Cz = D :$$

$$(23.1) p_3(0,0,\frac{a_3}{l}) p_2(0,\frac{a_2}{k},0) p_1(\frac{a_1}{h},0,0)$$

$$\vdots (hbl)$$

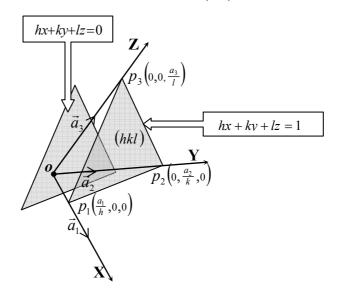
$$\begin{cases}
A \times \frac{a_1}{h} = D \\
B \times \frac{a_2}{k} = D \\
C \times \frac{a_3}{l} = D
\end{cases} \Rightarrow
\begin{cases}
A = \frac{h}{a_1} D \\
B = \frac{k}{a_2} D \\
C = \frac{l}{a_3} D
\end{cases} \Rightarrow \frac{h}{a_1} D x + \frac{k}{a_2} D y + \frac{l}{a_3} D z = D \Rightarrow$$

(12-1)
$$\frac{h}{a_1}x + \frac{k}{a_2}y + \frac{l}{a_3}z = 1$$

:
$$(12-1)$$
 a_3, a_2, a_1 z, y, x

$$(13-1) hx + ky + lz = 1$$

. (hkl) (13-1)



$$hx + ky + lz = 0$$
 $hx + ky + lz = 1$:(23.1)

(hkl)

$$(14-1) hx + ky + lz = m$$

 $(m = 0, \pm 1, \pm 2....)$: m

.((23.1))
$$(m = \pm 1)$$

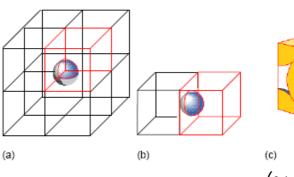
 n_a عدد عقد خلية الوحدة 6-10-1

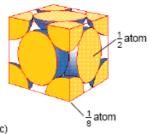
$$(24.1)$$
 : . ()

 $\left(1 = 8 \times \frac{1}{8}\right) :$

$$\left(4 = 3 + 1 = 3 \times \frac{1}{2} + 8 \times \frac{1}{8}\right)$$
: $\left(3 = 6 \times \frac{1}{2}\right)$:

.





:(24.1)

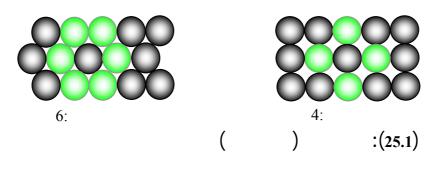
البنى البلوسية

1-10-1 عدد الجوار الأول(عدد التناسق) Z:

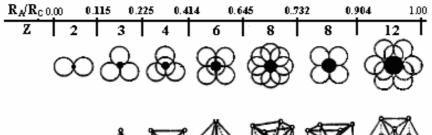
() .(25.1)

 R_{Z}

:__



 $.R_A/R_C$ (/) (/)



 R_A/R_C :(26.1)

 $: F_{R}$ (الرص) عامل التعبئة (الرص*8 -10-1

(26.1)

: .

$$F_R = \sum_i \frac{n_a^i v_a^i}{V}$$

:

 $\vdots V . i \qquad \vdots V_a^i . \qquad i \qquad \vdots n_a^i$

 m_i v_i (15-1) ρ

.

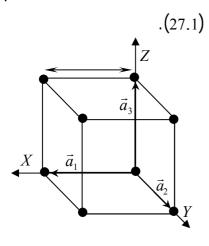
(16-1)
$$\rho = \sum_{i} \frac{n_a^i m_a^i}{V}$$

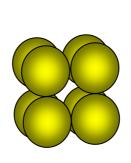
1-11 دراسة شبكات الفئة المكعبة:

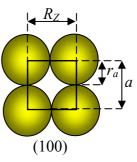
:

1. الشبكة المكعبة البسيطة (CS)

()







:(27.1)

- خصائص الشبكة المكعبة البسيطة:

$$\vec{a}_1 = a\vec{i}, \vec{a}_2 = a\vec{j}, \vec{a}_1 = a\vec{k}$$
 : .1

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = n_1 a \vec{i} + n_2 a \vec{j} + n_3 a \vec{k} \quad .$$

$$V_e = \vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3) = a\vec{i} \cdot (a\vec{j} \times a\vec{k}) = a^3$$
:

$$n_a = \frac{1}{8} \times 8 = 1 \ :$$

$$z = 6$$
: .5

$$: r_a: \qquad R_z = 2r_a = a : \qquad . \mathbf{6}$$

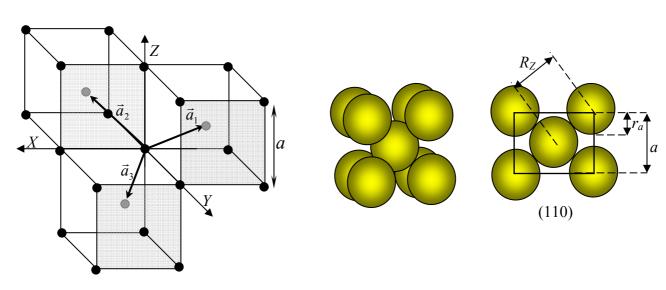
$$F_R^{CS} = \frac{n_a v_a}{V} = \frac{1 \times \frac{4}{3} \pi r_a^3}{a^3} = \frac{\frac{4}{3} \pi (\frac{a}{2})^3}{a^3} = \frac{\pi}{6} = 0.52$$
:

البني البلوم به

$$\sigma_{hkl} = \frac{n_{hkl} s_a}{s_{hkl}} = \frac{\left(4 \times \frac{1}{4}\right) \pi r_a^2}{a^2} = \frac{\pi \left(\frac{a}{2}\right)^2}{a^2} = \frac{\pi}{4} = 0.78 \ \ \{100\}$$

2. الشبكة المكعبة الممركزة (CC).

.(27.1)



:(28.1)

- خصائص الشبكة المكعبة الممركزة:

$$\vec{a}_3 = \frac{a}{2} (\vec{i} + \vec{j} - \vec{k}) \quad \vec{a}_2 = \frac{a}{2} (\vec{i} - \vec{j} + \vec{k}) \quad \vec{a}_1 = \frac{a}{2} (-\vec{i} + \vec{j} + \vec{k}) :$$

: **.2**

$$a_1 = a_2 = a_3 = \frac{\sqrt{3}}{2}a$$
, $\gamma = \beta = \alpha = \arccos\left(\frac{\vec{a}_1 \cdot \vec{a}_2}{\|\vec{a}_1\| \cdot \|\vec{a}_{21}\|}\right) = \arccos\left(-\frac{1}{3}\right) = 109.47^{\circ}$

.3

 $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \frac{a}{2} \left(\left(-n_1 + n_2 + n_3 \right) \vec{i} + \left(n - n_2 + n_3 \right) \vec{j} + \left(n_1 + n_2 - n_3 \right) \vec{k} \right)$

$$V_e = \vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3) = a^3 / 2$$
:

$$.\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) (0,0,0) n_a = \frac{1}{8} \times 8 + 1 = 2 .5$$

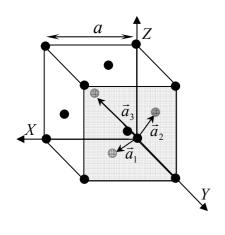
z = 8: .6

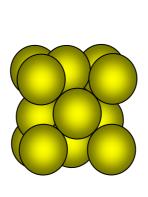
:
$$r_a$$
: $R_z = 2r_a = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} = \frac{\sqrt{3}}{2}a$: .7

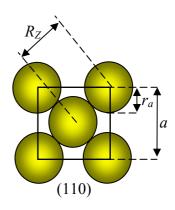
$$F_R^{CC} = \frac{n_a v_a}{V} = \frac{2 \times \frac{4}{3} \pi r_a^3}{a^3} = \frac{\frac{8}{3} \pi \left(\frac{\sqrt{3}}{4} a\right)^3}{a^3} = \frac{\pi \sqrt{3}}{8} = 0.68$$
:

3. الشبكة المكعبة الممركزة الأوجه (CFC).

. (29.1)







:(29.1)

- خصائص الشبكة المكعبة الممركزة الأوجه:

$$\vec{a}_3 = \frac{a}{2}(\vec{i} + \vec{j}) \quad \vec{a}_2 = \frac{a}{2}(\vec{i} + \vec{k}) \quad \vec{a}_1 = \frac{a}{2}(\vec{j} + \vec{k}) :$$
 .1

: **.2**

$$a_1 = a_2 = a_3 = \frac{\sqrt{2}}{2} a$$
, $\gamma = \beta = \alpha = \arccos\left(\frac{\vec{a}_1 \cdot \vec{a}_2}{\|\vec{a}_1\| \cdot \|\vec{a}_{21}\|}\right) = \arccos\left(\frac{1}{2}\right) = 60^{\circ}$

3. شعاع الانسحاب الأساسي:

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \frac{a}{2} ((n_2 + n_3)\vec{i} + (n_1 + n_3)\vec{j} + (n_1 + n_2)\vec{k})$$

$$V_e = \vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3) = a_4^3 / 4$$
:

$$\left(\frac{1}{2},0,\frac{1}{2}\right)\left(0,\frac{1}{2},\frac{1}{2}\right)$$
 (0,0,0) $n_a = \frac{1}{8} \times 8 + \frac{1}{2} \times 6 = 4$:

 $\cdot \left(\frac{1}{2}, \frac{1}{2}, 0\right)$

$$z = 12$$
: .6

$$: r_a: R_z = 2r_a = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} = \frac{\sqrt{2}}{2}a: .7$$

$$F_R^{CFC} = \frac{n_a v_a}{V} = \frac{4 \times \frac{4}{3} \pi r_a^3}{a^3} = \frac{\frac{16}{3} \pi \left(\frac{\sqrt{3}}{4} a\right)^3}{a^3} = \frac{\pi \sqrt{2}}{6} = 0.74 :$$
 .8

9. المستويات الأكثر كثافة هي المستويات (111):

$$\sigma_{hkl} = \frac{n_{hkl} s_a}{s_{hkl}} = \frac{\left(4 \times \frac{1}{4} + 1\right) \pi r_a^2}{\frac{\sqrt{3}a^2}{2}} = \frac{4\pi \left(\frac{\sqrt{2}}{4}a\right)^2}{\sqrt{3}a^2} = \frac{\pi}{2\sqrt{3}} = 0.9$$

		_			
(CFC)	(CC)	(CS)			
a^3	a^3	a^3	. (: a)	*
4	2	1	•		*
$\frac{4}{a^3}$	$\frac{2}{a^3}$	$\frac{1}{a^3}$			*
12	8	6			*
$a\sqrt{2}/2$	$a\sqrt{3}/2$	а			*
6	6	12			*
a	a	$a\sqrt{2}$			*
{111}	{110}	{100}			*

:(3.1)

(4.1)

البنى البلومرية

(CFC)		(CC)		(CS)		
a(Å)		a(A)		a(A)		
3.15	Мо	5.26	Ar			
2.87	Fe	4.5	Al			
5.2	Ва	5.58	Са			
3.31	Та	5.30	Ac			
3.2	V	4.95	Pb			
3.16	W	3.92	Pt	(α)	Po	

. :(4.1)

12-1 التعبئة المتراصة:

() A .

В

.A B

·

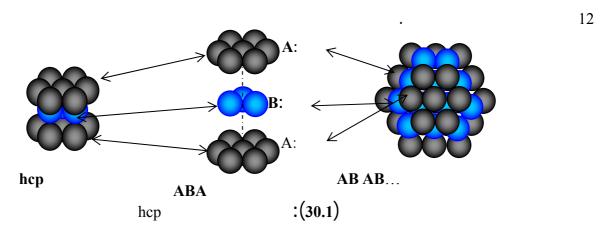
C) A B C AB AB... (30.1) (A

. 12 (hcp)

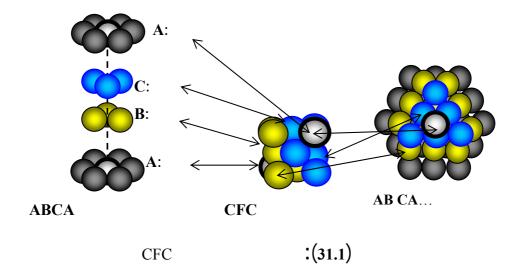
A B C :

(31.1) A D

(CFC) ABC ABC...



41

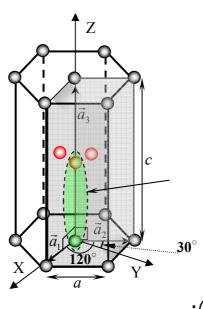


1-13 الشبكة السداسية المتراصة (npc):

 $(32.1) \qquad (\frac{2}{3}, \frac{1}{3}, \frac{1}{2}) \quad (0,0,0)$

 $\left(\frac{2}{3},\frac{1}{3},\frac{1}{2}\right)$:

 $\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{2}\right) \left(\frac{2}{3}, \frac{1}{3}, \frac{1}{2}\right)$



. :(32.1)

البنى البلوسرية

خصائص الشبكة السداسية المتراصة (hcp)

$$\vec{a}_1 = a\vec{i}, \vec{a}_2 = \frac{\sqrt{3}}{2}a\vec{j} - \frac{1}{2}a\vec{i}, \vec{a}_1 = c\vec{k}$$
:

: .**2**

$$a_1 = a_2 = a$$
, $a_3 = c$, $\beta = \alpha = 90^\circ$, $\gamma = 120^\circ$

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = n_1 \frac{a}{2} (2n_1 - n_2) \vec{i} + \frac{\sqrt{3}}{2} n_2 a \vec{j} + n_3 c \vec{k} \quad :$$

$$\frac{c}{a} = \sqrt{\frac{8}{3}} = 1.63 : \qquad : \frac{c}{a} \qquad .4$$

$$V_e = \vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3) = \frac{\sqrt{3}}{2} a^2 c = \sqrt{2} a^3$$
:

$$\frac{3\sqrt{3}}{2}a^2c = 3\sqrt{2}a^3$$
:

2:
$$n_a = \frac{1}{6} \times 12 + \frac{1}{2} \times 2 + 3 = 6$$
 : .6

$$z = 12$$
: .7

$$: r_a: \qquad R_z = 2r_a = a : \qquad .8$$

$$F_R^{hcp} = \frac{n_a v_a}{V} = \frac{6 \times \frac{4}{3} \pi r_a^3}{3\sqrt{2} a^3} = \frac{\pi \sqrt{2}}{6} = 0.74 : \tag{5.1}$$

hcp:							
c(A)	a(A)		c(A)	$a(\stackrel{\circ}{\mathrm{A}})$			
6.07	3.75	La	3.58	2.29	Ве		
5.21	3.21	Mg	5.62	2.98	Cd		
5.27	3.31	Sc	5.59	3.56	Er		
5.73	3.65	Y	5.78	3.64	Gd		
5.69	3.60	Tb	5.83	3.57	Не		
4.95	2.66	Zn	5.62	3.58	Но		

:(5.1)

14-1 خلية ويغنر - زايتس (wigner - seitz):

.1

البنى البلومرية

.((33.1)) .2

() .3

- :(33.1) CFC - (34.1)

- . CFC () CC

.CC

(→) CC

(i) CFC

- :(34.1)

البنى البلومرية

1-14 بعض البني البلورية المشهورة:

1-14-1 بنية الماس:

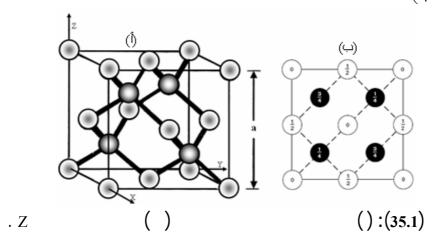
$$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) (0,0,0)$$
:

$$(z = 4)$$

$$(z = 4)$$

$$\left(\frac{1}{4}, \frac{3}{4}, \frac{3}{4}\right) \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \left(\frac{1}{2}, \frac{1}{2}, 0\right) \left(\frac{1}{2}, 0, \frac{1}{2}\right) \left(0, \frac{1}{2}, \frac{1}{2}\right) \quad (0, 0, 0)$$

$$\cdot \left(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}\right) \left(\frac{3}{4}, \frac{1}{4}, \frac{3}{4}\right)$$



$$(F = 0.34)$$
 % 34

Z (X,Y)

(35.1)

.Z

2-14-1 بنية كلوريد السيزيوم CsCl:

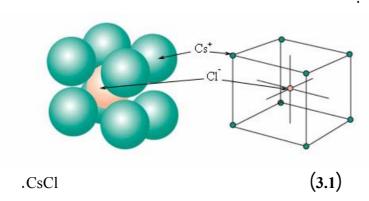
,

$$.\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) \qquad \qquad \text{Cl}^{-} \qquad \qquad \left(0,0,0\right) \qquad \qquad \text{Cs}^{+}$$

CsCl

البنى البلوم ية

(z=8) $Cl^{-} Cs^{+}$ $R_{z} = r_{Cl^{-}} + r_{Cs^{+}} = \frac{\sqrt{3}}{2}a$



3-14-1 بنية كلوريد الصوديوم NaCl:

()

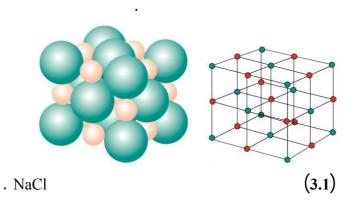
$$.\left(\frac{1}{2},0,0\right)$$
 (C1⁻) (0,0,0) (Na⁺) (C1⁻)

NaCl

$$\cdot \left(0,0,\frac{1}{2}\right) \left(0,\frac{1}{2},0\right) \left(\frac{1}{2},0,0\right) \left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) : Na^{+} \left(\frac{1}{2},\frac{1}{2},0\right) \left(\frac{1}{2},0,\frac{1}{2}\right) \left(0,\frac{1}{2},\frac{1}{2}\right) \quad (0,0,0) : Cl^{-}$$

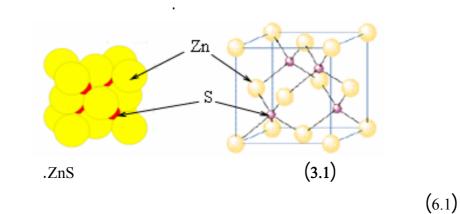
$$\left(z = 6\right) \qquad \qquad Cl^{-} \quad Na^{+}$$

 $R_z = r_{Cl^-} + r_{Na^+} = \frac{a}{2}$



لبنى البلومرية

1-14-1 بنية كبريت الزنك ZnS:



ZnS		NaCl		CsCl			
a(A)		a(A)		$a(\overset{\circ}{\mathrm{A}})$		$a(\overset{\circ}{\mathrm{A}})$	
5.41	ZnS	5.64	NaCl	4.12	CsCl	3.57	C
6.09	ZnTe	5.35	KF	4.29	CsBr	5.43	Si
5.82	CdS	5.91	CaSe	4.57	CsI	5.66	Ge
6.08	HgSe	5.55	AgCl	3.83	TlCl	6.49	(α) -Sn
5.62	AlSb	4.21	MgO	3.97	TlBr		

:(6.1)

لفصل الثانين

انعراج الأشعةالسينية والشبكة المعكوسة

2-1 مقدمة:

(-)

P

h

λ

 $\lambda = \frac{h}{p}$

 $\vec{a}, \vec{b}, \vec{c}$

.

2-2 انعراج النيترونات:

(p) (1-2)

:

(2-2)
$$E_{n} = \frac{p^{2}}{2m} = \frac{h^{2}}{2m_{n}\lambda_{n}^{2}} \implies \lambda_{n} = \frac{h}{\sqrt{2m_{n}E_{n}}}$$
$$(m_{n}=1.675\times10^{-27} \, Kg) \qquad (2-2)$$

:

(3-2)
$$\lambda_n \approx \frac{0.28}{\sqrt{E_n}} \stackrel{o}{A}$$

51

 $(E_n = 0.08 \ ev)$

0.025 ev

KT

. 4000 m/s

3-2 انعراج الإلكترونات:

(2-2**)**

: $(m_e = 9.1 \times 10^{-31} Kg)$ $\lambda_e = \frac{12.25}{\sqrt{E_e}} \stackrel{o}{\rm A}$ (4-2)

. 150 ev

2-4 الأشعة السينية المستعملة في تحليل البنية البلورية:

 $\cdot \left(1 \rightarrow 10 \stackrel{o}{A}\right) \qquad - \qquad -$

(5-2)
$$E = \hbar \omega = h \upsilon = h \frac{c}{\lambda} \Rightarrow \lambda = \frac{hc}{E}$$

, hc = 1240 ev.nm

(5-2) $\left(1 \stackrel{\circ}{A} = 10^{-10} m\right)$ $(1ev = 1.602 \times 10^{-19})$ (Kev)

 $\lambda = \frac{1240 \ [ev.nm]}{E \ [Kev]} = \frac{12.4}{E} \stackrel{o}{A}$ (6-2)

(10-50Kev)

5-2 إنتلج الأشعة السينية:

((1.2)

((2.2)

. ((3.2)

(

 $\gamma \quad \beta \quad \alpha$

γ β ,1 3 2

 $.\mathsf{K}_{\alpha}$ Κ M

 $.K_{\beta}$ K

L

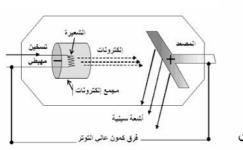
(1.2)

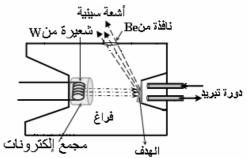
W

53

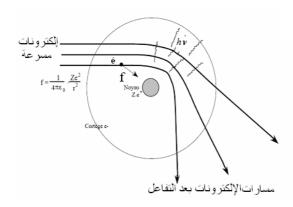
Ве

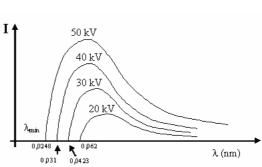
.



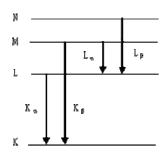


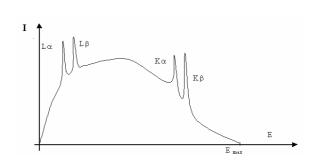
:(1.2)





:(2.2)





:(3.2)

(7-2**)**

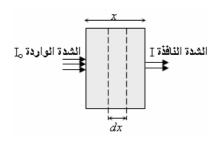
6-2 إمتصاص الأشعة السينية:

$$\mu \qquad \qquad (I_o) \qquad \qquad .(\lambda)$$

$$:((4.2) \qquad) \qquad (I)$$

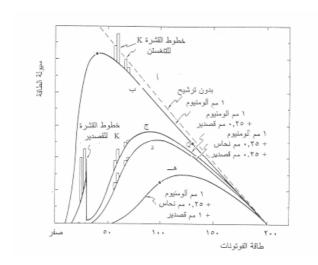
$$I - I_o = dI = -\mu I dx \Rightarrow \int_{I_o}^{I} \frac{dI}{I} = \int_{0}^{x} \mu dx \Rightarrow I = I_o e^{-\mu x}$$

: *x* :



:(4.2)

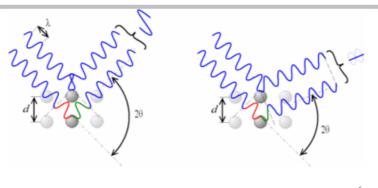
. ((5.2)



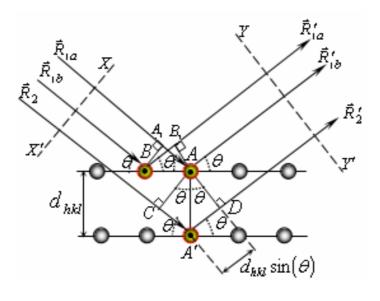
. :(5.2)

7-2 علاقة براغ في انعرلج الأشعة السينية :

1913 ((5.2) ((6.2)



:(6.2)



:(7.2)

B A \vec{R}_{1b} \vec{R}_{1a}

 \vec{R}'_{1a} YY' XX'

 $\vec{R}'_{{\scriptscriptstyle 1}b}$

(8-2)
$$AA_{1} - BB_{1} = AB\cos(\theta) - AB\cos(\theta) = 0$$

$$\vec{R}'_{1a}$$

•

 $\vec{R}'_{2} \quad \vec{R}'_{1a} \qquad (7.2)$ $\vec{R}'_{2} \quad \vec{R}'_{1a} \qquad (CA' + A'D) : \quad YY' \quad XX' \qquad A'$

 $CA' + A'D = 2CA' = n\lambda$ $\sin(\theta) = \frac{CA'}{d_{hkl}} \Rightarrow CA' = d_{hkl} \sin(\theta)$

 $2CA' = 2d_{hkl} \sin(\theta) = n\lambda$

 $(9-2) 2d_{hkl} \sin(\theta) = n\lambda$

 $:\lambda$, $:\theta$, n:

 $d_{hkl} (9-2)$

. n

8-2 الطرق التجريبية لانعراج الأشعة (الأمواج) السينية على البلورات:

 $(2d\sin\theta = n\lambda)$ $(\lambda) \qquad (\lambda) \qquad (\theta)$

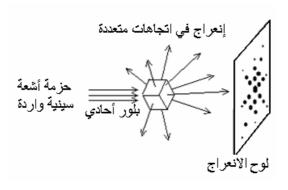
(heta)

 $\{hkl\}$

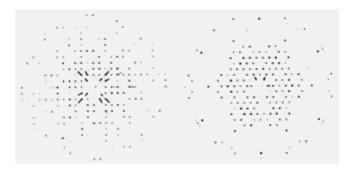
.

2-8-1 طريقة فون لاوي (**von Laue**):

 $\begin{pmatrix}
0.2 - 3 \stackrel{\circ}{A} \\
 & (\theta) \\
 & (\lambda) \\
 & (d_{hkl}) \\
 & \vdots \\
 & \vdots \\
 & (9.2) \\
 &)()$



:(8.2)



:(9.2)

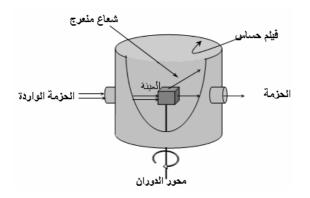
2-8-2 طريفة البلورة الدوارة:

 (θ)

 (d_{hkl})

)

.((10.2)

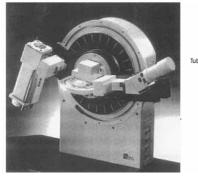


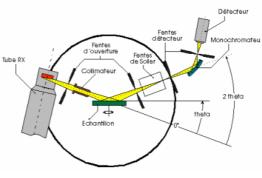
. :(10.2)

) "

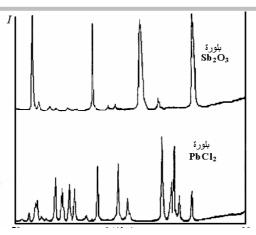
(12.2) .((11.2)

 $.PbCl_2 \quad Sb_2O_3 \\$





. :(11.2)



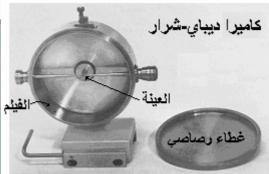
. $PbCl_2$ Sb_2O_3 :(12.2)

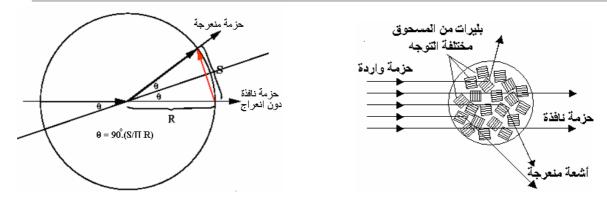
3-8-2 طريقة المسحوق أو طريقة ديباي- شرر Debye-scherrer

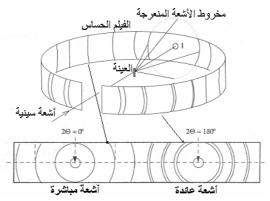
() . (θ)

.((13.2))

.(12.2)

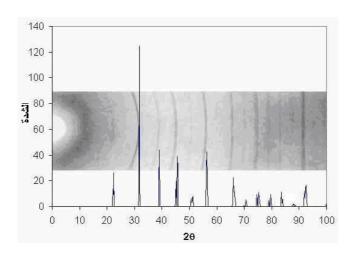






:(13.2)

(14.2)



:(14.2)

2

9-2 الشبكة المعكوسة (المقلوبة):

(...

 \vec{K}

 $K = \frac{2\pi}{\lambda}$

.(

2-9-1 مفهوم الشبكة المعكوسة:

 $(\sin \theta_{hkl} = n\lambda/2d_{hkl})$: $(\sin(\theta_{hkl}))$ (d_{hkl})

 $(\sin(heta_{hkl}))$

2-9-2 خصائص الشبكة المعكوسة:

 $\left(d_{hkl}
ight)$ $\left(\begin{array}{c} 2\pi \end{array}\right)$

.

 (\vec{K})

 $\vec{G} = \vec{A}_1 g_1 + \vec{A}_2 g_2 + \vec{A}_3 g_3$ (8-2) $\vec{A}_1, \vec{A}_2, \vec{A}_3$ g_1, g_2, g_3 $\vec{A}_1, \vec{A}_2, \vec{A}_3$ $\vec{a}_1, \vec{a}_2, \vec{a}_3$ ($\vec{A}_1.\vec{a}_1 = 2\pi \qquad \qquad \vec{A}_1.\vec{a}_2 = 0$ $\vec{A}_1.\vec{a}_3=0$ $\vec{A}_2 \vec{a}_2 = 2\pi$ $\vec{A}_2 \cdot \vec{a}_1 = 0$ $\vec{A}_2 \cdot \vec{a}_3 = 0$ $\vec{A}_3 \cdot \vec{a}_3 = 2\pi$ $\vec{A}_3 \cdot \vec{a}_1 = 0$ $\vec{A}_3 \cdot \vec{a}_2 = 0$ (9-2) \vec{A}_3 $(\vec{a}_2 \times \vec{a}_3 / \vec{a}_2 \times \vec{a}_3)$: (9-2) $(\vec{a}_3 \times \vec{a}_1 / \vec{a}_3 \times \vec{a}_1)$: $(\vec{a}_1 \times \vec{a}_2 / \vec{a}_1 \times \vec{a}_2)$ $\vec{A}_1 \cdot \vec{a}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_2 \times \vec{a}_2} \Rightarrow \vec{A}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_2)}$ $\vec{A}_3 \cdot \vec{a}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \times \vec{a}_2} \Rightarrow \vec{A}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_2 \cdot (\vec{a}_1 \times \vec{a}_2)}$ (10-2) $\vec{A}_2 \cdot \vec{a}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_2 \times \vec{a}_1} \Rightarrow \vec{A}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_2 \cdot (\vec{a}_2 \times \vec{a}_1)}$ $(\vec{A}_1, \vec{A}_2, \vec{A}_3)$ $\vec{a}_1(\vec{a}_2 \times \vec{a}_3)$ $\vec{a}_2(\vec{a}_3 \times \vec{a}_1)$ $\vec{a}_3(\vec{a}_1 \times \vec{a}_2)$ (10-2)(11-2) $V_e = \vec{a}_1(\vec{a}_2 \times \vec{a}_3) = \vec{a}_2(\vec{a}_3 \times \vec{a}_1) = \vec{a}_3(\vec{a}_1 \times \vec{a}_2)$ $(\vec{A}_1, \vec{A}_2, \vec{A}_3)$

 (\vec{K}) V_{e}^{*} V_{e} $V_e^* V_e = (\vec{A}.(\vec{A}_2 \times \vec{A}_3))(\vec{a}_1.(\vec{a}_2 \times \vec{a}_3)) = \begin{vmatrix} \vec{A}_1.\vec{a}_1 & \vec{A}_1.\vec{a}_2 & \vec{A}_1.\vec{a}_3 \\ \vec{A}_2.\vec{a}_1 & \vec{A}_2.\vec{a}_2 & \vec{A}_2.\vec{a}_3 \\ \vec{A}_3.\vec{a}_1 & \vec{A}_3.\vec{a}_2 & \vec{A}_3.\vec{a}_3 \end{vmatrix} = (2\pi)^3$ \vec{R} $\vec{G}.\vec{R} = (\vec{A}_1g_1 + \vec{A}_2g_2 + \vec{A}_3g_3).(n_1\vec{a}_1 + n_2\vec{a}_2 + n_3\vec{a}_3)$ $=2\pi(g_1n_1+g_2n_2+g_3n_3)$ (13-2) $=2\pi m$ $\vec{G}_{hkl} = h\vec{A}_1 + k\vec{A}_2 + l\vec{A}_3$: (hkl):((15.2) $\overrightarrow{p_1}\overrightarrow{p_2} = \left(\frac{\overrightarrow{a_2}}{k}\right) - \left(\frac{\overrightarrow{a_1}}{k}\right) \quad \mathcal{I} \quad \overrightarrow{p_1}\overrightarrow{p_3} = \left(\frac{\overrightarrow{a_3}}{k}\right) - \left(\frac{\overrightarrow{a_1}}{k}\right)$ $\vec{G}_{hkl} \cdot \overrightarrow{p_1 p_2} = \left(h\vec{A}_1 + k\vec{A}_2 + l\vec{A}_3\right) \cdot \left(\left(\frac{\vec{a}_2}{k}\right) - \left(\frac{\vec{a}_1}{h}\right)\right) = -2\pi + 2\pi = 0 \Rightarrow \vec{G}_{hkl} \perp \overrightarrow{p_1 p_2}$ $\vec{G}_{hkl}.\overrightarrow{p_1p_3} = \left(h\vec{A}_1 + k\vec{A}_2 + l\vec{A}_3\right).\left(\left(\frac{\vec{a}_3}{l}\right) - \left(\frac{\vec{a}_1}{h}\right)\right) = -2\pi + 2\pi = 0 \Rightarrow \vec{G}_{hkl} \perp \overrightarrow{p_1p_3}$ $\lfloor (hkl) \overline{\perp \vec{G}_{hkl}}$: $\vec{G}_{hkl} \perp \overline{p_1 p_2}$ $\vec{G}_{hkl} \perp \overline{p_1 p_3}$: (14-2)

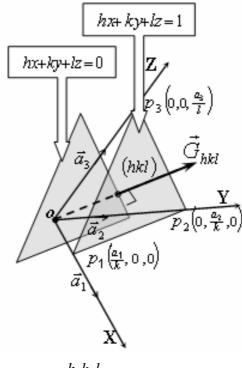
$$||\overrightarrow{OP}|| = d_{hkl} : \qquad (15.2)$$

$$\vec{G}_{hkl}.\overrightarrow{Op_1} = \left(h\vec{A}_1 + k\vec{A}_2 + l\vec{A}_3\right)\left(\frac{\vec{a}_1}{h}\right) = 2\pi :$$

$$\vec{G}_{hkl}.\overrightarrow{Op_1} = \|\vec{G}_{hkl}\| \|\overrightarrow{Op_1}\| \cos(\vec{G}_{hkl}, \overrightarrow{Op_1}) = \|\vec{G}_{hkl}\| \|\overrightarrow{OP}\| = \|\vec{G}_{hkl}\| d_{hkl} :$$

 d_{hkl}

(15-2)
$$\|\vec{G}_{hkl}\| d_{hkl} = 2\pi \Rightarrow \|\vec{G}_{hkl}\| = \frac{2\pi}{d_{hkl}} :$$



.(hkl) h,k,l :(15.2)

2-9-3 حساب القيم المعكوسة(المقلوبة):

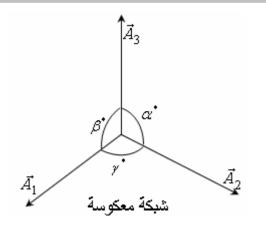
$$\alpha = (\vec{a}_2, \vec{a}_3) : \qquad \vec{a}_1, \vec{a}_2, \vec{a}_3 : \\ \alpha^* = (\vec{A}_2, \vec{A}_3) : \qquad \vec{A}_1, \vec{A}_2, \vec{A}_3 \qquad \qquad .\gamma = (\vec{a}_1, \vec{a}_2) \quad \beta = (\vec{a}_3, \vec{a}_1) \\ .\gamma^* = (\vec{A}_1, \vec{A}_2) \quad \beta^* = (\vec{A}_3, \vec{A}_1)$$

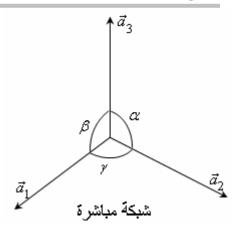
:((15.2)

• حساب الزوايا المعكوسة:

$$(16-2) \qquad V_e = \vec{a}_1(\vec{a}_2 \times \vec{a}_3) = \vec{a}_2(\vec{a}_3 \times \vec{a}_1) = \vec{a}_3(\vec{a}_1 \times \vec{a}_2) :$$

$$\vec{A}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{V_e} , \quad \vec{A}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{V_e} , \quad \vec{A}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{V_e}$$





:(15.2)

$$\vdots \qquad \left(\vec{A}_1 \cdot \vec{A}_2\right)$$

(17-2)
$$\vec{A}_{1}. \vec{A}_{2} = 2\pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{V_{e}}.2\pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{V_{e}} = \frac{4\pi^{2}}{V_{e}^{2}} (\vec{a}_{2} \times \vec{a}_{3}). (\vec{a}_{3} \times \vec{a}_{1})$$

:

(18-2)
$$(\vec{a}_2 \times \vec{a}_3)$$
. $(\vec{a}_3 \times \vec{a}_1) = (\vec{a}_2 \cdot \vec{a}_3) (\vec{a}_3 \cdot \vec{a}_1) - (\vec{a}_2 \times \vec{a}_1) \cdot a_3^2 = a_2 a_3^2 a_1 (\cos(\alpha)\cos(\beta) - \cos(\gamma))$

(19-2)
$$\vec{A}_1 \cdot \vec{A}_2 = \frac{4\pi^2}{V_e^2} a_1 a_2 a_3^2 (\cos(\alpha)\cos(\beta) - \cos(\gamma))$$

•

$$\vec{A}_{1}. \ \vec{A}_{2} = \left\| \vec{A}_{1} \right\| \left\| \vec{A}_{2} \right\| \cos \left(\gamma^{*} \right) = \frac{4\pi^{2}}{V_{e}^{2}} \left\| \vec{a}_{2} \times \vec{a}_{3} \right\| \left\| \vec{a}_{3} \times \vec{a}_{1} \right\| \cos \left(\gamma^{*} \right)$$

(20-2)
$$\vec{A}_1 \cdot \vec{A}_2 = \frac{4\pi^2}{V_a^2} a_1 a_2 a_3^2 \sin(\alpha) \sin(\beta) \cos(\gamma^*)$$

(21-2)
$$\cos(\gamma^*) = \frac{\cos(\alpha)\cos(\beta) - \cos(\gamma)}{\sin(\alpha)\sin(\beta)}$$

$$\cos(\beta^*)\cos(\alpha^*)$$

(22-2)
$$\cos(\alpha^*) = \frac{\cos(\beta)\cos(\gamma) - \cos(\alpha)}{\sin(\beta)\sin(\gamma)}$$

(23-2)
$$\cos(\beta^*) = \frac{\cos(\gamma)\cos(\alpha) - \cos(\beta)}{\sin(\lambda)\sin(\alpha)}$$

• حساب الثوابت المعكوسة:

:

$$V_{e}^{2} = \left[\vec{a}_{1}(\vec{a}_{2} \times \vec{a}_{3})\right]^{2} = \begin{vmatrix} \vec{a}_{1}.\vec{a}_{1} & \vec{a}_{1}.\vec{a}_{2} & \vec{a}_{1}.\vec{a}_{3} \\ \vec{a}_{2}.\vec{a}_{1} & \vec{a}_{2}.\vec{a}_{2} & \vec{a}_{2}.\vec{a}_{3} \\ \vec{a}_{3}.\vec{a}_{1} & \vec{a}_{3}.\vec{a}_{2} & \vec{a}_{3}.\vec{a}_{3} \end{vmatrix} \Rightarrow$$

$$(24-2) \qquad V_{e}^{2} = (a_{1}a_{2}a_{3})^{2} \left(1 + 2\cos(\alpha)\cos(\beta)\cos(\gamma) - \cos^{2}(\alpha) - \cos^{2}(\beta) - \cos^{2}(\gamma)\right)$$

$$\vdots \|\vec{A}_{1}\|^{2}$$

$$\|\vec{A}_1\|^2 = \frac{4\pi^2}{V_e^2} \|\vec{a}_2 \times \vec{a}_3\|^2$$

$$\|\vec{A}_1\|^2 = \frac{4\pi^2}{(a_1 a_2 a_3)^2 (1 + 2\cos\alpha\cos\beta\cos\gamma - (\cos\alpha)^2 - (\cos\beta)^2 - (\cos\gamma)^2)} (a_2 a_3)^2 (\sin(\alpha))^2$$

(25-2)
$$\|\vec{A}_1\|^2 = \frac{(\sin(\alpha))^2}{(1 + 2\cos\alpha\cos\beta\cos\gamma - \cos^2(\alpha) - \cos^2(\beta) - \cos^2(\gamma))} \left(\frac{2\pi}{a_1}\right)^2$$
$$: \|\vec{A}_3\|^2 \|\vec{A}_2\|^2$$

(26-2)
$$\|\vec{A}_2\|^2 = \frac{(\sin(\beta))^2}{(1 + 2\cos\alpha\cos\beta\cos\gamma - \cos^2(\alpha) - \cos^2(\beta) - \cos^2(\gamma))} (\frac{2\pi}{a_2})^2$$

(27-2)
$$\|\vec{A}_1\|^2 = \frac{(\sin(\gamma))^2}{(1 + 2\cos\alpha\cos\beta\cos\gamma - \cos^2(\alpha) - \cos^2(\beta) - \cos^2(\gamma))} \left(\frac{2\pi}{a_3}\right)^2$$

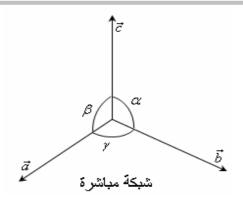
: (d_{hkl}) العلاقة العامة للمسافة الفاصلة بين المستويات البلورية المتوازية المسافة الفاصلة بين المستويات البلورية المسافة الفاصلة بين المستويات البلورية المتوازية المسافة الفاصلة بين المستويات المستويا

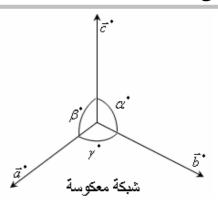
$$d_{hkl}$$

$$(X,Y,Z)$$

$$\gamma = (\vec{a},\vec{b}) \quad \beta = (\vec{c},\vec{a}) \quad \alpha = (\vec{b},\vec{c}) : \quad \vec{c},\vec{b},\vec{a}$$

$$\beta^* = (\vec{c}^*,\vec{a}^*) \quad \alpha^* = (\vec{b}^*,\vec{c}^*) : \quad \vec{c}^*,\vec{b}^*,\vec{a}^* : \quad ((16.2) \quad)\gamma^* = (\vec{a}^*,\vec{b}^*)$$





:(16.2)

•

- -
$$(d_{hkl})$$

:

 $\alpha \neq \beta \neq \gamma \quad a \neq b \neq c$

$$\|\vec{G}_{hkl}\| = \frac{2\pi}{d_{hkl}} \Rightarrow \frac{1}{(d_{hkl})^2} = \frac{\|\vec{G}_{hkl}\|^2}{(2\pi)^2} \Rightarrow \frac{1}{(d_{hkl})^2} = \frac{\vec{G}_{hkl} \cdot \vec{G}_{hkl}}{(2\pi)^2}$$

$$\vec{G}_{hkl} \cdot \vec{G}_{hkl} = (h\vec{a}_1^* + k\vec{a}_2^* + l\vec{a}_3^*)(h\vec{a}_1^* + k\vec{a}_2^* + l\vec{a}_3^*)$$

$$\vec{G}_{hkl} \cdot \vec{G} = h^2 \|\vec{a}_1^*\|^2 + k^2 \|\vec{a}_2^*\|^2 + l^2 \|\vec{a}_3^*\|^2 + 2 \|\vec{a}_1^*\| \|\vec{a}_2^*\| \cos \gamma^*$$

$$+ 2 \|\vec{a}_2^*\| \|\vec{a}_3^*\| \cos \alpha^* + 2 \|\vec{a}_3^*\| \|\vec{a}_1^*\| \cos \beta^*$$

$$(27-2) \quad (26-2) \quad (25-2) \quad (23-2) \quad (22-2) \quad (21-2)$$

(28

.

$$(29-2) \frac{1}{(d_{hkl})^{2}} = \frac{a^{2}b^{2}c^{2}}{v^{2}} \left(\frac{h^{2}\sin^{2}(\alpha)}{a^{2}} + \frac{k^{2}\sin^{2}(\beta)}{b^{2}} + \frac{l^{2}\sin^{2}(\gamma)}{c^{2}} + \frac{2hk}{ab}(\cos(\alpha)\cos(\beta) - \cos(\gamma)) + \frac{2kl}{bc}(\cos(\beta)\cos(\gamma) - \cos(\beta)) + \frac{2hl}{ac}(\cos(\gamma)\cos(\alpha) - \cos(\beta)) \right)$$

(30-2) $v^{2} = (abc)^{2} (1 + 2\cos(\alpha)\cos(\beta)\cos(\gamma) - \cos^{2}(\alpha) - \cos^{2}(\beta) - \cos^{2}(\gamma))$

$$\alpha = \gamma = \frac{\pi}{2} \neq \beta \quad \text{s} \quad a \neq b \neq c \quad \therefore$$
 .1

69

(31-2)
$$\frac{1}{(d_{hkl})^2} = \frac{1}{\sin^2(\beta)} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2(\beta)}{b^2} + \frac{l^2}{c^2} - \frac{2hl}{ac} (\cos(\beta)) \right)$$

$$\alpha = \gamma = \beta = \frac{\pi}{2} \quad \text{3} \quad a \neq b \neq c \quad .2$$

(32-2)
$$\frac{1}{(d_{hkl})^2} = \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)$$

$$\alpha = \gamma = \beta = \frac{\pi}{2} \quad \mathcal{I} \quad a = b \neq c \quad \therefore$$
 3

(33-2)
$$\frac{1}{(d_{hkl})^2} = \left(\frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}\right)$$

$$\alpha = \gamma = \beta = \frac{\pi}{2} \quad \beta \quad a = b = c \quad .4$$

(34-2)
$$\frac{1}{(d_{hkl})^2} = \left(\frac{h^2 + k^2 + l^2}{a^2}\right)$$

$$\alpha = \gamma = \beta \neq \frac{\pi}{2} < 120^{\circ} \quad \beta \quad a = b = c \quad .5$$

(35-2)
$$\frac{1}{(d_{hkl})^2} = \frac{(h^2 + k^2 + l^2)\sin^2(\alpha) + 2(hk + kl + hl)(\cos^2(\alpha) - \cos(\alpha))}{a^2(1 + 2\cos^3(\alpha) - 3\cos^2(\alpha))}$$

$$\alpha = \beta = \frac{\pi}{2}, \gamma = 120^{\circ} \quad \text{3} \quad a = b \neq c \quad .6$$

(36-2)
$$\frac{1}{(d_{hkl})^2} = \frac{4}{3} \left(\frac{(h^2 + hk + k^2)}{a^2} \right) + \frac{l^2}{c^2}$$

2-9-5 إنشاء شبكة مستوية معكوسة لشبكة مستوية مباشرة:

$$\gamma$$
 \vec{a}_1, \vec{a}_2 .1

$$d_{010} \quad d_{100} \qquad (010) \quad (100)$$

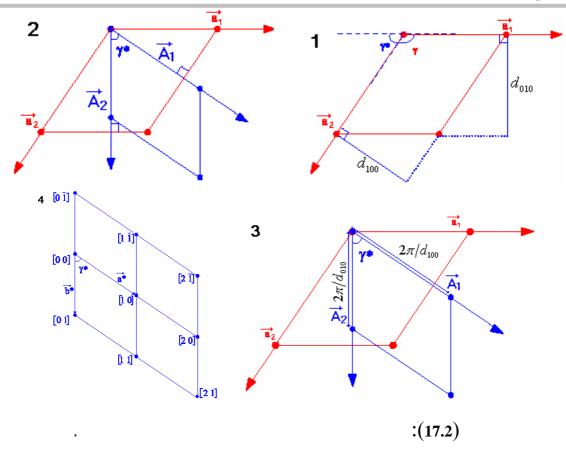
$$\vec{a}_1, \vec{A}_2$$
 \vec{a}_2 \vec{a}_1 .2

1/

$$||\vec{A}_2|| = 2\pi/d_{010}$$
 d_{hkl} \vec{A}_1, \vec{A}_2 .3

$$\|\vec{A}_1\| = 2\pi/d_{100}$$

$$.\vec{G}_{hk} = h\vec{A}_1 + k\vec{A}_2$$
 .4



2-9-6 شروط فون لاوي للانعراج:

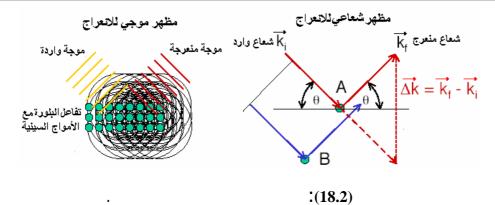
$$(\lambda_f) \qquad (\lambda_i)$$

$$\cdot \qquad \left\|\vec{K}_f\right\| = 2\pi/\lambda_f\right) \qquad \left\|\vec{K}_i\right\| = 2\pi/\lambda_i\right)$$

$$\vdots \qquad \dot{\vec{K}} \qquad \vec{K}$$

$$\Delta \vec{K} = \vec{K}_f - \vec{K}_i$$

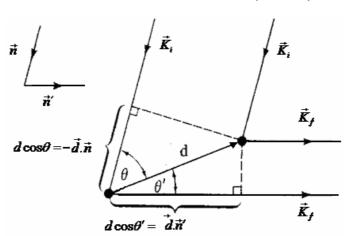
(19.2)



$$\vec{n}' \quad \vec{K}_f \qquad \qquad \vec{n} \quad \vec{K}_i \\ \vec{d} = \vec{a}_i (i = 1, 2, 3):$$

 $\vec{n}' \quad \vec{n} : \quad .$

(38-2) $d\cos\theta + d\cos\theta' = \vec{d}.(\vec{n}' - \vec{n})$



•

(39-2)
$$\vec{d} \cdot (\vec{n}' - \vec{n}) = m\lambda$$

$$\vdots \qquad \left(\frac{2\pi}{\lambda}\right) \qquad (39-2)$$

$$\vec{d} \cdot \left[\left(\frac{2\pi}{\lambda} \right) \cdot \vec{n}' - \left(\frac{2\pi}{\lambda} \right) \cdot \vec{n} \right] = 2\pi m$$

$$\vec{d} \cdot (\vec{K}_f - \vec{K}_i) = 2\pi m$$

$$(40-2) \vec{d} \cdot (\Delta \vec{k}) = 2\pi m$$

 $\vec{d} = \vec{a}_i (i = 1, 2, 3) :$

(41-2)
$$\vec{a}_1 \cdot (\Delta \vec{k}) = 2\pi m_1$$

(42-2)
$$\vec{a}_2 \cdot (\Delta \vec{k}) = 2\pi m_2$$

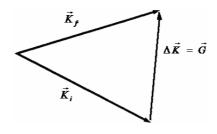
$$\vec{a}_3.(\Delta \vec{k}) = 2\pi m_3$$

,
$$\left(\overrightarrow{\Delta K}\right)$$
 , $\left(43-2\right)$ $\left(42-2\right)$ $\left(41-2\right)$ $\left(\overrightarrow{\Delta K}\right)$ $\left(13-2\right)$

: ((20.2))

$$\Delta \vec{k} = \vec{G}$$

$$\vec{K}_f = \vec{K}_i + \vec{G}$$



(20.2)

: (45-2)

(46-2)
$$K_f^2 = K_i^2 + G^2 + 2\vec{K}_i \cdot \vec{G}$$

73

$$\left\| \vec{K}_f \, \right\| = \left\| \vec{K}_i \right\| = \left\| \vec{K} \right\| = k$$

(47-2)
$$G^2 + 2\vec{K}.\vec{G} = 0$$

(47-2)

7-9-2 إنشاء إيوالد (Ewald):

: (

مسئوي الانجراج في الشبكة المباشرة مسئوية معكوسة مسئوية مسئوية في الشبكة المباشرة منحرج معكوسة مسئوية في الشبكة المباشرة منحرجة منحرجة أشعة خرمة أشعة خرمة أشعة خرمة أشعة منحرجة منحرجة منحرجة المباشرة منحرجة منحرجة منحرجة المباشرة منحرجة المباشرة منحرجة المباشرة منحرجة المباشرة منحرجة المباشرة منحرجة المباشرة المباشر

(21.2): إنشاء إيوالد.

 $\overrightarrow{AO} = \overrightarrow{K}_{i} \qquad , A \qquad \qquad \overrightarrow{||AO||} = ||\overrightarrow{K}_{i}|| = k = 2\pi/\lambda$ $|\overrightarrow{AO}| \qquad A \qquad \qquad \lambda$ $A \qquad \overrightarrow{AB} \qquad \qquad ,((21.2) \qquad)$ $(\overrightarrow{AB} = \overrightarrow{K}_{f}) \qquad B$ $\overrightarrow{OB} \qquad .(\overrightarrow{K}_{f} \qquad \qquad \overrightarrow{K}_{i} \qquad ($

انعرإجالأشعةالسينيةوالشبكةالمعكوسة

(PQ) (A)
$$\|\vec{G}\|$$

(A)

 θ

$$\|\vec{G}\| = \|\overrightarrow{\Delta k}\| = \frac{2\pi}{d} \Rightarrow d = \frac{2\pi}{\|\vec{G}\|}$$

(21.2)

$$\sin \theta = \frac{\frac{1}{2} \|\vec{G}\|}{\|\vec{K}\|} \Rightarrow \|\vec{G}\| = 2 \|\vec{K}\| \sin \theta \Rightarrow \frac{2\pi}{d} = 2 \cdot \frac{2\pi}{\lambda} \sin \theta \Rightarrow$$

(49-2) $\lambda = 2d \sin \theta$

> : (n) (n=1)(49-2)

 $n\lambda = 2d\sin\theta$ (50-2)

(21.2)

(51-2)
$$\Delta \vec{k} = \vec{G} = \vec{K}_f - \vec{K}_i \Rightarrow \vec{K}_f = \vec{K}_i + \vec{G}$$

(51-2)

(52-2)
$$K_f^2 = K_i^2 + G^2 + 2\vec{K}_i \cdot \vec{G}$$

: (52-2) $\left\| \vec{K}_{f} \right\| = \left\| \vec{K}_{i} \right\| = \left\| \vec{K} \right\| = k :$ (21.2)

(53-2)
$$G^2 + 2\vec{K}.\vec{G} = 0$$

(53-2)

8-9-2 مناطق بريلوان (Brilloun):

(Wigner-Seitz)

$$\vec{G}$$
 (47-2)

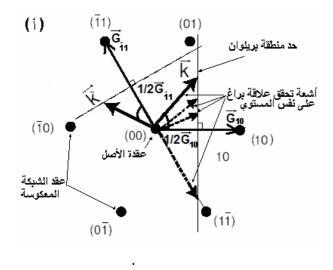
 $: -\vec{G} \quad \vec{G}$ $-\vec{G}$ (47-2)

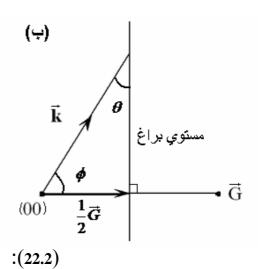
$$2\vec{k}.\vec{G} = G^2 \Rightarrow \vec{K}.\vec{G} = \frac{1}{2}G^2 \Rightarrow ||\vec{K}||.||\vec{G}||\cos\phi = \frac{1}{2}G^2 \Rightarrow$$

$$\left\| \vec{K} \right\| \cos \phi = \frac{1}{2} \left\| \vec{G} \right\|$$

$$egin{aligned} & (()(22.2)) & ()(22.2) & \vec{G} \ & (\cos\phi = \sin heta) & ()(22.2) & () \end{aligned}$$

(55-2) $K\cos\phi = K\sin\theta = \frac{1}{2}G \Rightarrow \frac{2\pi}{\lambda}\sin\theta = \frac{1}{2}\cdot\frac{2\pi}{d} \Rightarrow \lambda = 2d\sin\theta$



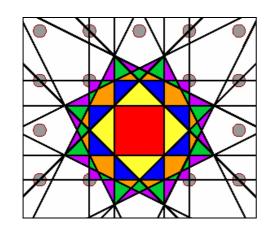


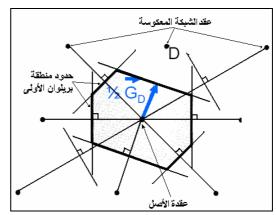
()

:

() $ec{G}$

.





:(23.2)

بعض خصائص مناطق بريلوان:

.1

. . .2

: .3

2-9-9 معكوس شبكات الفئة المكعبة:

:

1. معكوس الشبكة المكعبة البسيطة (CS):

$$\vec{a}_1 = a \, \vec{i} \quad , \quad \vec{a}_2 = a \, \vec{j} \quad , \quad \vec{a}_3 = a \, \vec{k} \quad :$$

$$\vdots$$

$$\vec{A}_1 = 2\pi \, \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 2\pi \, \frac{a^2}{a^3} (\vec{j} \times \vec{k}) = \frac{2\pi}{a} \, \vec{i}$$

$$\vec{A}_2 = 2\pi \, \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 2\pi \, \frac{a^2}{a^3} (\vec{k} \times \vec{i}) = \frac{2\pi}{a} \, \vec{j}$$

$$\vec{A}_3 = 2\pi \, \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 2\pi \, \frac{a^2}{a^3} (\vec{i} \times \vec{j}) = \frac{2\pi}{a} \, \vec{k}$$

 $\vec{A}_1, \vec{A}_2, \vec{A}_3$

 $.2\pi/a$

 $2\pi/a$

$$V_{SB}^{CS} = \vec{A}_1 \cdot (\vec{A}_2 \times \vec{A}_3) = \left(\frac{2\pi}{a}\right)^3 : \qquad . \pm \vec{A}_1 = \pm \frac{2\pi}{a} \vec{i}, \pm \vec{A}_2 = \pm \frac{2\pi}{a} \vec{j}, \pm \vec{A}_3 = \pm \frac{2\pi}{a} \vec{k} :$$

2. معكوس الشبكة المكعبة الممركزة (CC):

.1

$$\vec{a}_3 = \frac{a}{2} (\vec{i} + \vec{j} - \vec{k})$$
 $\vec{a}_2 = \frac{a}{2} (\vec{i} - \vec{j} + \vec{k})$ $\vec{a}_1 = \frac{a}{2} (-\vec{i} + \vec{j} + \vec{k})$

:

(56-2)
$$\vec{A}_{1} = 2\pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot (\vec{a}_{2} \times \vec{a}_{3})} = 2\pi \frac{\left(a^{2} / 4\right)}{\left(a^{3} / 2\right)} \left(\left(\vec{i} - \vec{j} + \vec{k}\right) \times \left(\vec{i} + \vec{j} - \vec{k}\right)\right) = \frac{\pi}{a} \left(\vec{k} + \vec{j} + \vec{k} + \vec{i} + \vec{j} - \vec{i}\right)$$
$$= \frac{2\pi}{a} \left(\vec{k} + \vec{j}\right)$$

:

(57-2)
$$\vec{A}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = \frac{2\pi}{a} (\vec{i} + \vec{k})$$

(58-2)
$$\vec{A}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = \frac{2\pi}{a} (\vec{j} + \vec{i})$$

CFC
$$\vec{A}_1, \vec{A}_2, \vec{A}_3$$

$$\big)4\pi/a$$

.

_

((24.2))
$$\frac{2\pi}{a} \left(\pm \vec{j} \pm \vec{i} \right) , \frac{2\pi}{a} \left(\pm \vec{i} \pm \vec{k} \right) , \frac{2\pi}{a} \left(\pm \vec{k} \pm \vec{j} \right) :$$

$$V_{SB}^{CC} = \vec{A}_1 \cdot (\vec{A}_2 \times \vec{A}_3) = 2 \left(\frac{2\pi}{a}\right)^3$$

3. معكوس الشبكة المكعبة الممركزة الأوجه (CFC):

:

$$\vec{a}_3 = \frac{a}{2} \left(\vec{i} + \vec{j} \right) \qquad \vec{a}_2 = \frac{a}{2} \left(\vec{i} + \vec{k} \right) \qquad \vec{a}_1 = \frac{a}{2} \left(\vec{j} + \vec{k} \right)$$

(59-2) $\vec{A}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 2\pi \frac{\left(a^2/4\right)}{\left(a^3/4\right)} \left(\left(\vec{i} + \vec{k}\right) \times \left(\vec{i} + \vec{j}\right)\right) = \frac{2\pi}{a} \left(\vec{k} + \vec{j} - \vec{i}\right) = \frac{2\pi}{a} \left(-\vec{i} + \vec{j} + \vec{k}\right)$

:

(60-2)
$$\vec{A}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = \frac{2\pi}{a} (\vec{i} - \vec{j} + \vec{k})$$

(61-2)
$$\vec{A}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot (\vec{a}_{2} \times \vec{a}_{3})} = \frac{2\pi}{a} (\vec{i} + \vec{j} - \vec{k})$$

CC

 $\vec{A}_1, \vec{A}_2, \vec{A}_3$

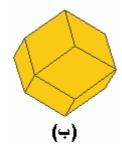
 $.4\pi/a$

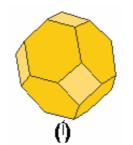
CC

((24.2))()

$$\frac{2\pi}{a} \left(\pm \vec{i} \pm \vec{k} \pm \vec{j} \right)$$
:

$$.V_{SB}^{CFC} = \vec{A}_1 . (\vec{A}_2 \times \vec{A}_3) = 4 \left(\frac{2\pi}{a}\right)^3 : \pm \frac{4\pi}{a} \vec{K} , \pm \frac{4\pi}{a} \vec{j} , \pm \frac{4\pi}{a} \vec{i} :$$





. (ب) *CC*

(i) CFC

:(24.2)

2-10 عامل البنية:

() .

•

$$\vec{a}, \vec{b}, \vec{c}$$

$$(\vec{r}_j = x_j \vec{a} + y_j \vec{b} + z_j \vec{c}) :$$

$$\vec{r}_{j}$$
 .
$$(\vec{R}_{m,n,p}) \qquad \qquad : \qquad . \vec{R}_{0,0,0} \qquad \qquad (\vec{R}_{m,n,p} = m \, \vec{a} + n \, \vec{b} + p \, \vec{c})$$

.((25.2))
$$(\vec{r}_j + \vec{R}_{m,n,p})$$
: $(\vec{R}_{m,n,p})$

.

:
$$(j) C_{j}$$

$$C_{j} \left(\vec{R} - \left(\vec{r}_{j} + \vec{R}_{m,n,p} \right) \right)$$

 $(62-2) C_j \left(R - \left(\vec{r}_j + R_{m,j}\right)\right)$

 $ec{R}$: .

, C_j

:

(63-2)
$$N(\vec{r}') = \sum_{j=1}^{S} C_{j} \left(\vec{R} - \left(\vec{r}_{j} + \vec{R}_{m,n,p} \right) \right)$$

$$.S \qquad \qquad (j) \qquad \vec{r}' = \vec{R} - \left(\vec{r}_{j} + \vec{R}_{m,n,p} \right) :$$

$$\vec{\Omega} \qquad ($$

:

(64-2)
$$\Omega = \sum_{mnp}^{M^3} \int_{\exists L \subseteq S} N(\vec{r}') e^{i\vec{R} \cdot \overrightarrow{\Delta k}} dv$$

$$M^3 \qquad (mnp)$$

(64-2)

$$\Omega = \sum_{mnp}^{M^3} \sum_{j}^{S} \int_{\vec{k} = \vec{k}} C_j(\vec{r}') dv e^{i(\vec{r}' + \vec{R}_{m,n,p} + \vec{r}_j) \cdot \overrightarrow{\Delta k}}$$

(65-2)
$$\Omega = \sum_{mnp}^{M^3} \sum_{j}^{S} f_j e^{i(\vec{R}_{m,n,p} + \vec{r}_j) \cdot \Delta \vec{k}}$$

•

 f_{j}

$$f_{j} = \int_{i \neq k} C_{j}(\vec{r}') \, dv \, e^{i\vec{r}' \cdot \overrightarrow{\Delta k}}$$

. (j)

 $\vec{\Delta k} = \vec{G}$

$$\Omega = M^{3} \sum_{j}^{S} f_{j} e^{i\vec{r}_{j}.\vec{G}} e^{i\vec{R}_{m,n,p}.\vec{G}} = M^{3} \sum_{j}^{S} f_{j} e^{i\vec{r}_{j}.\vec{G}} \cdot \left(e^{i\vec{R}_{m,n,p}.\vec{G}} = 1\right)$$

 $\Omega = M^3 F$

(67-2)
$$F = \sum_{j}^{S} f_{j} e^{i\vec{r}_{j}.\vec{G}}$$

: F

$$\vec{r}_{j}.\vec{G} = (x_{j}\vec{a} + y_{j}\vec{b} + z_{j}\vec{c})(h\vec{a}^{*} + k\vec{b}^{*} + l\vec{c}^{*})$$

$$= 2\pi(x_{j}h + y_{j}k + z_{j}l)$$

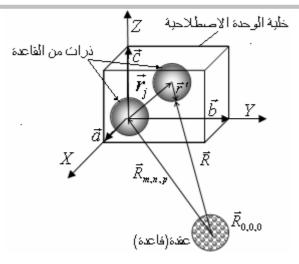
:

(68-2)
$$F_{hkl} = \sum_{i}^{S} f_{i} e^{i2\pi(x_{j}h + y_{j}k + z_{j}l)}$$

 F_{hkl}

(hkl)

 $. \hspace{1cm} (hkl) \hspace{1cm} .$



. :(25.2)

2-11 حساب عامل البنية لبعض البني البلورية:

: (68-2)

• بنية المكعب البسيط (CS)

 F_{hkl}

(0,0,0):

$$F_{hkl}=f\ e^{i2\pi(0h+0k+0l)}=f$$

$$h,k,l\qquad F_{hkl}\qquad (F_{hkl}
eq 0)$$

• بنیة المکعب الممرکز (cc):

$$(0,0,0)$$
: $((CS)$ (CC) $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$:

$$F_{hkl} = f + f e^{i2\pi (h/2 + k/2 + l/2)} = f (1 + e^{i\pi(h+k+l)})$$

$$h_{j,k,l}$$

 $(F_{hkl} = 2f \neq 0)$ h+k+l=2n: h+k+l

$$(F_{hkl} = 0)$$
 $h+k+l=2n+1$: $h+k+l$

(hkl)

• بنية المكعب الممركز الأوجه (CFC):))(CS)(CFC)(0,0,0): $\left(0,\frac{1}{2},\frac{1}{2}\right)\left(\frac{1}{2},0,\frac{1}{2}\right)\left(\frac{1}{2},\frac{1}{2},0\right)$: $F_{hkl} = f \left(1 + e^{i\pi(h+k)} + e^{i\pi(h+l)} + e^{i\pi(k+l)} \right)$ F_{hkl} h, k, l $(F_{hkl}=0)$ h, k, l• بنیة کلورید السیزیوم (CsCl):)) (Cs^+) $(((Cs^+)$ (Cl^-) (Cs^+) (CsCl) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$: (Cl^-) (0,0,0) $F_{hkl} = f_{Cs^{+}} + f_{Cl^{-}} e^{i\pi(h+k+l)}$ F_{hkl} h, k, l $(F_{hkl} = f_{Cs^{+}} + f_{Cl^{-}} \neq 0)$ $(F_{hkl}=0)$ • بنية كلوريد الصوديوم (NaCl))) (Na^+) (Cl^{-}) (CS)(NaCl) (Cl^-) (CFC) (Na^+) $\cdot \left(0,0,\frac{1}{2}\right) \left(0,\frac{1}{2},0\right) \left(\frac{1}{2},0,0\right) \left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) : \mathsf{CI}^{-} \left(\frac{1}{2},\frac{1}{2},0\right) \left(\frac{1}{2},0,\frac{1}{2}\right) \left(0,\frac{1}{2},\frac{1}{2}\right) (0,0,0) : \mathsf{Na}^{+}$

:

$$F_{hkl} = f_{Na^{+}} \left(1 + e^{i\pi(h+k)} + e^{i\pi(h+l)} + e^{i\pi(k+l)} \right)$$

$$+ f_{Cl^{-}} \left(e^{i\pi(h+k+l)} + e^{i\pi h} + e^{i\pi k} + e^{i\pi l} \right)$$

$$: h, k, l \qquad F_{hkl}$$

$$. \qquad (F_{hkl} = 0) \qquad h, k, l$$

$$. \qquad (F_{hkl} = 4f_{Na^{+}} + 4f_{Cl^{-}}) \qquad h, k, l$$

$$. \qquad (F_{hkl} = 4f_{Na^{+}} - 4f_{Cl^{-}}) \qquad h, k, l$$

$$(+) \qquad (26.2)$$

NaCl	CsCl	CFC	CC	Cs	$N^2 = h^2 + k^2 + l^2$	(hkl)
-	+	-	-	+	1	(100)
-	+	-	+	+	2	(110)
+	+	+	-	+	3	(111)
+	+	+	+	+	4	(200)
-	+	-	-	+	5	(210)
-	+	-	+	+	6	(211)
+	+	+	+	+	8	(220)
-	+	-	-	+	9	(300) - (221)

. :(2.2)

الفصل الثالث

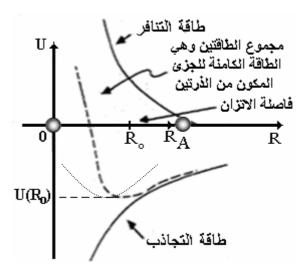
الروابط البلورية والخصائص المرونية

```
3-1 مقدمة:
                   (
                                                  1. قوى التجادب:
                                                                       .1
                                                                       .2
                                            (Van DerWaals)
                                                                      .3
                                                     2. قوى التنافر:
                                                         : طاقة الترابط 2-3
                                                 .(
O
                                                              (1.3)
```

89

(A r

F



الشكل (1.3):

$$\vec{F} = -\frac{dU}{dR}\frac{\vec{R}}{R}$$

 $\left(\qquad \right) \quad \frac{dU}{dR} > 0$ \vec{F} (1.3) \vec{R} \vec{R} (1.3) .() $\left(\begin{array}{c} \frac{dU}{dR} > 0 \end{array} \right)$ $R > R_0$ $(F)_{R_0} = 0$ $\frac{dU}{dR} = 0$ $R = R_0$ $\frac{dU}{dR} < 0$

 $R < R_0$

$$(2.3) U(R) = \frac{a}{R^m} - \frac{b}{R^n}$$

-b/R

 a/R^m

n, m, b, a:

$$\left(\frac{d^2U}{dR^2}\right)_{R_0} = \beta > 0 :$$

: $\lambda \exp(-R/\rho)$:

m>n

. *m*

 a/R^m

 $\rho_{\iota}\lambda$

 R_0 (2.3)

:

$$(3.3) F(R_0) = \left(-\frac{du}{dr}\right)_{R=R_0} = 0$$

:
$$R = R_0$$
 (3.3)

(2.3)

(4.3)
$$-\left(\frac{bnR_0^{n-1}}{R_0^{2n}} - \frac{amR_0^{m-1}}{R_0^{2m}}\right) = 0$$

(4.3)

$$(5.3) R_0 = \left(\frac{am}{bn}\right)^{\frac{1}{m-n}}$$

:

 $(R = R_0)$ (2.3) (5.3)

(6.3)
$$U(R_0) = \frac{bnR_0^{m-n}}{mR_0^m} - \frac{b}{R_0^n} = \frac{bn}{m}R_0^{-n} - \frac{b}{R_0^n} = -bR_0^{-n}\left(1 - \frac{n}{m}\right)$$

m > n أن

 $U\left(R_{0}\right) \tag{6.3}$

```
R > R_0
                                                                                              R = R_0
                                                                                 3-3 الرابطة الأيونية:
                      (CsCl)
                                                              (NaCl)
                               2N
                                        (2.3)
                                                                U_{ij} = \frac{a}{r_{ij}^{m}} \pm K \frac{q^2}{r_{ij}}
(7.3)
                        n=1 b=Kq^2
                                                                 \left(K = 1/4\pi\varepsilon_0 = 9 \times 10^9 \, Nm^2 / C^2\right)
                            (-)
                                                                     (+)
                                                    R: 	 r_{ij} = R p_{ij} 	 .
                        p_{ij}
                                                                R j i
                                 (7.3)
```

3

(8.3)
$$U_{ij} = \frac{a}{R^m} \left(\frac{1}{p_{ij}} \right) - K \frac{q^2}{R} \left(\frac{\mp 1}{p_{ij}} \right)$$

(8.3)

: (8.3) j

$$(9.3) U_i = \sum_{i(j\neq i)} U_{ij} = \frac{a}{R^m} A_n - |\alpha| K \frac{q^2}{R}$$

:

(10.3)
$$A_n = \sum_{j(j \neq i)} \left(\frac{1}{p_{ij}}\right)^n$$

(11.3)
$$\alpha = \sum_{j(j\neq i)} \left(\frac{\mp 1}{p_{ij}}\right)$$

(Madelung) α m A_n

: 2*N*

(12.3)
$$U_{tot}(R) = \left(\frac{1}{2}\right) 2NU_i = N\left(\frac{a}{R^m}A_n - |\alpha|\frac{Kq^2}{R}\right)$$

. 1/2

 R_0

الروابط البلوسة واكخصائص المرونية

(13.3)
$$\left(\frac{dU_{tot}(R)}{dR}\right)_{R_0} = 0$$

$$N\left(\frac{-ma}{R_0^{m+1}}A_n + |\alpha|\frac{Kq^2}{R_0^2}\right) = 0$$

(14.3)
$$R_0 = \left(\frac{m a A_n}{|\alpha| K q^2}\right)^{\frac{1}{m-1}}$$

:
$$(R = R_0) (12.3) (14.3)$$

(15.3)
$$U_{tot}(R_0) = -|\alpha| \frac{NKq^2}{R_0} \left(1 - \frac{1}{m}\right)$$

)
$$\frac{U_{tot}(R_0)}{N} = -|\alpha| \frac{Kq^2}{R_0} \left(1 - \frac{1}{m}\right) \qquad \left(-|\alpha| \frac{NKq^2}{R_0}\right)$$

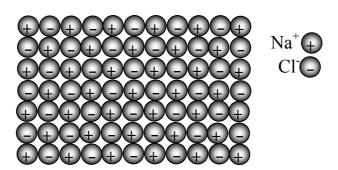
$$N_a \qquad . \qquad ($$

$$. \qquad (J/mole)$$

طاقة الالتحام (mole/ K.J)	البلورة	طاقة الالتحام (mole/ K.J)	البلورة
635	بروميد الروبيديوم RbBr	752	كلوريد الصوديوم NaCl
595	أيوديد السيزيوم <i>CsI</i>	650	أيوديد البوتاسيوم KI

الجدول (1.3):

: (100)



الشكل(2.3):

مثال:

الشكل(3.3):

(16.3)
$$\left| \alpha \right| = \left| \sum_{j(j \neq i)} \left(\frac{\mp 1}{p_{ij}} \right) \right| = \left| \sum_{j(j \neq i)} \left(\frac{\mp 1}{\left(\frac{r_{ij}}{R} \right)} \right) \right| = \left| \sum_{j(j \neq i)} \left(\frac{\mp R}{r_{ij}} \right) \right|$$

$$\left|\alpha\right| = \left|\sum_{j(j\neq i)} \left(\frac{\mp 1}{p_{ij}}\right)\right| = 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots\right)$$

: 0 ln(1+x)

$$\ln(1+x) = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots\right)$$

$$\ln(1+1) = \ln(2) = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots\right)$$

```
(17.3) |\alpha| = |2(\ln(2))| = 1.3863
```

					البنية البلورية
1.638	1.762	1.747	1.792	1.792	ثابت مادلونغ

الجدول (2.3):

3-4 الرابطة التساهمية:

)
((
(14 SI^{28})
(15 2 28 2 2P 6 3S 2 3P 2)
(15 2 28 2 2P 6 3S 2 3P 2)
(4.3)

96

(5.3)

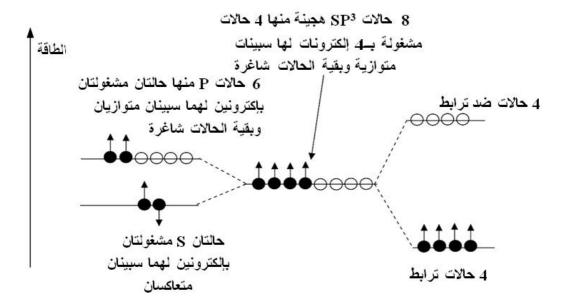
() SP^3

 SP^3

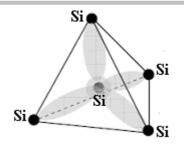
,

.1

.2



الشكل(4.3):



الشكل(5.3):

(3.3)

$\binom{\circ}{C}$ درجة حرارة الانصهار	طاقة الالتحام (KJ/ mole)	البلورة
1410	713	الماس C
>3550	450	سيلكون Si
*	3.5	جرمانيوم Ge

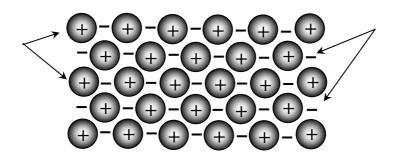
الجدول (3.3):

3-5 الرابطة المعدنية:

.((6.3)

98 °C

 $\cdot 660 \, ^{\circ}C$ 650 $^{\circ}C$



الشكل (6.3): مخطط مبسط للرابطة المعدنية

(4.3)

درجة حرارة الانصهار (°C)	طاقة الالتحام (KJ / mole)	بلورة
660	324	الألمنيوم Al
1538	406	الحديد Fe
3410	849	التنفستن W

الجدول (4.3):

6-3 رابطة فان درفالس (Van Der Waals) أوالرابطة الجزيئية:

0.2**ev**

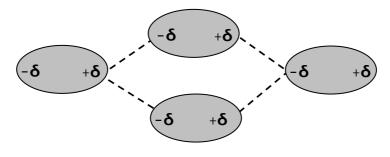
(London) 1930

```
(Heisenberg)
)
.(
,((7.3) )
```

•

)

CFC .($Xe(-112^{\circ}C)$ $Kr(-156^{\circ}C)$ $Ar(-189^{\circ}C)$ $Ne(-249^{\circ}C)$



الشكل(7.3):

درجة حرارة الانصهار (° C)	طاقة الالتحام (KJ / mole)	البلورة
-189	7.7	الأرغون Ar
-101	31	CL_2
-78	35	NH ₃

الجدول(5.3):

- j j i

: (Lennard-Jones)

(18.3)
$$U_{ij}(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

. $arepsilon \; \sigma$:

(19.3)
$$U_{tot}(R) = \frac{N}{2} \sum_{j(j \neq i)} U_{ij}(r_{ij}) = 2N\varepsilon \left[\left(\frac{\sigma}{R}\right)^{12} A_{12} - \left(\frac{\sigma}{R}\right)^{6} A_{6} \right]$$

$$: R p_{ij} = \frac{r_{ij}}{R} A_n = \sum_{i \neq j} \left(\frac{1}{p_{ij}}\right)^n :$$

: R_0

(20.3)
$$\left(\frac{dU_{tot}(R)}{dR}\right)_{R_0} = 0 \Rightarrow R_0 = \sigma \left(\frac{2A_{12}}{A_6}\right)^{\frac{1}{6}}$$

:
$$(R = R_0) (19.3) (20.3)$$

(21.3)
$$U_{tot}(R_0) = -\frac{2N\varepsilon\sigma^6 A_6}{2} R_0^{-6} = \frac{N\varepsilon A_6^2}{2A_{12}}$$

$$\frac{U_{tot}(R_0)}{N} = \frac{\varepsilon A_6^2}{2A_{12}}$$

$$A_6 A_{12}$$
 (6.3)

 $A_{12} < A_6$

CFC	CC	CS	A_n
14.45	12.25	8.40	A_6
12.13	9.11	6.20	A_{12}

3

تطبيق:

a N CFC

. R

: ()

(22.3) $B=V_0 \left(\frac{d^2 U_{tot}}{dV^2}\right)_{T,V_0} = \left(V \frac{d^2 U_{tot}}{dR^2} \left(\frac{dR}{dV}\right)^2\right)_{T,R_0}$

. $V_{\scriptscriptstyle 0}$:

 $R = \frac{a}{\sqrt{2}} \qquad V = \frac{a^3}{4} N : \qquad CFC$

: R_0

(23.3) $R_0 = \sigma \left(\frac{2A_{12}}{A_6}\right)^{\frac{1}{6}} = 1.09\sigma$

(24.3) $V = \frac{a^3}{4} N = \frac{N}{\sqrt{2}} R^3$

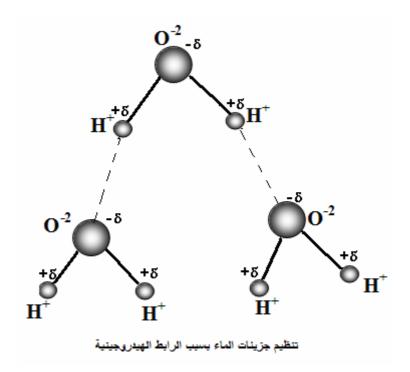
: (24.3) (23.3) (22.3) (22.3)

(25.3) $B \approx 75 \varepsilon / \sigma^3$

6-3 الرابطة الهيدروجينية:

.

(8.3)



الشكل(8.3):

(O---H)

 $(+\delta)$ $(-\delta)$

$$(R_{o...H} = 2.76 \text{ A})$$
 . $(R_{o-H} = 0.96 \text{ A})$

ملاحظة عامة:

 Al_3Li

 Al_3Li

1.5

Al

1 *Li*

1.5 V

 Al_3V

3-9 الخصائص المرونية:

()

3-9-1 قانون هوك(Hooke):

(1.3) U(R)A

(28.3)

 $U(R_0)$

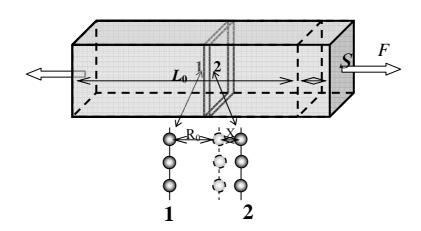
3

لروابط البلومرية واكخصائص المرونية

 L_0 S

 $X: \qquad \Delta L = \sum X$

.(9.3) 2 1



الشكل (9.3):

: F_{int}

 $(30.3) F_{\rm int} = fN = N\beta X$

. S

(31.3)
$$\sigma = \frac{F_{\text{int}}}{S} = \frac{N\beta X}{S} = CX$$

 $C = \frac{N\beta}{S}$:

: R_0 (31.3)

(32.3)
$$\sigma = R_o C \frac{X}{R_o} = \frac{R_o N \beta}{S} \left(\frac{X}{R_o} \right)$$

$$(32.3) E = \frac{R_0 N \beta}{S}, \varepsilon' = \frac{X}{R_0} :$$

$$\sigma = E \varepsilon'$$

$$F R_0 ($$

$$\vdots \varepsilon' L_0 N'+1$$

$$\varepsilon' = \frac{N'X}{N'R_0} = \frac{\Delta L}{L_0} = \varepsilon$$

$$\vdots (33.3)$$

$$(35.3) \sigma = E \varepsilon$$

. (Hooke) (35.3) $\sigma = E \qquad \varepsilon = 1 \qquad (35.3)$

(7.3)

•

E (1	المادة	
النهاية الصغرى		
64	77	Al
68	194	Cu
135	290	Fe
437	514	Mg
400	400	W

الجدول (7.3): معامل يونغ لبعض المعادن.

3-9-3 منحنى الإجماد والانفعال:

.(10.3)
$$\sigma_e \qquad \qquad : \mathbf{OA} \$$
المجال $\sigma_e \qquad \qquad . \ (\sigma \propto \varepsilon)$

$$\begin{array}{ll} \sigma = 0 \Rightarrow \varepsilon = 0 \\ \sigma \neq 0 \Rightarrow \sigma = \tan{(\alpha)}\varepsilon \Rightarrow E = \tan{(\alpha)} \end{array}$$

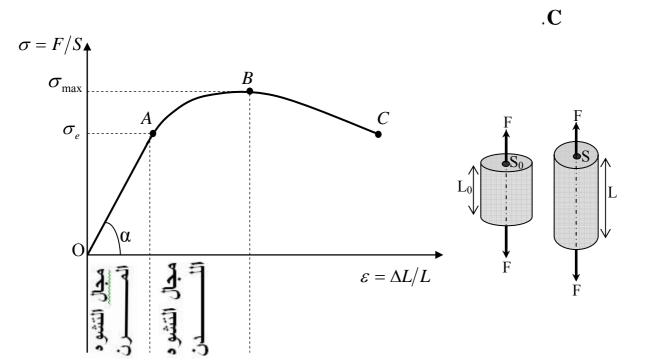
$$\begin{array}{ll} \sigma > \sigma_e \end{array} \qquad \qquad : \textbf{AB}$$
 المجال

· ·

:

(37.3) $\sigma = \Gamma \varepsilon^{m}$ $\vdots m \qquad \Gamma :$

) $\sigma_{
m max}$:BC المجال



الشكل (10.3) المنحنى الاسمي إجهاد - انفعال.

3-9-3 معامل بواسون والانفعال الحجمي:

.

(11.3)
$$(XYZ)$$
 (YYZ) (YYZ)

.()
$$Z X \qquad \varepsilon_Z \varepsilon_x$$
 : (34.3)

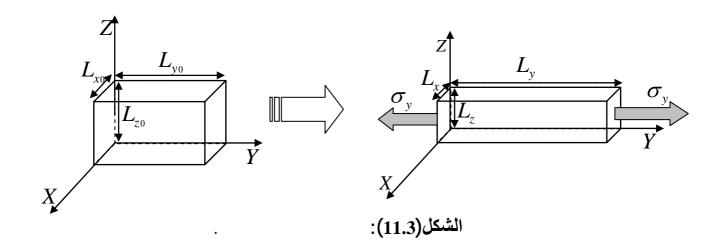
(38.3)
$$\varepsilon_{y} = \frac{\Delta L_{y}}{L_{y0}} = \frac{L_{y} - L_{y0}}{L_{y0}} > 0$$

(39.3)
$$\varepsilon_{x} = \frac{\Delta L_{x}}{L_{x0}} = \frac{L_{x} - L_{x0}}{L_{x0}} < 0$$

(40.3)
$$\varepsilon_{y} = \frac{\Delta L_{z}}{L_{z0}} = \frac{L_{z} - L_{z0}}{L_{z0}} < 0$$

ν

(41.3)
$$v = -\frac{\varepsilon_x}{\varepsilon_y} = -\frac{\varepsilon_Z}{\varepsilon_y}$$



. (8.3)

المطاط	النحاس	الفولاذ	المادة
0.5	0.36	0.25	معامل بواسون

الجدول(8.3):

$$:\frac{\Delta V}{V_0}$$
 (

$$(42.3) V_0 = L_{x0} \times L_{y0} \times L_{z0} V = L_x \times L_y \times L_z$$

(43.3)
$$\varepsilon_{x} = \frac{L_{x} - L_{x0}}{L_{x0}} \Rightarrow L_{x} = L_{x0} (1 + \varepsilon_{x})$$

:

$$(44.3) L_{y} = L_{y0} (1 + \varepsilon_{y})$$

$$(45.3) L_z = L_{z0} (1 + \varepsilon_z)$$

:

$$V = L_{x0} (1 + \varepsilon_x) \times L_{y0} (1 + \varepsilon_y) \times L_{z0} (1 + \varepsilon_z) = V_0 ((1 + \varepsilon_x) \times (1 + \varepsilon_y) \times (1 + \varepsilon_z))$$

$$\frac{\Delta V}{V_0} = \frac{V - V_0}{V_0} = ((1 + \varepsilon_x) \times (1 + \varepsilon_y) \times (1 + \varepsilon_z) - 1)$$

$$\frac{\Delta V}{V_0} = \varepsilon_x + \varepsilon_y + \varepsilon_z = \sum_{i=1}^3 \varepsilon_i$$

$$(46.3)$$

 $\varepsilon_x \varepsilon_y \approx \varepsilon_x \varepsilon_z \approx \varepsilon_y \varepsilon_z \approx \varepsilon_x \varepsilon_y \varepsilon_z \approx 0$:

(46.3) (41.3)

$$\frac{\Delta V}{V_0} = \varepsilon_y (1 - 2\nu)$$

r L

(48.3)
$$v = -\frac{\varepsilon_r}{\varepsilon_L} = -\frac{\Delta r/r_0}{\Delta L/L_0}$$

$$V = L\pi r^2 \Rightarrow \frac{\Delta V}{V_0} = \frac{\Delta L}{L_0} + 2\frac{\Delta r}{r_0}$$

$$\frac{\Delta V}{V_0} = \varepsilon_L (1 - 2\nu)$$
 :

3-9-3 معامل القص:

τ

τ .(12.3) *θ*

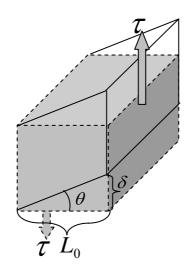
: γ

(50.3) $\gamma = \tan(\theta) = \frac{\delta}{L_0}$

 $: \qquad \qquad \tau \propto \gamma \qquad \qquad \theta$

(51.3) $\gamma \cong \theta(radian) \cong \frac{\delta}{L_0}$

. γ



الشكل (12.3):تأثير إجهاد القص

. (9.3)

Е (المادة	
النهاية الصغرى		
25	29	Al
31	77	Cu
61	180	Fe
171	184	Mg
155	155	W

الجدول (9.3):

علاحظة:

$$G = \frac{E}{2(1+\nu)}$$

3-9-3 ممتد الإجماد:

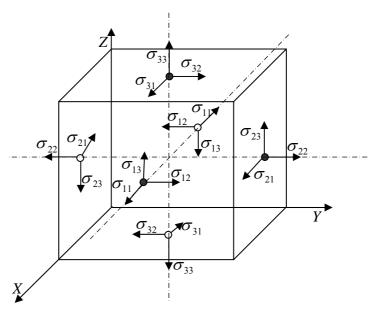
$$\begin{bmatrix} \sigma_{ij} \end{bmatrix}$$

$$i \qquad .((13.3) \qquad)$$

$$j \qquad \qquad j$$

.

(54.3)
$$\left[\sigma_{ij}\right] = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$$



الشكل(13.3):

1. خصائص محتد الإجهاد:

9
$$(i \neq j) \qquad \sigma_{ij} = \sigma_{ji}$$

(55.3)
$$\left[\sigma_{ij} \right] = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}$$

(56.3)
$$\det([\sigma_{ij}] - \mu I) = \begin{vmatrix} \sigma_{11} - \mu & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} - \mu & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} - \mu \end{vmatrix} = 0$$

 μ_3, μ_2, μ_1

: $\sigma_3, \sigma_2, \sigma_1$

(57.3)
$$[\sigma] = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

 $\sum^{-}(O', x'_1, x'_2, x'_3) \qquad \qquad \sum (O, x_1, x_2, x_3)$

:

(58.3)
$$\sigma_{ij} = \sum_{k,l=1}^{3} a_{ik} a_{jl} \sigma_{kl} \qquad i, j = 1,2,3$$

 $\sum (O, x_1, x_2, x_3) \qquad \qquad \vdots a_{ik}, a_{jl} :$

. $\sum^{-}(O', x'_1, x'_2, x'_3)$

 $: \vec{T}(M, \vec{n})$ عساب شعاع الإجهاد الكلي 2.

 \vec{n} M $\vec{T}(M,\vec{n})$

 \vec{n}

(59.3)
$$\vec{T}(M,\vec{n}) = \left[\sigma_{ii}\right] \cdot \vec{n}$$

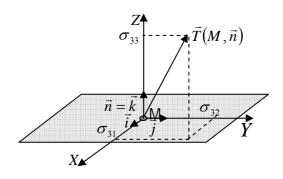
 T_t T_n

الروابط البلومرية واكخصائص المرونية

3

(60.3)
$$T_{n} = \vec{T}(M, \vec{k}) \cdot \vec{n}$$
$$T_{t} = \sqrt{(\vec{T}(M, \vec{k}))^{2} - (T_{n})^{2}}$$

 \vec{k} :(14.3)



 \vec{k}

الشكل(14.3):

$$(i \neq j) \, \sigma_{ij} = \sigma_{ji}$$

$$\vec{T}(M,\vec{k}) = \sigma_{31}\vec{i} + \sigma_{32}\vec{j} + \sigma_{33}\vec{k} = \sigma_{13}\vec{i} + \sigma_{23}\vec{j} + \sigma_{33}\vec{k}$$

$$\vec{T}(M,\vec{k}) = \begin{bmatrix} \sigma_{ij} \end{bmatrix} \cdot \vec{k} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \sigma_{13} \\ \sigma_{23} \\ \sigma_{33} \end{pmatrix} = \sigma_{13} \vec{i} + \sigma_{23} \vec{j} + \sigma_{33} \vec{k}$$

 T_t

(61.3)
$$T_n = \vec{T}(M, \vec{k}) \cdot \vec{k} = \sigma_{33}$$

(62.3)
$$T_{t} = \sqrt{\left(\vec{T}(M,\vec{k})\right)^{2} - \left(T_{n}\right)^{2}} = \sqrt{\left(\sigma_{13}^{2} + \sigma_{23}^{2} + \sigma_{33}^{2}\right) - \sigma_{33}^{2}} = \sqrt{\sigma_{13}^{2} + \sigma_{23}^{2}}$$

3-9-3 معامل الانضغاط الحجمي:

 Δp

 A_0

 P_0

F

3

 P_0 + Δp

 $-\Delta p$

(15.3)

:

(63.3) $\sigma_{ij} = -\Delta p \, \delta_{ij}$

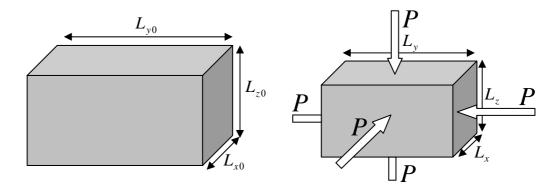
. δ_{ij} :

В

 ΔP

 $\frac{\Delta V}{V_0}$

(64.3) $B = -\frac{\Delta p}{\left(\frac{\Delta V}{V}\right)}$



الشكل (15.3):

: *χ*

(65.3)
$$\chi = \frac{1}{B} = -V_0 \frac{\Delta V}{\Delta P}$$

3-9-7 ممتد الانفعال:

 $x_i' \quad x_i$

:

(66.3)
$$u_i = x'_i - x_i = \sum_{j=1}^{3} \zeta_{ij} x_j \quad i = 1,2,3$$

: $\left[\mathcal{L}_{ij}\right]$

(67.3)
$$\left[\zeta_{ij}\right] = \begin{pmatrix} \zeta_{11} & \zeta_{12} & \zeta_{13} \\ \zeta_{21} & \zeta_{22} & \zeta_{23} \\ \zeta_{31} & \zeta_{32} & \zeta_{33} \end{pmatrix}$$

:

$$(i \neq j) \qquad \zeta_{ij} = \partial u_i / \partial x_j \qquad \qquad [\zeta_{ij}]$$

$$.ox_j \qquad ox_i \qquad ox_k$$

$$ox_i \qquad ()$$

•

(68.3)
$$\left[\zeta_{ij} \right] = \begin{pmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_1}{\partial x_3} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_3}{\partial x_1} & \frac{\partial u_3}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \end{pmatrix}$$

 $\left[arsigma_{ij}
ight]$

:

(69.3)
$$\zeta_{ij} = \varpi_{ij} + \varepsilon_{ij} \qquad i, j = 1,2,3$$

 $\left[\omega_{ij}
ight]$

: 0

(70.3)
$$\varpi_{ij} = \frac{1}{2} (\zeta_{ij} - \zeta_{ji}) = -\frac{1}{2} (\zeta_{ji} - \zeta_{ij}) = -\varpi_{ji}$$
 $i, j = 1, 2, 3$

: $\left[\omega_{ij} \right]$

(71.3)
$$\left[\boldsymbol{\varpi}_{ij} \right] = \begin{pmatrix} 0 & \boldsymbol{\varpi}_{12} & \boldsymbol{\varpi}_{13} \\ -\boldsymbol{\varpi}_{12} & 0 & \boldsymbol{\varpi}_{23} \\ -\boldsymbol{\varpi}_{13} & -\boldsymbol{\varpi}_{23} & 0 \end{pmatrix}$$

6

(72.3)
$$\left[\boldsymbol{\varpi}_{ij} \right] = \begin{pmatrix} 0 & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right) \\ -\frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1} \right) & 0 & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} - \frac{\partial u_3}{\partial x_2} \right) \\ -\frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right) & -\frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} - \frac{\partial u_3}{\partial x_2} \right) & 0 \end{pmatrix}$$

 $\left[{{oldsymbol{arepsilon }}_{ij}}
ight]$

(73.3)
$$\varepsilon_{ij} = \frac{1}{2} \left(\zeta_{ij} + \zeta_{ji} \right) = \frac{1}{2} \left(\zeta_{ji} + \zeta_{ij} \right) = \varepsilon_{ji} \qquad i, j = 1,2,$$

: $\left[\mathcal{E}_{ij} \right]$

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{ij} \end{bmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{11} & \boldsymbol{\varepsilon}_{12} & \boldsymbol{\varepsilon}_{13} \\ \boldsymbol{\varepsilon}_{12} & \boldsymbol{\varepsilon}_{22} & \boldsymbol{\varepsilon}_{23} \\ \boldsymbol{\varepsilon}_{13} & \boldsymbol{\varepsilon}_{23} & \boldsymbol{\varepsilon}_{33} \end{pmatrix}$$

(74.3)
$$\left[\varepsilon_{ij} \right] = \begin{pmatrix} \frac{\partial u_1}{\partial x_1} & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) & \frac{\partial u_2}{\partial x_2} & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) & \frac{\partial u_3}{\partial x_3} \end{pmatrix}$$

 $igl[arepsilon_{ij}igr]$

3-9-3 قانون هوك المعمم:

1) حالة المواد موحدة الخواص (متماثلة المناحي):

:

, σ_{ii} ()

(

V E .

: (35.3)

(75.3) $\sigma = E\varepsilon \Rightarrow \varepsilon = \frac{\sigma}{F}$:

 $: \mathcal{E}_{11}$

(76.3)
$$\varepsilon_{11} = \frac{\sigma_{11}}{E} - v \frac{\sigma_{22}}{E} - v \frac{\sigma_{33}}{E}$$
$$\varepsilon_{11} = \frac{1}{E} (\sigma_{11} - v (\sigma_{22} + \sigma_{33}))$$

: \mathcal{E}_{33} , \mathcal{E}_{22}

(77.3)
$$\varepsilon_{22} = \frac{1}{E} (\sigma_{22} - \nu (\sigma_{11} + \sigma_{33}))$$

(78.3)
$$\varepsilon_{33} = \frac{1}{E} (\sigma_{33} - \nu (\sigma_{11} + \sigma_{22}))$$

: (78.3) ,(77.3) ,(76.3)

(79.3)
$$\varepsilon_{ii} = \frac{1}{F} (\sigma_{ii} - v\sigma_{11} - v\sigma_{22} - v\sigma_{33} + v\sigma_{ii}) \qquad i = 1, 2, 3$$

(80.3)
$$\varepsilon_{ii} = \frac{1}{E} \left((1 + v) \sigma_{ii} - v \operatorname{trac} \left[\sigma_{ij} \right] \right) \qquad i = 1, 2, 3$$

 $trac\left[\sigma_{ij}\right] = \sigma_{11} + \sigma_{22} + \sigma_{33} :$

)
$$\gamma_{ij} = 2\varepsilon_{ij}(i \neq j)$$

$$\tau_{ij} = \sigma_{ij}(i \neq j)$$

$$\vdots \qquad (\gamma_{ij})$$

(52.3)

(81.3)
$$\sigma_{ij} = G\gamma_{ij} = 2G\varepsilon_{ij} \Rightarrow \varepsilon_{ij} = \frac{1}{2G}\sigma_{ij} \qquad i, j = 1,2,3$$

(82.3)
$$\varepsilon_{ij} = \frac{1}{2\left(\frac{E}{2(1+\nu)}\right)}\sigma_{ij} = \frac{1+\nu}{E}\sigma_{ij} \qquad i, j = 1,2,3$$

: (82.3) (80.3)

(83.3)
$$\varepsilon_{ij} = \frac{1}{F} ((1+v)\sigma_{ij} - v trac [\sigma_{ij}] \delta_{ij}) \qquad i, j = 1,2,3$$

. δ_{ij} :

.

(84.3)
$$\sigma_{ij} = \frac{E}{1+\nu} \left(\varepsilon_{ij} + \frac{\nu}{1-2\nu} trac \left[\sigma_{ij} \right] \delta_{ij} \right) \qquad i = 1,2,3$$

 $: \qquad \mu \, , \lambda \qquad \qquad (38.3)$

(85.3)
$$\sigma_{ij} = 2\mu\varepsilon_{ij} + \lambda trac \left[\sigma_{ij}\right] \delta_{ij} \qquad i = 1,2,3$$

: (85.3) (84.3)

$$(86.3) 2\mu = \frac{E}{1+\nu}$$

(87.3)
$$\lambda = \frac{E \nu}{(1+\nu)(1-2\nu)}$$

E G B :

: ν

3

الروابط البلومرية وانخصائص المرونية

(88.3)
$$B = -\frac{\Delta p}{\left(\frac{\Delta V}{V}\right)} = -\frac{\Delta p}{\left(\sum_{i=1}^{3} \mathcal{E}_{ii}\right)}$$

.(64.3) (46.3)

: (84.3) (83.3)

(89.3)
$$\varepsilon_{ii} = \frac{1}{F} ((1+v)\sigma_{ii} - v\sigma_{11} - v\sigma_{22} - v\sigma_{33}) \qquad i = 1,2,3$$

(90.3)
$$\sum_{i=1}^{3} \varepsilon_{ii} = \sum_{i=1}^{3} \frac{1}{E} ((1+\nu)\sigma_{ii} - \nu\sigma_{11} - \nu\sigma_{22} - \nu\sigma_{33}) \qquad i = 1,2,3$$
$$= \frac{1}{E} ((1-2\nu)(\sigma_{11} + \sigma_{22} + \sigma_{33}))$$

:

(91.3)
$$\sigma_{ij} = -\Delta p \, \delta_{ij} \qquad i, j = 1,2,3$$
$$\sigma_{ii} = -\Delta p \qquad i = 1,2,3$$

: (90.3) (91.3)

(92.3)
$$\sum_{i=1}^{3} \varepsilon_{ii} = \frac{-3\Delta p}{E} (1 - 2\nu) \qquad i = 1,2,3$$

: (88.3)

(93.3)
$$B = \frac{E}{3(1-2\nu)}$$

: (93.3) (53.3) *v*

(94.3)
$$B = \frac{GE}{3(3G - E)}$$

:(**(2** $\left(3^4 = 9 \times 9 = 81\right)$ $\sigma_{ij} = \sum_{k,l=1}^{3} C_{ijkl} \varepsilon_{kl}$ $_{i,j=1,2,3}$ (95.3) $\varepsilon_{ij} = \sum_{k l=1}^{3} S_{ijkl} \sigma_{kl} \qquad \qquad _{i,j=1,2,3}$ (96.3) (96.3) (95.3) 81 C_{ijkl} S_{ijkl} (9 $(6 \times 6 = 36)$ $S_{ijkl} = S_{klij}$ $C_{ijkl} = C_{klij}$:) 21)) 180°

:

3

الروابط البلومية واكخصائص المرونية

(97.3)
$$C'_{ijkl} = \sum_{m,n,p,q=1}^{3} a_{im} a_{jn} a_{kp} a_{lq} C_{mnpq} \qquad _{i,j,k,l=1,2,3}$$

(98.3)
$$S'_{ijkl} = \sum_{m,n,p,q=1}^{3} a_{im} a_{jn} a_{kp} a_{lq} S_{mnpq} \qquad _{i,j,k,l=1,2,3}$$

 x_r x_h' a_{hr}

 $y = S'_{3333}$ X'_3 E (98.3)

 $(k \leftrightarrow l) \quad (i \leftrightarrow j)$

$$(11 \rightarrow 1) \qquad (23,32 \rightarrow 4)$$

$$(22 \rightarrow 2) \qquad (13,31 \rightarrow 5)$$

$$(33 \rightarrow 3) \qquad (12,21 \rightarrow 6)$$

•

(100.3)
$$\varepsilon_p = \sum_{g=1}^6 S_{pg} \, \sigma_g \qquad \qquad _{g=1,\dots,6}$$

$$C_{ijkl} = C_{klij}$$
 $C_{pg} = C_{gp}$ ((100.3)) (99.3)

.

الروابط البلومرية واكخصائص المرونية

6

$$\begin{pmatrix}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{pmatrix} = \begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\
C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\
C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66}
\end{pmatrix} \times \begin{pmatrix}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\varepsilon_{5} \\
\varepsilon_{6}
\end{pmatrix}$$

تطبيق: 3

.

:

(102.3)
$$B = -\frac{\Delta p}{\left(\frac{\Delta V}{V}\right)} = -\frac{\Delta p}{\left(\sum_{i=1}^{3} \varepsilon_{ii}\right)}$$

(103.3)
$$\sum_{i=1}^{3} \varepsilon_{ii} = \sum_{i=1}^{3} \sum_{k,l=1}^{3} S_{iikl} \sigma_{kl}$$

: (103.3) (91.3)

(104.3)
$$\sum_{i=1}^{3} \varepsilon_{ii} = \sum_{i=1}^{3} \sum_{k=1}^{3} S_{iikk} \sigma_{kk}$$
$$= -\Delta p \sum_{i,k=1}^{3} S_{iikk}$$

: (102.3) (104.3)

(105.3)
$$B = \left(\sum_{i,k=1}^{3} S_{iikk}\right)^{-1}$$

• تحدید عناصر همتد ثوابت أو معاملات المرونة:

. ()

.(10.3)

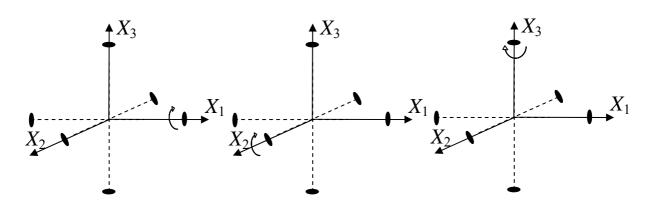
عدد العناصر المستقلة $\mathrm{C}_{\mathtt{pg}}$	الفئة البلورية
21	ثلاثية الميل
31	أحادية الميل
09	المعينية المستقيمة
6	ثلاثية متساوية الأحرف
5	السداسية
3	المكعبة
2	المواد موحدة الخواص

الشكل(10.3): لمتدات

129

2 2 2 m m m

:180°



$$X_{1} \rightarrow X_{1}(1 \rightarrow 1)$$

$$X_{2} \rightarrow -X_{2}(2 \rightarrow \overline{2})$$

$$X_{3} \rightarrow -X_{3}(3 \rightarrow \overline{3})$$

$$\{O_{3}\}$$

$$X_{1} \rightarrow -X_{1}(1 \rightarrow \overline{1})$$

$$X_{2} \rightarrow X_{2}(2 \rightarrow 2)$$

$$X_{3} \rightarrow -X_{3}(3 \rightarrow \overline{3})$$

$$\{O_{2}\}$$

$$X_{1} \rightarrow -X_{1}(1 \rightarrow \overline{1})$$

$$X_{2} \rightarrow X_{2}(2 \rightarrow 2)$$

$$X_{3} \rightarrow -X_{3}(3 \rightarrow \overline{3})$$

$$\{O_{2}\}$$

$$X_{1} \rightarrow -X_{1}(1 \rightarrow \overline{1})$$

$$X_{2} \rightarrow -X_{2}(2 \rightarrow \overline{2})$$

$$X_{3} \rightarrow X_{3}(3 \rightarrow 3)$$

$$\{O_{1}\}$$

$$ijkl$$
 $\left[C_{ijkl}\right]$

$$[A] = \begin{pmatrix} 1111 & 1122 & 1133 & 1123 & 1131 & 1112 \\ & 2222 & 2233 & 2223 & 2231 & 2212 \\ & & 3333 & 3323 & 3331 & 3312 \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

: [B]

$$.[B] \qquad \qquad \{O_1\} \qquad \qquad [A]$$

 $3323 \xrightarrow{o_1} 33\overline{2}3 = -3323$

 $3131 \xrightarrow{O_1} 3\overline{1}3\overline{1} = 3131$

 $2223 \xrightarrow{o_1} \overline{2223} = -2223$

 $1112 \xrightarrow{o_1} \overline{1} \overline{1} \overline{1} \overline{2} = 1112$

 $3333 \xrightarrow{O_1} 3333$

.

$$[B] = \begin{pmatrix} 1111 & 1122 & 1133 & -1123 & -1131 & 1112 \\ & 2222 & 2233 & -2223 & -2231 & 2212 \\ & & 3333 & -3323 & -3331 & 3312 \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$$

[B] = [A]

$$[B][A]$$

$$(3331 \rightarrow -3331 \Leftrightarrow C_{3331} \rightarrow -C_{3331} \Rightarrow C_{3331} = 0)$$

$$\cdot [D] [B]$$

$$[D] = \begin{pmatrix} 1111 & 1122 & 1133 & 0 & 0 & 1112 \\ & 2222 & 2233 & 0 & 0 & 2212 \\ & & 3333 & 0 & 0 & 3312 \\ & & & 2323 & 2331 & 0 \\ & & & & & 3131 & 0 \\ & & & & & & & 1212 \end{pmatrix}$$

$$[E] = \begin{bmatrix} 0 & 0 & 0 & -1112 \\ 1111 & 1122 & 1133 & 0 & 0 & -1112 \\ 2222 & 2233 & 0 & 0 & -2212 \\ 3333 & 0 & 0 & -3312 \\ 2323 & -2331 & 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ &$$

 O_3 .

[E] .

•

(106.3)
$$\left[C_{ij} \right] = \begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{pmatrix}$$

:

$$C_{44}, C_{12}, C_{11}$$
 :

(107.3)
$$\left[C_{ij} \right] = \begin{pmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{pmatrix}$$

$$C_{44}, C_{12}, C_{13}, C_{33}, C_{11}$$
 : (2

(108.3)
$$\begin{bmatrix} C_{1j} \end{bmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} (C_{11} - C_{12}) \end{pmatrix}$$

$$C_{12}, C_{11}$$
 :

(109.3)
$$[C_{ij}] = \begin{pmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) \end{pmatrix}$$

कृं। गी रीजवं॥

اهتزازات الشبكة البلورية والخصائص الحرارية

1-4 مقدمة

) ,

. (

2-4 الخط الدري المتجانس أو الوتر المشدود

a $\lambda > a$.(1.4)

 $\left(\omega_{\min} = 2\pi v_{S}/\lambda_{\max}\right) \tag{1.4}$

 $.\left(\omega_{\max}=2\pi v_S/\lambda_{\min}=\pi v_S/a\right)$: $\left(\lambda_{\min}=2a\right)$

: v_s u

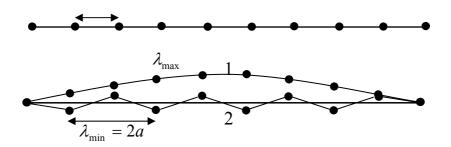
(1.4)
$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{\mathbf{v}_{\mathrm{S}}^2} \frac{\partial^2 u}{\partial t^2}$$

: $E \qquad \left(\mathbf{v}_{\mathrm{S}} = \sqrt{E/\rho}\right) :$

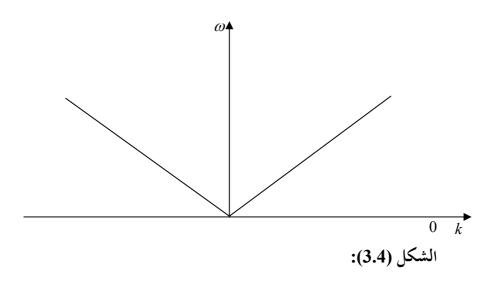
(2.4)
$$u = u_0 \exp(i(\omega t \pm k x))$$

k ω (,) $\omega = v_S k$: $v_p = v_S$.(2.4)

. V_g



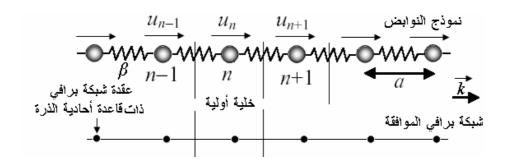
الشكل (1.4):



3-4 أنماط الا له تزاز الطبيعية الشبكة البلورية الخطية المؤلفة من درة واحدة في الخلية لأولية (شبكة برافي الخطية أحاية الدرة)

$$\beta \qquad \qquad (a) \qquad \qquad (m) \qquad \qquad ,$$

$$\beta \qquad \qquad \dots \dots \qquad \qquad .$$



الشكل (3.4):

() (3.4) (n)
$$(...u_{n-1}, u_n, u_{n+1}...)$$

 $\vdots \qquad \qquad n+1 \qquad \qquad n$

(3.4)
$$F_1 = -\beta(u_n - u_{n+1})$$

 $\vdots \hspace{1cm} n\text{-}1 \hspace{1cm} n$

(4.4)
$$F_2 = \beta(u_n - u_{n-1})$$
: n

(5.4)
$$F_n = F_1 - F_2 = -\beta (2u_n - u_{n+1} - u_{n-1})$$
:(3)

$$F_{n} = m\frac{d^{2}u_{n}}{dt^{2}} = m\ddot{u}_{n} = -\beta(2u_{n} - u_{n+1} - u_{n-1})$$

(6.4)
$$m\ddot{u}_n + \beta(2u_n - u_{n+1} - u_{n-1}) = 0$$

N N (6.4)

 $x_n = na$ $() \qquad a$ (3.4)

 $k \qquad \qquad u \qquad \qquad \omega \qquad \qquad ($

(7.4) $u_n = u \exp \left(i(kx_n - \omega t)\right) = u \exp \left(i(nka - \omega t)\right)$

 x_{n-} $x_{n+1} = a(n+1)$ (6.4)

: $_{1}=a(n-1)$

 $m\omega^2 = \beta(2 - e^{ika} - e^{-ika})$

 $\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$ $\theta = ka$

إهتزانرات الشبكة البلومرية وانخصائص انحرامرية

(8.4)
$$\omega^{2} = \frac{2\beta}{m} (1 - \cos ka) = \frac{4\beta}{m} \sin^{2} \frac{ka}{2}$$

$$\omega = \pm 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$

$$\omega = \pm \omega_{\text{max}} \left| \sin \frac{ka}{2} \right|$$

 $\omega_{\text{max}} = 2\sqrt{\beta/m}$

(8.4)

1-3-4 خصائص علاقة التبدد

$$|\sin ka/2| \qquad \omega(-k) = \omega(k) \qquad \omega(k)$$

$$: \qquad \omega(k) \qquad k' \qquad , \qquad n' \qquad (n'\pi)$$

$$\omega(k) = \omega(k+k') \Rightarrow \qquad |\sin(ka/2)| = |\sin((k+k')a/2)| = |\sin((ka/2) + n'\pi)| \Rightarrow \frac{k'a}{2} = n'\pi \Rightarrow k' = \frac{2\pi n'}{a}$$

$$(8.4) \quad (7.4) \qquad k+2\pi n/a \qquad k \qquad (4.4)$$

 $(k_{max} = \pi/a)$ $2d \sin$ $0 \cos \alpha \cos \alpha$ $\lambda_{min} = 2\pi/k_{max} = 2a$ $\lambda = 2a$ $\lambda = 2a$ $\lambda = 2a$ $0 \cos \alpha \cos \alpha$ $0 \cos$

$$(7.4) (k_{\text{max}} = \pm \pi/a)$$

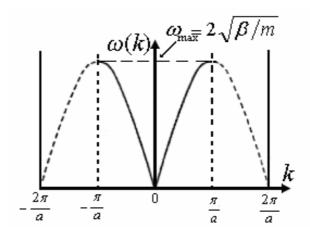
:

(10.4)
$$u_n = u \exp(\pm in\pi - i\omega t) = (-1)^n u \exp(-i\omega t)$$

n

()

.



الشكل (4.4):

سرعة الطور وسرعة المجموعة

•

$$(11.4) V_p = \frac{\omega}{k}$$

: a (11.4) (8.4)

(12.4)
$$V_{p} = \frac{\omega}{k} = \frac{2\sqrt{\frac{\beta}{m}}\left|\sin\left(\frac{ka}{2}\right)\right|}{k} = \sqrt{\frac{\beta a^{2}}{m}} \cdot \left|\frac{\sin\left(\frac{ka}{2}\right)}{\frac{ka}{2}}\right|$$

 V_g

4

.

$$(13.4) V_g = \frac{\partial \omega}{\partial k}$$

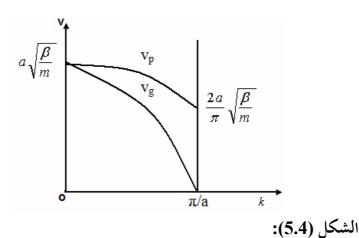
$$V_{g} = \frac{\partial \omega}{\partial k} = \sqrt{\frac{\beta a^{2}}{m}} \left| \cos \left(\frac{ka}{2} \right) \right|$$

$$k = \pm \pi/a \qquad (14.4)$$

$$.\left((2\pi/a)\sqrt{\beta/m} \right) \qquad (12.4)$$

$$v_{p} \qquad (k = (2\pi/\lambda) \rightarrow 0)$$

$$.(5.4)$$



 $(15.4) \qquad \qquad \sin\left(\frac{ka}{2}\right) = \frac{ka}{2} - \frac{(ka)^3}{3!} + \frac{(ka)^5}{5!} - \dots \approx \frac{ka}{2}$ $(8.4) \qquad (15.4)$

(16.4)
$$\omega = 2\sqrt{\frac{\beta}{m}} \sin\left(\frac{ka}{2}\right) \approx 2\sqrt{\frac{\beta}{m}} \frac{ka}{2} = \sqrt{\frac{\beta a^2}{m}} k$$

(16.4)

(17.4)
$$\mathbf{v}_p = \mathbf{v}_g = a\sqrt{\frac{\beta}{m}} = \mathbf{v}_S$$

• الشروط الحدية الحدية الدورية لبورن – فون كارمن (Born-von Karmann)

N

(

: N

$$(17.4) u_{n\pm N} = u_n$$

: (17.4) (7.4) (discrete)

 $u e^{i(kan \pm kaN - \omega t)} = u e^{i(kan - \omega t)} \Rightarrow$

 $\exp(\pm ikaN) = 1 \Rightarrow kaN = 2\pi h \Rightarrow$

(18.4)
$$k = \frac{2\pi}{aN}h = 0, \pm \frac{2\pi}{aN}, \pm \frac{4\pi}{aN}, \pm \frac{6\pi}{aN}..., \pm \frac{N\pi}{aN} = \pm \frac{\pi}{a}$$

(19.4)
$$-\frac{\pi}{a} \le k \le +\frac{\pi}{a} , -\frac{N}{2} \le h \le +\frac{N}{2}$$

h

.a

)
$$\left(G=(2\pi/a)n_{g}\right)$$
 k : (a

(20.4)
$$k' = k + G = k + \frac{2\pi}{a} n_g$$
 (18.4) (7.4) (20.4)

•

2-3-4 كثافة الأنماط الا متزازية

(21.4)
$$g(k) = \frac{1}{\left(\frac{2\pi}{aN}\right)} = \frac{aN}{2\pi}, \quad -\frac{\pi}{a} \le k \le +\frac{\pi}{a}$$

$$\frac{-\pi}{a}$$
 $\frac{-4\pi}{Na} \frac{-2\pi}{Na}$ 0 $\frac{2\pi}{Na} \frac{4\pi}{Na}$ $\frac{\pi}{a}$ \vec{k} :(6.4)

(23.4)
$$g(|k|)dk = 2\frac{aN}{2\pi}dk$$
$$: |k+dk| |k| \qquad k \qquad \omega + d\omega \quad \omega$$

145

$$D(\omega)d\omega = g(|k|)dk$$

(24.4)
$$D(\omega)d\omega = g(|k|)dk = 2\frac{aN}{2\pi}dk$$

 $D(\omega)$

(25.4)
$$D(\omega) = \frac{aN}{\pi} \frac{dk}{d\omega}$$

:

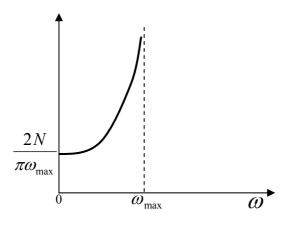
$$\omega = \omega_{\text{max}} \left| \sin \left(\frac{|k|a}{2} \right) \right|$$

$$\frac{d\omega}{dk} = \frac{a\omega_{\text{max}}}{2} \left| \cos\left(\frac{ka}{2}\right) \right| = \frac{a\omega_{\text{max}}}{2} \left(1 - \sin^2\left(\frac{ka}{2}\right)\right)^{\frac{1}{2}}$$
$$= \frac{a}{2} \left(\omega_{\text{max}}^2 - \omega^2\right)^{\frac{1}{2}}$$

:

(26.4)
$$D(\omega) = \frac{2N}{\pi} (\omega_{\text{max}}^2 - \omega^2)^{-\frac{1}{2}} = \frac{2N}{\pi \omega_{\text{max}}} \left(1 - \frac{\omega^2}{\omega_{\text{max}}^2} \right)^{-\frac{1}{2}}$$

(7.4)



الشكل (7.4):

$$k \qquad \left[\omega, \omega_{\max}\right] \qquad \omega$$

:

$$\int_{0}^{\omega_{\text{max}}} D(\omega) d\omega = \frac{2N}{\pi} \int_{0}^{\omega_{\text{max}}} \left(\omega_{\text{max}}^{2} - \omega^{2}\right)^{-\frac{1}{2}} d\omega = \frac{2N}{\pi} \left[\arcsin\left(\frac{\omega}{\omega_{\text{max}}}\right) \right]_{0}^{\omega_{\text{max}}} = \frac{2N}{\pi} \left[\frac{\pi}{2}\right] = N$$

$$(27.4) \qquad \int_{0}^{\omega_{\text{max}}} D(\omega) d\omega = \int_{0}^{\pi/a} g(|k|) dk = \int_{0}^{\pi/a} \frac{aN}{\pi} dk = \frac{aN}{\pi} \left[\frac{\pi}{a}\right] = N$$

4-4 أنماط الا له تزاز الطبيعية الشبكة البلورية الخطية المؤلفة من درتين في الخلية الأولية (شبكة برافي الخطية ثنائية الدرة)

....CsCl, NaCl

....Ge, Si

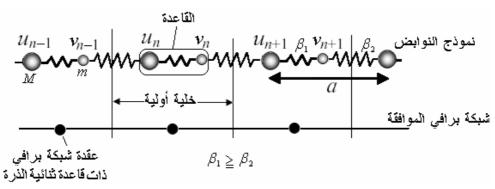
:*N*

M m $oldsymbol{eta_1}$

. $\beta_2 \leq \beta_1$ β_2

 $\left(\dots u_{n-1}, u_n, u_{n+1}\dots\right) \qquad M \qquad . \qquad a$

 $(...v_{n-1}, v_n, v_{n+1}...) m$



الشكل (8.4):

(28.4)
$$M \ddot{u}_n = -\beta_1 (u_n - v_n) - \beta_2 (u_n - v_{n-1})$$

(29.4)
$$m\ddot{v}_{n} = -\beta_{1}(v_{n} - u_{n}) - \beta_{2}(v_{n} - u_{n+1})$$
(8.4)

k ω (

(30.4)
$$u_n = u \exp(i(nka - \omega t))$$

(31.4)
$$v_n = v \exp(i(nka - \omega t))$$

$$v_n \qquad u_n \qquad k \qquad \omega$$

:

:
$$\exp(iNka) = 1$$
 : $v_n = v_{n+N} \quad u_n = u_{n+N}$

$$k = \frac{2\pi}{aN}h = 0, \pm \frac{2\pi}{aN}, \pm \frac{4\pi}{aN}, \pm \frac{6\pi}{aN}, \dots, \pm \frac{N\pi}{aN} = \pm \frac{\pi}{a}$$
$$-\frac{\pi}{a} \le k \le +\frac{\pi}{a}, -\frac{N}{2} \le h \le +\frac{N}{2}$$

k () : N h:

(29.4) (28.4) (31.4) (30.4) (29.4) (28.4)

<u>.</u>

$$(32.4) \qquad (M\omega^2 - (\beta_1 + \beta_2))u + (\beta_1 + \beta_2 \exp(ika))v$$

(33.4)
$$(\beta_1 + \beta_2 \exp(ika))u + (m\omega^2 - (\beta_1 + \beta_2))v$$

1 و ٧

(34.4)
$$\begin{vmatrix} M\omega^2 - (\beta_1 + \beta_2) & \beta_1 + \beta_2 \exp(ika) \\ \beta_1 + \beta_2 \exp(ika) & m\omega^2 - (\beta_1 + \beta_2) \end{vmatrix} = 0$$

:

(35.4)
$$\omega^{4} - \frac{\beta_{1} + \beta_{2}}{\mu} \omega^{2} + \frac{4\beta_{1}\beta_{2}}{Mm} \sin^{2}\left(\frac{ka}{2}\right) = 0$$

$$m \quad M$$

 $\mu = \frac{Mm}{(M+m)}$ (35.4)

(36.4)
$$\omega_1^2 = \frac{\beta_1 + \beta_2}{2\mu} \left(1 - \sqrt{1 - \alpha \sin^2\left(\frac{ka}{2}\right)} \right)$$

(37.4)
$$\omega_2^2 = \frac{\beta_1 + \beta_2}{2\mu} \left(1 + \sqrt{1 - \alpha \sin^2\left(\frac{ka}{2}\right)} \right)$$

:

(38.4)
$$\alpha = 16 \frac{\beta_1 \beta_2}{(\beta_1 + \beta_2)^2} \left(\frac{\mu}{M + m}\right) \le 1$$

$$1-\alpha\sin^2\left(\frac{ka}{2}\right)$$
 : $M=m$ $\beta_1=\beta_2$

 ω_2,ω_1

2N N

 ω_2,ω_1

k

(37.4) . 2N

. (38.4)

•

$$(ka << 1) \quad (\lambda >> a) \tag{3}$$

(38.4) (37.4)

.1

$$(\sin(ka/2) \approx (ka/2))$$

$$\omega_1^2 = \frac{\beta_1 + \beta_2}{2\mu} \left(1 - \sqrt{1 - \alpha \left(\frac{ka}{2}\right)^2} \right) \approx \frac{\beta_1 + \beta_2}{2\mu} \left(1 - \left(1 - \alpha \left(\frac{1}{2}\right) \frac{k^2 a^2}{4} \right) \right) \Rightarrow$$

149

(39.4)
$$\omega_1 = \frac{\sqrt{\alpha(\beta_1 + \beta_2)}}{4\sqrt{\mu}} ak$$

$$\omega_{2}^{2} = \frac{\beta_{1} + \beta_{2}}{2\mu} \left(1 + \sqrt{1 - \alpha \left(\frac{ka}{2} \right)^{2}} \right) \approx \frac{\beta_{1} + \beta_{2}}{2\mu} \left(1 + \left(1 - \alpha \frac{k^{2}a^{2}}{8} \right) \right) \Rightarrow$$

$$(40.4) \qquad \omega_{2} = \frac{\sqrt{\beta_{1} + \beta_{2}}}{\sqrt{\mu}} \left(1 - \frac{\alpha a^{2}}{32} k^{2} \right)$$

$$\omega = C k \qquad k \qquad \omega_{1}(k) \quad (39.4)$$

$$\omega_{ac} \qquad \omega_{1} \qquad k \qquad \omega_{2}(k) \qquad (40.4)$$

,

$$\omega_{op}$$
 ω_2

$$: k = \pm \frac{\pi}{a}$$

$$\omega_{ac} \left(\pm \frac{\pi}{a}\right) = \omega_{ac}^{\text{max}} = \frac{\beta_1 + \beta_2}{2\mu} \left(1 - \sqrt{1 - \alpha}\right)$$
(41.4)

(42.4)
$$\omega_{op} \left(\pm \frac{\pi}{a} \right) = \omega_{op}^{\min} = \sqrt{\frac{\beta_1 + \beta_2}{2\mu}} \left(1 + \sqrt{1 - \alpha} \right)$$
$$\left(\beta_1 = \beta_2 \quad m = M : \right) \alpha = 1 \qquad \omega_{ac}^{\max} = \omega_{op}^{\min}$$

$$\omega_{ac}^{\text{max}} = \omega_{op}^{\text{min}} = 2\sqrt{\frac{\beta}{m}}$$

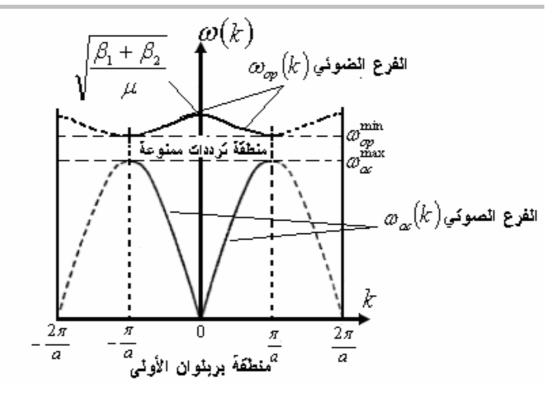
$$.\,\omega_{ac}\neq\omega_{op}\qquad \left(\,\beta_1\neq\beta_2\qquad m\neq M\,:\quad\,\right)\alpha\neq 1$$

•

$$(43.4) \omega_{ac}(k=0)=0$$

(44.4)
$$\omega_{op}(k=0) = \sqrt{\frac{\beta_1 + \beta_2}{\mu}}$$

.



الشكل (9.4):

 ω_{op}^{\min} , ω_{ac}^{\max}

• طبيعة المتزاز الدرات في الفرعين الصوتي و البصري

(45.4)
$$\omega_{ac}(k=0) = 0$$

$$\omega_{op}(k=0) = \sqrt{\frac{\beta_1 + \beta_2}{\mu}}$$

$$\omega_{op}(k=0) = \sqrt{\frac{33.4}{45.4}}$$

$$\omega_{op}(k=0) = \sqrt{\frac{33.4}{45.4}}$$

(47.4)
$$\frac{u_n}{v_n} = \frac{u}{v} = \frac{\beta_1 + \beta_2 \exp(ika)}{\beta_1 + \beta_2 - M\omega_{ac}^2(k=0)} = \frac{\beta_1 + \beta_2}{\beta_1 + \beta_2} = 1$$

151

$$\frac{u_n}{v_n} = \frac{u}{v} = \frac{\beta_1 + \beta_2 \exp(ika)}{\beta_1 + \beta_2 - M\omega_{op}^2(k=0)} = \frac{\beta_1 + \beta_2}{\beta_1 + \beta_2 - M\sqrt{\frac{\beta_1 + \beta_2}{\mu}}} = -\frac{M}{m}$$

M m . (10.4)

 $(10.4) Mu_n + mu_n = 0$

الشكل (10.4):

$$.\left(k=\pm\frac{\pi}{a}\right)$$

(49.4)
$$\omega_{ac} \left(\pm \frac{\pi}{a} \right) = \omega_{ac}^{\text{max}} = \frac{\beta_1 + \beta_2}{2\mu} \left(1 - \sqrt{1 - \alpha} \right)$$

(50.4)
$$\omega_{op}\left(\pm\frac{\pi}{a}\right) = \omega_{op}^{\min} = \sqrt{\frac{\beta_1 + \beta_2}{2\mu}}\left(1 + \sqrt{1-\alpha}\right)$$

(51.4)
$$\frac{u_n}{v_n} = \frac{u}{v} = \frac{\beta_1 + \beta_2 \exp(ika)}{\beta_1 + \beta_2 - M\omega_{ac}^2(k = \pm \pi/a)} = \frac{\frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}}{1 - \frac{M + m}{2m}(1 - \sqrt{1 - \alpha})}$$

$$\vdots \qquad (50.4) \qquad (33.4) \quad (32.4) \quad (31.4) \quad (30.4)$$

(52.4)
$$\frac{u_n}{v_n} = \frac{u}{v} = \frac{\beta_1 + \beta_2 \exp(ika)}{\beta_1 + \beta_2 - M\omega_{op}^2(k = \pm \pi/a)} = \frac{\frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}}{1 - \frac{M + m}{2m}(1 + \sqrt{1 - \alpha})}$$

 $\therefore m \neq M \qquad \beta_1 = \beta_2 \qquad \qquad .1$

$$: \quad (51.4) \qquad \quad \alpha$$

(53.4)
$$\frac{u_n}{v_n} = \frac{\frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}}{1 - \frac{M + m}{2m} \left(1 - \frac{|M - m|}{M + m} \right)}$$

$$v_n \neq 0 \quad u_n = 0 : \frac{u_n}{v_n} = \frac{0}{(m - M)/m} = 0 \qquad m > M$$

. m M

$$\alpha$$
: (52.4)

(54.4)
$$\frac{u_n}{v_n} = \frac{\frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}}{1 - \frac{M + m}{2m} \left(1 + \frac{|M - m|}{M + m}\right)}$$

$$v_n \neq 0 \quad u_n = 0 \quad \frac{u_n}{v_n} = \frac{0}{(m - M)/m} = 0 \qquad M > m$$

.

 $: \beta_1 > \beta_2 \qquad m = M \qquad \qquad . \mathbf{2}$

(55.4) $\frac{u_n}{v_n} = \frac{\frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}}{1 - \left(1 - \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}\right)} = 1$

M

(56.4) $\frac{u_n}{v_n} = \frac{\frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}}{1 - \left(1 + \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}\right)} = -1$

m M

4-5 الأنماط الطبيعية لشبكة براضي ثلاثية الأبعاد

.()

:

•

N

.1

. $\vec{a}_3, \vec{a}_2, \vec{a}_1$

.

(57.4)
$$\vec{u}(\vec{r},t) = \vec{\varepsilon} \exp(i(\vec{k}.\vec{r} - \omega t))$$

$$: \vec{\varepsilon} \cdot t \qquad \vec{r} \qquad () \qquad : \vec{u}(\vec{r},t)$$

$$: \vec{k}$$

 $\omega = f(k)$

:

(58.4)
$$\vec{u}(\vec{r},t) = \vec{u}(\vec{r} + N_i \vec{a}_i, t)$$

 $N_i(i=1,2,3)$ $\vdots \vec{a}_i(i=1,2,3)$

 $(23) N = N_1 N_2 N_3$

(59.4)
$$\exp(iN_i\vec{k}.\vec{a}_i) = 1$$
 $i = 1,2,3$

: $ec{k}$

(60.4)
$$\vec{k} = \sum_{i=1}^{3} \frac{n_i}{N_i} \vec{A}_i \qquad i = 1,2,3$$

$$A_i = \frac{2\pi}{a_i} (i = 1,2,3) \qquad n_i (i = 1,2,3)$$

.

(61.4)
$$\vec{a}_i \cdot \vec{A}_j = 2\pi \delta_{ij}$$
 $i, j = 1,2,3$

: $ec{G}$

)
$$\vec{k} = \exp(i\vec{k}.\vec{R}) = 1$$

$$\vec{k}$$
 .(

 $ec{k}$, $ec{k}' = ec{k} + ec{G}$

 $\vec{k} \tag{60.4}$

(62.4)
$$\vec{k}_{A_i} = \frac{n_i}{N_i} \vec{A}_i$$

 \vec{k}

 $\vec{k}_{\scriptscriptstyle A_i}$ \vec{k}

(63.4)
$$\Delta \vec{k}_{A_1} \cdot \left(\Delta \vec{k}_{A_2} \times \Delta \vec{k}_{A_3}\right) = \frac{\vec{A}_1}{N_1} \cdot \left(\frac{\vec{A}_2}{N_2} \times \frac{\vec{A}_3}{N_3}\right) = \frac{V_e^*}{N}$$

 V_e^*

 \vec{k}

 $\frac{V_e^*}{\left(\frac{V_e^*}{N}\right)} = N$ (64.4)

 $\vec{\varepsilon}_p(\vec{k})(p=1,2,3)$

N

 $\omega_p(\vec{k})(p=1,2,3)$

 $\cdot \left(\omega_p\left(\vec{k}\to 0\right)\right)\to 0$

 $\omega_p(\vec{k})(p=1,2,3,....3\varsigma)$ N

 $(\omega_p(\vec{k} \to 0)) \to \omega_{\text{max}} \neq 0$: $3(\varsigma - 1)$

)
$$. \vec{k} \qquad (11.4)$$

 $\omega(\vec{k})$ فروع ضوئية فروع صوتية \vec{k} اتجاه بٽوري غير تناضري

:(11.4)

• كثافة الأنماط لشبكة برافي ثلاثية الأبعاد أحادية الدرة(في تقريب ديباي)

$$\vec{k}$$

$$\vec{k}$$

$$\vec{k}$$

$$|(V_e^*/N)|$$

$$k + dk \quad k$$

$$\vec{k}$$

$$\{1/(V_e^*/N) = (N/V_e^*)\}$$

$$: dk \quad \vec{k}$$

(65.4)
$$g(k)dk = \frac{N}{V_e^*} 4\pi k^2 dk$$

)
$$N$$
 : $V_e V_e^* = \frac{(2\pi)^3}{V_e}$:

: $V=NV_e$ (

$$(66.4) g(k)dk = \frac{V}{2\pi^2}k^2dk$$

k $: \omega + d\omega \quad \omega$

 $d\omega$

(67.4)
$$D(\omega)d\omega = 3g(k)dk$$

: $D(\omega)$

(68.4)
$$D(\omega)d\omega = 3\frac{V}{2\pi^2}k^2dk$$

:

(69.4)
$$\omega = v_g k = v_p k = v_S k$$

 V_g, V_p, V_S :

(70.4)
$$D(\omega)d\omega = 3\frac{V}{2\pi^2} \frac{\omega^2}{v_S^3} d\omega$$

 $(\omega_{\text{max}} = \omega_D)$ $(\omega_{\text{min}} = 0)$

 $k_{\scriptscriptstyle D}$ $ec{k}$ k $\omega_{\scriptscriptstyle D}$

)

: .(

(71.4)
$$3N = \int_{0}^{\omega_{D}} D(\omega) d\omega$$

$$3N = \int_{0}^{\omega_{D}} 3 \frac{V}{2\pi^{2}} \frac{\omega^{2}}{V_{S}^{3}} d\omega$$

А

(72.4)
$$\omega_D = \sqrt[3]{\left(\frac{6N\pi^2}{V}\right)} \mathbf{v}_S = \sqrt[3]{6\pi^2 n_a} \mathbf{v}_S$$

(73.4)
$$k_D = \sqrt[3]{\left(\frac{6N\pi^2}{V}\right)} = \sqrt[3]{6\pi^2 n_a}$$

. k_D n_a

$$(74.4) D_D(\omega) = \frac{9N}{\omega_D^3} \omega^2$$

6-4 تكميم الهتزازات الشبكة البلورية

· (

•

.

(75.4)
$$E_{n_{k,p}} = \left(n_{\vec{k},p} + \frac{1}{2}\right)\hbar\omega_p(\vec{k})$$

$$p$$
 () $ec{k}$ (الموافق له) $:\omega_p(ec{k})$

```
: \varsigma \qquad p = 1, 2, 3 \dots 3\varsigma
n_{\vec{k},p}
                                                                                                                                                                                      n_{\vec{k},p}
                                                (
                                                                                                                         3N\varsigma
                                                                                                                                                                                         N
                                                                                                                                                                   : \frac{1}{2}\hbar\omega_p(\vec{k})
                                          (n_{\vec{k},p}=0)
                                                                                                                                                                           (12.4)
                                                      U_{tot} = \sum_{\vec{k},p} E_{n_{k,p}} = \sum_{\vec{k},p} \left( n_{\vec{k},p} + \frac{1}{2} \right) \hbar \omega_p(\vec{k})
(76.4)
                                                                                    n_{\vec{k},p} \hbar \omega_p(\vec{k})
                                                                                                                                              (12.4)
                                                                                                                                                                           (\vec{k}, p)
```

160

.1

.**2**

. -

:

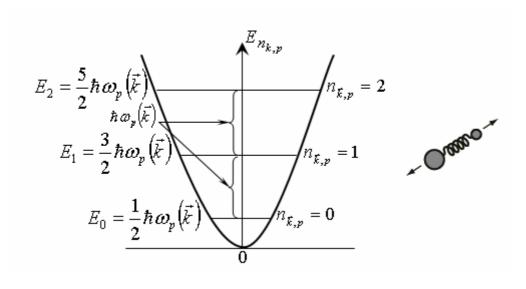
$$(77.4) \vec{K}' = \vec{K} + \vec{G}$$

 $ec{K}'$ $ec{K}$ $ec{G}$

 $\left(-\hbar\vec{G}\right)$

(absorption) (creation)

 $(78.4) \vec{K}' = \vec{K} + \vec{G} \pm \vec{k}_p$



:(12.4)

7-4 الخصائص الحرارية

4-7-1 السعة الحرارية

:

(79.4)
$$\Delta Q = C_s m \Delta T = C \Delta T$$

 $(C_s) (C_s m = C)$

 C_p C_v . (

:

(80.4)
$$\Delta Q = \Delta U - W \Rightarrow \Delta Q = \Delta U \quad (W = 0)$$

$$C = \frac{\Delta Q}{\Delta T} = \frac{\Delta U}{\Delta T}$$
(13.4)

:

(

 $R 3R = 25 J / mole \overset{\circ}{k} = 6 cal / mol. \overset{\circ}{K}$

 $20\overset{\circ}{k}$

.1

:

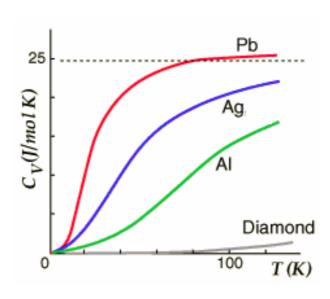
$$C = aT^3 + \gamma T$$

$$C = aT^3$$

$$C = aT^2$$

سنحاول

.



:(13.4)

أ- السعة الحرارية وفق النموذج الكلاسيكي

_

$$(K_BT/2)$$
 (N) (K_BT)

:

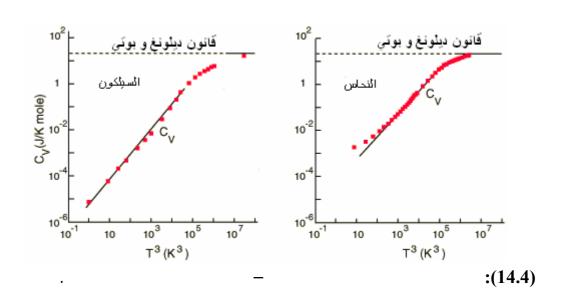
(81.4)
$$\langle U_{tot} \rangle = 3NK_B T$$

:
$$N_A = 6.022 \ 10^{23}$$

(82.4)
$$\langle U_{tot} \rangle = 3N_A KT = 3RT$$

:
$$R = N_A K_B \approx 2 \, cal / mol. \overset{\circ}{K}$$

(83.4)
$$C = \frac{d\langle U_{tot} \rangle}{dT} = 3R \approx 6cal / mol. K = 25 J / mol. K$$
((14.4)) (Dulong-Petit) –



ب- نموذج أينشتاين السعة الحرارية

 ω_E

:

(84.4)
$$E_n = n\hbar\omega$$
 $n = 0,1,2,3,...$ ((12.4)

•

(85.4)
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega \qquad n = 0,1,2,3...$$

n=0

n=0

 $\langle E \rangle$

N

(86.4)
$$N = \sum_{n} N(E_{n}) \\ E = \sum_{n} N(E_{n})E_{n} \Rightarrow \langle E \rangle = \frac{E}{N} = \frac{\sum_{n} N(E_{n})E_{n}}{\sum_{n} N(E_{n})}$$

(86.4)

(87.4)
$$\langle E \rangle = \frac{\int_{0}^{\infty} N(E) E dE}{\int_{0}^{\infty} N(E) dE}$$

$$E_n$$
 $\left(e^{\frac{-E}{K_BT}}\right)$

:(86.4)

(88.4)
$$\langle E \rangle = \frac{\sum_{n=0}^{\infty} n\hbar \omega e^{\frac{-n\hbar\omega}{K_B T}}}{\sum_{n=0}^{\infty} e^{\frac{-n\hbar\omega}{K_B T}}}$$

$$\langle E \rangle = \frac{0 + \hbar \omega e^{\frac{-\hbar \omega}{K_B T}} + 2\hbar \omega e^{\frac{-2\hbar \omega}{K_B T}} + \dots }{1 + e^{\frac{-\hbar \omega}{K_B T}} + e^{\frac{-2\hbar \omega}{K_B T}} + \dots}$$

 $\therefore \qquad x = \frac{-\hbar\omega}{K_B T}$

(89.4)
$$\langle E \rangle = \frac{\hbar \omega e^{x} (1 + 2e^{x} + 3e^{2x} + \dots)}{1 + e^{x} + e^{2x} + \dots}$$

$$\left(\frac{1}{\left(1-e^{x}\right)^{2}}\right)$$

$$(89.4) \qquad \qquad \left(\frac{1}{1-e^x}\right)$$

(90.4)
$$\langle E \rangle = \frac{\hbar \omega e^x}{1 - e^x} = \frac{\hbar \omega}{e^{-x} - 1} = \frac{\hbar \omega}{e^{\frac{\hbar \omega}{K_B T}} - 1}$$

 $: 3N_A$

(91.4)
$$\langle U_{tot} \rangle = 3N \frac{\hbar \omega}{e^{\frac{\hbar \omega}{K_B T}} - 1} = 3N_A \frac{\hbar \omega}{e^{\frac{\theta_E}{T}} - 1}$$

 $\theta_E = \frac{\hbar \omega}{K_B}$

•

(92.4)
$$C_{v} = \frac{d \langle U_{tot} \rangle}{dT} = \frac{3N_{A}K_{B} \left(\frac{\hbar \omega}{K_{B}T}\right)^{2} e^{\frac{\hbar \omega}{K_{B}T}}}{\left(e^{\frac{\hbar \omega}{K_{B}T}} - 1\right)^{2}}$$

$$\vdots \qquad (92.4)$$

1) الدراسة عند المجالات الحرارية العالية

 $(K_B T >> \hbar \omega)$

(93.4)
$$e^{\frac{\hbar\omega}{K_BT}} - 1 = 1 + \frac{\hbar\omega}{K_BT} + \left(\frac{\hbar\omega}{K_BT}\right)^2 + \dots - 1 \approx \frac{\hbar\omega}{K_BT}$$

: (92.4) (93.4)

(94.4)
$$C_{v} = 3N_{A}K_{B} \left(1 + \frac{\hbar\omega}{K_{B}T} \right) = 3N_{A}K_{B} + \frac{\hbar\omega}{T} \approx 3N_{A}K_{B} = 3R$$

$$(94.4)$$

2) الدراسة عند المحالات الحرارية المنخفضة

$$(92.4) (K_BT << \hbar\omega)$$

$$C_{v} = \frac{d \left\langle E \right\rangle_{tot}}{dT} = \frac{3 N_{A} K_{B} \left(\frac{\hbar \omega}{K_{B} T}\right)^{2} e^{\frac{\hbar \omega}{K_{B} T}}}{\left(e^{\frac{\hbar \omega}{K_{B} T}}\right)^{2}} = 3 N_{A} K_{B} \left(\frac{\hbar \omega}{K_{B} T}\right)^{2} e^{\frac{-\hbar \omega}{K_{B} T}}$$

(95.4)
$$C_{v} = 3R \left(\frac{\hbar \omega}{K_{B}T}\right)^{2} e^{\frac{-\hbar \omega}{K_{B}T}} = 3R \left(\frac{\theta_{E}}{T}\right)^{2} e^{\frac{-\theta_{E}}{T}}$$

$$\text{(T=0)} \tag{95.4}$$

.

ج- نموذج ديباي السعة الحرارية

$$(\omega_{\min} \le \omega \le \omega_{\max})$$

$$(\omega_{\min} = 0)$$

$$(\omega_{\min} = \omega_D)$$

 $\langle U_{tot} \rangle = \int_{0}^{E_{\text{max}}} \langle E \rangle dN(E) = \int_{0}^{\omega_{\text{max}}} \frac{\hbar \omega}{e^{\frac{\hbar \omega}{K_B T}} - 1} D(\omega) d\omega$

(95.4)
$$\langle U_{tot} \rangle = \int_{0}^{\omega_{D}} \frac{\hbar \omega}{e^{\frac{\hbar \omega}{K_{B}T}} - 1} D_{D}(\omega) d\omega$$

$$: ((74.4))$$

(96.4)
$$D_{D}(\omega) = \frac{9N}{\omega_{D}^{3}} \omega^{2}$$

$$: (95.4) \qquad (96.4)$$

(97.4)
$$\langle U_{tot} \rangle = \frac{9N}{\omega_D^3} \int_0^{\omega_D} \frac{\hbar \omega^3}{e^{\frac{\hbar \omega}{K_B T}} - 1} . d\omega$$

$$x = \frac{\hbar \omega}{K_B T}$$

$$x = \frac{\hbar \omega}{K_B T} \Rightarrow \omega = \frac{K_B T}{\hbar} x \Rightarrow d\omega = \frac{K_B T}{\hbar} dx$$

(98.4)
$$\omega^3 d\omega = \frac{K_B^3 T^3 x^3}{\hbar^3} \cdot \frac{K_B T}{\hbar} dx \Rightarrow \frac{K_B^4 T^4 x^3}{\hbar^4} dx$$

$$(99.4) x = 0 \Rightarrow \omega = 0$$

(100.4)
$$\omega_{\text{max}} = \omega_D = \frac{K_B T}{\hbar} x_{\text{max}} \Rightarrow x_{\text{max}} = \frac{\hbar \omega_D}{K_B T} = \frac{\theta_D}{T}$$

. $\theta_{\scriptscriptstyle D} = \frac{\hbar \omega_{\scriptscriptstyle D}}{K_{\scriptscriptstyle B}}$

: (97.4) (100.4) (99.4) (98.4)

(101.4)
$$\langle U_{tot} \rangle = \frac{9NK_B T^4}{\theta_D^3} \int_0^{x_{max}} \frac{x^3}{e^x - 1} dx$$

(102.4)
$$C_{v} = 9NK_{B} \left(\frac{T}{\theta_{D}}\right)^{3} \int_{0}^{\frac{\theta_{D}}{T}} \frac{x^{4}e^{x}}{\left(e^{x}-1\right)^{2}} dx$$

(102.4) (101.4)

أ- الدراسة عند الدرجات الحرارية العالية

$$(103.4) \frac{x^3}{e^x - 1} = \frac{x^3}{1 + x + x^2 + \dots} \approx \frac{x^3}{x} = x^2$$

$$\langle U_{tot} \rangle = \frac{9NK_B T^4}{\theta_D^3} \int_0^{x_{\text{max}}} \frac{x^3}{e^x - 1} dx = \frac{9NK_B T^4}{\theta_D^3} \int_0^{x_{\text{max}}} x^2 dx$$

$$\langle U_{tot} \rangle = \frac{9NK_B T^4}{\theta_D^3} \cdot \frac{x_{\text{max}}^3}{3} = \frac{9NK_B T^4}{\theta_D^3} \cdot \frac{\theta_D^3}{3T^3} = 3NK_B T$$

$$(104.4)$$

$$C_v = \frac{d\langle U \rangle}{dT} = 3NK_B$$

$$: \qquad N = N_A$$

$$(105.4) C_{v} = 3N_{A}K_{B} = 3R$$

. – (105.4)

ب- الدراسة عند الدرجات الحرارية المنخفضة

$$(0 \mapsto (x_{\text{max}} \to \infty)) \qquad K_B T << \hbar \omega$$

.

(106.4)
$$\int_{0}^{\infty} \frac{x^{3}}{e^{x} - 1} dx = \frac{\pi^{4}}{15}$$

: (101.4)

$$\langle U_{tot} \rangle = \frac{9NK_B T^4}{\theta_D^3} \int_0^{\infty} \frac{x^3}{e^x - 1} dx = \frac{9NK_B T^4}{\theta_D^3} \cdot \frac{\pi^4}{15} = \frac{3\pi^4 NK_B T^4}{5\theta_D^3}$$

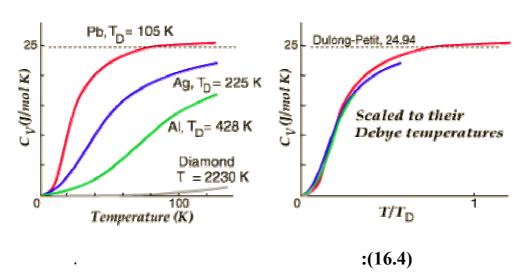
:

(107.4)
$$C_{v} = \frac{d\langle U \rangle}{dT} = \frac{12\pi^{4}N_{A}K_{B}T^{3}}{5\theta_{D}^{3}} = \frac{12}{5}\pi^{4}R\left(\frac{T}{\theta_{D}}\right)^{3}$$
(107.4)
$$(15.4) \qquad (107.4)$$
(107.4)

Fit of silver specific heat data to the Debye curve with $T_D = 215 \text{ K}$.

T/ T_D I

() :(15.4)



: (1.4)

$ heta_{\scriptscriptstyle D}$ درجةحرارة ديباي	العنصر	$ heta_{\scriptscriptstyle D}\!\!\left(\stackrel{o}{K} ight)$ درجةحرارة ديباي	العنصر
230	Ca	428	Al
630	Cr	110	Pb
450	Mn	158	Na
467	Fe	370	Li
343	Cu	1160	Be
310	Zn	164	Au
370	Ge	640	Si
732	LiF	470	SiO ₂
510	CaF ₂	321	NaCl

:(1.4)

2-7-4 الاهتزازات اللاتوافقية

(108.4)
$$F(x) = -\beta x + \gamma x^2 - \alpha x^3$$

: x

$$(109.4) F(x) = -\beta x$$

 \boldsymbol{X}

:

(110.4)
$$U(x) = -f x^{2} - g x^{3} + h x^{4}$$

$$x^{3} \qquad f, g, h:$$

... ()

3-7-4 التمدد الحراري

. عد

T X

: x

(111.4)
$$\langle x \rangle = \frac{\int\limits_{-\infty}^{+\infty} x \exp\left(-\frac{U(x)}{K_B T}\right) dx}{\int\limits_{-\infty}^{+\infty} \exp\left(-\frac{U(x)}{K_B T}\right) dx}$$

(110.4)

: (111.4)

$$\int_{-\infty}^{+\infty} x \exp\left(-\frac{U(x)}{K_B T}\right) dx = \int_{-\infty}^{+\infty} x \exp\left(-\frac{f x^2}{K_B T}\right) \cdot \int_{-\infty}^{+\infty} \exp\left(-\frac{g x^3 + h x^4}{K_B T}\right) dx$$

$$\cong \int_{-\infty}^{+\infty} x \exp\left(-\frac{f x^2}{K_B T}\right) \cdot \left(1 + \frac{g}{K_B T} x^3 + \frac{h}{K_B T} x^4 + \dots\right) dx$$

$$= \int_{-\infty}^{+\infty} \exp\left(-\frac{f x^2}{K_B T}\right) \cdot \left(x + \frac{g}{K_B T} x^4 + \frac{h}{K_B T} x^5 + \dots\right) dx$$

$$= \int_{-\infty}^{+\infty} x \exp\left(-\frac{f x^2}{K_B T}\right) \cdot dx + \frac{g}{K_B T} \int_{-\infty}^{+\infty} x^4 \exp\left(-\frac{f x^2}{K_B T}\right) dx + \frac{h}{K_B T} \int_{-\infty}^{+\infty} x^5 \exp\left(-\frac{f x^2}{K_B T}\right) dx + \dots$$

$$x^5 \quad x$$

:

(112.4)
$$\int_{-\infty}^{+\infty} x \exp\left(-\frac{U(x)}{K_B T}\right) dx \cong \frac{g}{K_B T} \int_{-\infty}^{+\infty} x^4 \exp\left(-\frac{f x^2}{K_B T}\right) = dx \frac{3g\sqrt{\pi}}{4K_B T} \left(\frac{K_B T}{f}\right)^{\frac{5}{2}}$$

.

(113.4)
$$\int_{-\infty}^{+\infty} \exp\left(-\frac{U(x)}{K_B T}\right) dx \cong \int_{-\infty}^{+\infty} \exp\left(-\frac{f x^2}{K_B T}\right) dx = \left(\frac{\pi K_B T}{f}\right)^{\frac{1}{2}}$$

.

$$\langle x \rangle = \frac{3K_B T}{4f^2} g$$

 $\langle x
angle$

(115.4)
$$\alpha = \frac{\langle x \rangle}{aT} = \frac{3K_B T}{4a f^2} g$$

g = 0 .

4-7-4 التوصيل الحراري في العوازل

Q

dX dT

(dT/dX)

(116.4)

$$Q = K \left(\frac{dT}{dX} \right)$$

. K

1

.

(117.4)
$$K = \frac{1}{3}C\langle v \rangle \lambda$$

1. قانون حفظ الطاقة

(119.4)
$$\hbar\omega_1 + \hbar\omega_2 = \hbar\omega_3$$
$$\omega_1 + \omega_2 = \omega_3$$

2 قانون حفظ كمية الحركة

 \vec{k}_2, \vec{k}_1 :

$$N$$
 :قولية العادية $ar{k}_3$: العملية العادية العادية العادية N : N :

- عملية الانقلاب: U (UmKlapp) $\left(\vec{k}_3' = \vec{k}_1 + \vec{k}_2\right) \vec{k}_3'$ K_p

 λ_3'

 $. \qquad \vec{k}_2, \vec{k}_1$

 $k_3 = k_2 - \frac{\pi}{2}$: \vec{k}_3

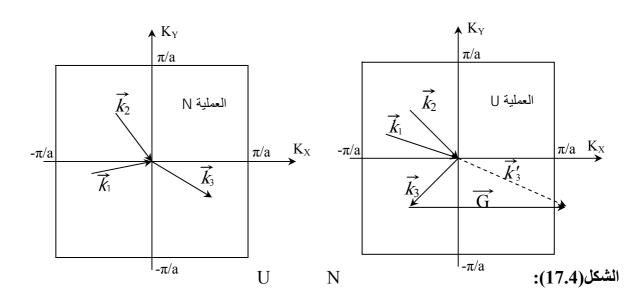
(Peierls)

erls) . \vec{G} (120.4)

 $(121.4) \vec{k}_1 + \vec{k}_2 = \vec{k}_3 + \vec{G}$

. $ec{G}$

.U $\vec{G} \neq \vec{0}$ N $\vec{G} = \vec{0}$



ب- التشتت بالعيوب البلورية

•

1 – العيوب النقطية

4

,).

.(...

2 – العيوب الخطية

.

.

3 - أو كليهما.

.

.

ت- التشتت عند حواف العينة

U

D

.

(122.4) K = C V D $(T << \theta_D) T^3$

 $_{\prime}(T>\theta_{D})$

r

$$(K_B\theta_D/2)$$

 $\exp(\theta_D/2T)$

(123.4)
$$\lambda \propto \exp(\theta_D/2T)$$
$$K_P \propto \exp(\theta_D/2T)$$

(2.4) $T = 20 \overset{\circ}{K}, T = 273 \overset{\circ}{K}$

T =	20 K	$T = 273 \overset{\circ}{K}$		
λ[Å]	$K \Big[W \Big/m. \overset{\circ}{K}\Big]$	λ[Å]	$K \left[W / m. \mathring{K} \right]$	
0.0075	760	97	14	SiO ₂
0.001	85	72	11	CaF ₂
0.00023	45	67	6.4	NaCl
0.041	4200	430	150	Si
0.0045	1300	330	70	Ge

الجدول(2.4):

المراجع

المراجع

[1])	. (•
-[2]				
[3]				
[4])	. (
[5]				
[6]				
-[7]				
. seventh, edition John Wiley and -[8]	tate Physics . s	n to Solid S	. Introduction	Charles Kittel
Sons.inc.New york				
E . ÉCOLES D'INGÉNIEURS[9]	ide.2eCYCLE .	e l'état soli	. Physique	Charles Kittel.
7eédition.DUNOD.				
ce des publicqtions universitaires[10]	ographie.office	adiocristallo	elements de	R.Ouahes.
Physique de la matire condense -[11]	Sylvain Ravy. P	S		
w.lps.u-psud.fr/Utilisateurs/ravy/- [12]	l.fr-http://www.	otron-soleil	.ravy@syncl	sylvain.
18/9/2006.				

.(1ère année)

F. VIVIER Cristallographie. Travaux Pratiques. IUT Créteil-VitryMesures Physiques -[13]

Yuri M. Galperin .Introduction to Modern Solid State Physics. FYS 448 [14]

Ashcroft / Mermin. Solide state physics. Harcourt collage publishers. [15]