الجمهورية الجزائرية الديمقرطية الشعبية وزارة التعليم العالي والبحث العلمي جامعة الشهيد حمه لخضر – الوادي كلية العلوم الدقيقة قسم الفيزياء

دروس وتمارین محلولة لمقیاس ریاضیات 1 سنة اولی جذع مشترك علوم المادة

اعداد: د. بالهادي احفوظه استاذ محاضر بجامعة الوادي

المحتويات

المقدمه	4
محتوى التحليل 1	
1 نظرية المجموء	مات 8
1.1 المنطق الرياض	سي
2.1 المجموعات	
3.1 العلاقات	
4.1 التطبيقات	
2. الدوال العددية لم	متغير حقيقي.
1.2 مجموعة التعرب	يف
2.2 الدوال الدوريا	
3.2 الدوال الزوجية	
4.2 الدوال الفردية	
5.2 الدوال المحدو	دة
6.2 اتجاه تغير دال	ä
3. نهايات الدوال	
1.3 نهاية منتهية ع	مند عدد حقيقي
2.3 نهاية غير مذ	تهية عند عدد حقيقي
3.3 نهاية منتهية عن	ند اللانهاية
4.3 نهاية غير منته	ية عند اللانهاية

5.3 العمليات الجبرية على النهايات
6.3 نهاية دالة مركبة
7.3 النهايات والمقارنة
4. الدوال المستمرة .
1.4تعريف الاستمرار عند قيمة
2.4 التمديد بالاستمر ار
3.4 نظرية القيم المتوسطة
4.4 الدوال المستمرة والرتيبة تماما
 الدوال العكسية
15 الدالة العكسية لدالة المستمرة والرتيبة تماما
2.5 الدوال المثلثية ودوالها العكيسة
3.5 الدوال المثلثية ودوالها العكيسة
محتوى الجبر I
6. البنى الجبرية
1.6 العملية الداخلية
2.6 الزمرة
3.6 الحلقة
4.6 الحقل 4.6
7. الفضاءات الشعاعية
1.7 تعريف الفضاء الشعاعي
2.7 الاسس والابعاد

8. التطبيقات الخطية
1.8 تعريف التطبيق الخطي
2.8 نواة وصورة تطبيق خطي
3.8 التطبيقات الخطية والفضاءات والفضاءات الشعاعية ذات البعد المنته
المراجع

1. نظرية المجموعات

1.1 – المنطق الرياضي

تعریف القضیة : نسمي قضیة کل جملة یمکن ان تکون صحیحة اوخاطئة P,Q,\dots نرمزلها بالرمز

امثلة

- (1) الجزائر بلد افريقي. قضية صحيحة
 - فضیة خاطئة 6+1=8 (2)
- لیست قضیه $x \in \mathbb{R}, \ x+1=3$ (3)

نفي القضية : نفي قضية هو قضية و تكون صحيحة اذا كانت القضية خاطئة و تكون خاطئة اذا كانت القضية صحيحة

 $\overline{P}, \overline{Q}, \dots$ نرمز لنفي القضية بالرمز

جدول الحقيقة: اذا كانت القضية صحيحة نرمزلها بالرمز 1 اذا كانت خاطئة

نرمزلها بالرمز 0

القضايا المركبة:

الوصل: لتكن P,Q قضيتان

 $P \wedge Q$ الوصل بين القضيتين P,Q هو القضية Q و Q نرمزلها بالرمز وتكون صحيحة الا ادا كان Q و Q صحيحتان معا

P	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

الفصل: لتكن P,Q قضيتان

 $P \lor Q$ الفصل بين القضيتين P,Q هو القضية Q او Q نرمزلها بالرمز وتكون خاطبة الا ادا كان Q و Q خاطبتان معا

P	Q	$P \lor Q$
1	1	1
1	0	1
0	1	1
0	0	0

الاستلزام : لتكن P,Q قضيتان

 $P \implies Q$ نرمزلها بالرمز $\overline{P} \lor Q$ هو القضية P,Q هو القضية و $\overline{P} \lor Q$ نرمزلها بالرمز وتكون خاطئة الا ادا كانت P صحيحة و Q خاطئة

P	Q	$P \Longrightarrow Q$
---	---	-----------------------

1	1	1
1	0	0
0	1	1
0	0	1

التكافؤ: لتكن P, Q قضيتان

 $(P \implies Q \land Q \implies P)$ هو القضية P,Q هو القضية التكافؤ بين القضيتين

 $P \iff Q$ نرمزلها بالرمز

وتكون خاطئة الااداكان احداهما صحيحة والاخرى خاطئة

P	Q	$P \Leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

ملاحظات:

$$\bar{\bar{P}} \iff P \quad (1)$$

$$\overline{P \wedge Q} \Leftrightarrow \overline{P} \vee \overline{Q}$$
 (1)

$$\overline{P \vee Q} \Leftrightarrow \overline{P} \wedge \overline{Q}$$
 (2)

الوصل توزیعي علی الفصل
$$S \land (P \lor Q) \Leftrightarrow (S \land P) \lor (S \land Q)$$
 (3)

الفصل توزیعي علی الوصل
$$S \lor (P \land Q) \Leftrightarrow (S \lor P) \land (S \lor Q)$$
 (4)

المكممات:

الجملة المفتوحة:

نسمي جملة مفتوحة معرفة علئ المجموعة E كل جملة تحوي علئ متغير او اكثر وتصبح قضية اذا استبدل المتغير بعنصر من E نرمز لها بالرمز P(x), Q(x) ...

المكمم الكلي

 $\forall x \in E$ العبارة : من اجل كل عنصر x من المجموعة E نعبر عنها رياضيا العبارة : الرمز $\forall x$ يسمئ المكمم الكلي اذا ادخل علئ جملة مفتوحة اصبحت قضية

 $\exists x \in E$ العبارة : يوجد على الاقل عنصر x من المجموعة E نعبر عنها رياضيا الرمز E يسمئ المكمم االوجودي اذا ادخل على جملة مفتوحة اصبحت قضية امثلة

- قضية صحيحة $\forall x \in \mathbb{R}, x^2 \ge 0$ (1)
- قضية صحيحة $\exists x \in \mathbb{R}, x + 2 = 5$ (2)
- قضية صحيحة $\forall x \in \mathbb{N} \exists y \in \mathbb{N}, x < y$ (3)
 - قضية خاطئة $\exists y \in \mathbb{N} \forall x \in \mathbb{N}, x < y$ (3)

ملاحظة : ترتيب المكممات مهم

نفي المكممات: نفي المكمم االوجودي هو المكمم الكلي والعكس نفي قضية مكممة هو نفي المكمم ونفي الجملة التي تلي المكمم امثلة

- $\exists x \in \mathbb{R}, x + 2 = 5 \iff \forall x \in \mathbb{R}, x + 2 \neq 5$ (1)
 - $\forall x \in \mathbb{R}, x^2 \ge 0 \iff \exists x \in \mathbb{R}, x^2 < 0$ (2)
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N}, x < y \iff \exists x \in \mathbb{N} \forall y \in \mathbb{N}, x < y$ (3) انماط البر هان :
 - (1) الاستنتاج: يعتمد على القاعدة التالية

اذا كانت P قضية صحيحة و القضية $Q \Longrightarrow Q$ صحيحة فان Q قضية صحيحة

البرهان بالخلف: لاثبات صحة قضية P نفرض ان \overline{P} صحيحة ونبين ان \overline{P}

هذا يؤدي الي تناقض عندئذ نستنتج ان P سحيحة مثال : اثبت ان $\mathbb{Q} \not \equiv \sqrt{2}$

لنفرض ان $0 \in \mathbb{Z}$ معناه $\sqrt{2} = \frac{a}{b}$ کسر غیر قابل للاختزال ینتج ان $a^2 = 2b^2$ ای $a^2 = 2b^2$ زوجی وبالتالی a زوجی $a^2 = 2b^2$ زوجی $a^2 = 2k^2$, a = 2k ومنه a کسر قابل للاختزال وهذا تناقض مع الفرض a الفرض a کسر قابل للاختزال وهذا تناقض مع الفرض a کسر قابل للاختزال وهذا تناقض مع الفرض

صحيحة $(P \Longrightarrow Q \land \overline{P} \Longrightarrow Q)$ البر هان بفصل الحالات : اذا كانت القضية و اذا كانت القضية و صحيحة نستنتج ان القضية و صحيحة

مضاعف للعدد 2 $\forall n \in \mathbb{N}, n(n+1)$ اثبت ان ثبت اثبت ان

n=2k زوجى نضع n

زوجي n(n+1) = 2k(2k+1)

n=2k+1 فردي نضع n (2)

زوجي
$$n(n+1) = (2k+1)(2k+2)$$
$$= 2(2k+1)(k+1)$$

ومنه n(n+1) زوجي n

 $P \Longrightarrow Q \Longleftrightarrow ar{Q} \Longrightarrow ar{P}$ البرهان بعكس النقيض : يعتمد على التكافؤ (4)

 $ar{Q} \Longrightarrow ar{P}$ فلكي نثبت صحة الاستلزام $P \Longrightarrow Q$ يكفي اثبات صحة

 $\forall n \in \mathbb{N}, \quad \text{(وجي} \Rightarrow n^2 \Rightarrow n$ مثال: اثبت ان

يكفي اثبات ان $n \Rightarrow n^2$ فردي فردي

n=2k+1 فردي نضع n

$$n^2 = (2k+1)^2 = 2(2k^2+2k)+1$$

ومنه n^2 فردي

 x_0 يتمثل في اثبات عدم صحة القضية $\forall x \in E, P(x)$ فيكفي ايجاد عنصر من E لا يحقق القضية

 $\forall n \in \mathbb{N}, n^2 = 2^n$ مثال : اثبت عدم صحة القضية

یکفی اخذ n=3 خاطئة

(6) البرهان بالتراجع:

 $n \geq n_0$ خاصیة تتعلق بعدد طبیعي محدث P(n)

لاثبات صحة القضية $n \geq n$ P(n) يكفى تحقيق الشرطين

محققة $P(n_0)$ (1)

$$P(n) \Rightarrow P(n+1)$$
 صحة الاستلزام (2)

يتمثل في : نفرض ان P(n) صحيحة ونبرهن ان P(n+1) صحيحة

مثال : اثبت ان $\forall n \in \mathbb{N}, n(n+1)(n+2)$ مضاعف للعدد 3

n=0 من اجل (1)

محققة
$$0(0+1)(0+2) = 0 = 3.0$$

$$n(n+1)(n+2) = 3k$$
 نفرض ان (2)

$$(n+1)(n+2)(n+3) = 3k'$$
 ونبر هن ان

$$(n+1)(n+2)(n+3) = n(n+1)(n+2) + 3(n+1)(n+2)$$

$$= 3k + 3(n+1)(n+2)$$

$$= 3[k + (n+1)(n+2)]$$

$$=3k'$$

$$k' = 3 + (n+1)(n+2)$$

المجموعة كائن رياضي يتكون من افراد تسمى عناصر المجموعة

 $a \in E$ ونكتب E مجموعة و a عنصر ا من E نقول ان a ينتمى الى E مجموعة و

 $a \notin E$ عنصر اليس من E نقول ان a لا ينتمي الى E ونكتب E ها اذا كانت E مجموعة و E ملحظة

نرمزب $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ مجموعة الاعداد الطبيعية, الاعداد الصحيحة (1)

الاعداد الناطقة الاعداد الحقيقية الاعداد المركبة على الترتيب

B نقول ان A مجموعة جزئية من B اذا كانت كل عناصر A موجودة قي A ونكتب $A \subset B$

 $A \subset B \iff \forall x \in A \Longrightarrow x \in B$

المساواة: نقول ان المجموعة A تساوي المجموعة B اذا كانت كل عناصر A موجودة قي B والعكس

 $A = B \iff A \subset B \land B \subset A$ ونكتب

E التقاطع: لتكن B و A مجموعتان من

A مجموعة العناصر المشتركة بين B و A تسمى تقاطع المجموعتين

 $A \cap B$ ونرمز لها بالرمز

 $A \cap B = \{x \in E / x \in A \ g \in B \}$ ونكتب

E مجموعتان من B الاتحاد: لتكن B و

نسمى اتحاد المجموعتين B و A مجموعة العناصر المشتركة وغير المشتركة بين A و A نرمز لها الرمز A \cup B

 $A \cup B = \{x \in E / x \in A \mid x \in B\}$ ونكتب

E متممة مجموعة : لتكن A مجموعة جزئية من المجموعة

متممة
$$A$$
 هي المجموعة التي نرمز لها بالرمز \overline{A} والمعرفة ب
$$\overline{A} = \{x \in E/x \not\in A \ \}$$

الفرق بين مجموعتين:

$$A \setminus B = \{x \in E / x \in A \ \ \exists x \notin B \}$$

الفرق التناظري لمجموعتين:

$$A \Delta B = (A \setminus B) \cup (B \setminus A)$$

الجمع : لتكن E مجموعتين

الجمع بين E و F هو المجموعة E+F والمعرفة ب

$$E + F = \{ x + y/x \in E \ \ y \in F \}$$

الجداء الديكارتي لمجموعتين : لتكن E مجموعتين

الجداء الديكارتي للمجموعتين $E \times F$ هو المجموعة $E \times F$ والمعرفة ب

$$E \times F = \{ (x, y)/x \in E \ \ y \in F \}$$

ملاحطة:

$$E = F$$
 اذا کان (1)

$$E^2 = E \times E = \{ (x, y)/x \in E \ \ y \in E \}$$

(2) يصفة عامة

$$E_{1} \times E_{2} \times ... \times E_{n}$$

$$= \{(x_{1}, x_{2}, ..., x_{n}) / x_{1} \in E_{1}, x_{2} \in E_{2}, ..., x_{n} \in E_{n}\}$$

$$= \prod_{k=1}^{n} E_{k}$$

مثال:

$$F = \{3,4\}$$
 $E = \{1,2\}$

$$E \times F = \{(1,3), (1,4), (2,3), (2,4)\}$$

تجزئة مجموعة:

لتكن E مجموعة غير خالية

نقول عن جملة اجزاء $(E_i)_{i\in I}$ انها تشكل تجزئة ل E اذا تحقق

 $\forall i \in I, E_i \neq \phi$ (1)

$$\forall i, j \in I, i \neq j \quad E_i \cap E_j = \phi \quad (2)$$

$$\bigcup_{i \in I} E_i = E \quad (3)$$

 $E = \{1,2,3\}$

$$E_3 = \{\{1\}\{2\}, \{3\}\}$$
 $E_2 = \{\{2\}, \{1,3\}\}$ $E_1 = \{\{1\}, \{2\}, \{2,3\}\}$

ليست تجزئة بينما كل من E_3 و و تمثل تجزئة E_1

خواص:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$ (1)

$$(A \cup B) \cup C = A \cup (B \cup C) \quad (2)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)\ (3)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
, $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (4)

$$A \cup B = B$$
 , $A \cap B = A$ فان $A \subset B$ اذا کان (5)

$$|A \cup B| = |A| + |B| - |A \cap B|$$
 (6)

 $|A| \le |B|$ فان $A \subset B$ اذا كان

(7) مجموعة اجزاء المجموعة:

المجموعات الجزئية لE تسمى مجموعة اجزاء المجموعة E ونرمز

 $A\subset E$ فان $A\in \mathcal{P}(E)$ اذا كانت $\mathcal{P}(E)$ فان

مثال:

$$E = \{a, b\}$$

$$\mathcal{P}(E) = \{ \emptyset, \{a\}, \{b\}, E\}$$

الدالة المميزة

نسمى الدالة المميزة للمجموعة الجزئية $E \subset E$ الدالة التي نرمز لها

 $\chi_A \! : A \longrightarrow \{0,1\}$: يلي : χ_A والمعرفة كما يلي :

 $\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$

خواص:

$$A = B \Longrightarrow \chi_A = \chi_B \tag{1}$$

$$A \subset B \Longrightarrow \chi_A \le \chi_B \tag{2}$$

$$\chi_{\bar{A}} = 1 - \chi_A \tag{3}$$

$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B} \tag{4}$$

$$\chi_{A \cap B} = \chi_A \cdot \chi_B \tag{5}$$

3.1 العلاقات

العلاقة بين مجموعتين : لتكن E و F مجموعتان غير خاليتين

F تعریف: تسمی علاقة بین E و F کل خاصیة ترفق بعناصر من E یعناصر من E ونرمز لها بالرمز E

 $x \Re y$ نکتب $y \in F$ يرفق ب $x \in E$ اذا کان

F و E علاقة بين E و R علاقة بين و E

بيان العلاقة \Re هو المجموعة الجزئية من E imes F والمعرفة ب

$$G_{\Re} = \{(x, y) \in E \times F, \quad x \Re y \}$$

$$E = \{1, 3\}, F = \{2,4,6,\}$$
: مثال

 γ علاقة بين E عرفة ب χ علاقة بين على علاقة بين على على المحتوان والمحتوان على على على على المحتوان والمحتوان والمحتوان

$$E \times F = \{(1,2), (1,4), (1,6), (3,2), (3,4), (3,6)\}$$

$$G_{\Re} = \{(x,y) \in E \times F, \qquad x \Re y \}$$

$$= \{(1,2), (1,4), (1,6), (3,6)\}$$

F و E العلاقة العكسية : التكن \Re علاقة بين

 \Re^{-1} العلاقة العكسية للعلاقة \Re هي العلاقة بين F و E والمرموز لها بالرمز $\forall (x,y) \in E \times F \ y \ \Re^{-1} \ x$

 $E = \{1, 3\}, F = \{2, 4, 6, \}$: مثال

x العلاقة بين F و E معرفة ب \Re^{-1}

$$G_{\Re^{-1}} = \{(x, y) \in E \times F, \ y \ \Re^{-1}x \ \}$$
$$= \{(2, 1), (4, 1), (6, 1), (6, 3)\}$$

E العلاقة في مجموعة : اذا كانت \Re علاقة من E في E نقول ان \Re علاقة في خواص :

 $\forall x \in E, x \Re x$ علاقة انعكاسية قي E اذا وفقط اذا كان $\Re (1)$

علاقة تناظرية في E اذا وفقط اذا كان $\Re(2)$

 $\forall \ x,y \in E, x \ \Re y \Longrightarrow y \ \Re x$

اذا كان E علاقة ضد تناظرية في الاوفقط اذا كان \Re (3)

$$\forall x, y \in E, \begin{cases} x \Re y \\ y \Re x \end{cases} \Rightarrow x = y$$

اذا كان E علاقة متعدية قي علاقة متعدية كان $\Re \left(4 \right)$

$$\forall x, y, z \in E, \begin{cases} x \Re y \\ y \implies x \Re z \end{cases}$$

مثال:

الله علاقة الله عرفة كمايلي

 $\forall x, y \in \mathbb{Z}, x \Re y \iff 3$ مضاعف x - y

: كلاقة انعكاسية قى $\mathbb Z$ لان $\mathbb R$

 $\forall x \in \mathbb{Z}, x - x = 0 = 3.0 \iff \forall x \in \mathbb{Z}, 3$ مضاعف ل x - x

 $\Leftrightarrow \forall x \in \mathbb{Z}, \qquad x\Re x$

 $\mathbb Z$ علاقة انعكاسية قى

لان \mathbb{Z} علاقة تناظرية قي \mathbb{R} لان

 $\forall x, y \in \mathbb{Z}$, $x \Re y \Rightarrow 3$ مضاعف ل x - y

 $\Rightarrow \forall x, y \in \mathbb{Z} \ x - y = 3k \ / k \in \mathbb{Z}$

 $\Longrightarrow \forall x,y \in \mathbb{Z} \ y-x \ = 3(-k) \ / \ k \in \mathbb{Z}$

 $\Rightarrow \forall x, y \in \mathbb{Z}, y \Re x$

 ${\mathbb Z}$ ومنه ${\mathbb R}$ علاقة تناظرية قي

لان \mathbb{X} علاقة متعدية قي \mathbb{X} لان

$$\forall x, y, z \in \mathbb{Z}, \begin{cases} x \Re y \\ y \Re z \end{cases} \Longrightarrow \begin{cases} x - y = 3k \\ y \\ y - z = 3k' \end{cases}$$

$$\Rightarrow x - z = 3(k + k')/k'' = k + k' \in \mathbb{Z}$$

$$\Rightarrow x \Re z$$

 ${\mathbb Z}$ ومنه ${\mathbb R}$ علاقة متعدية قي

علاقة التكافؤ : \Re علاقة لتكافؤ قى E اذ وفقط اذا كان

R علاقة انعكاسية تناظرية و متعدية

 $x \in E$ و E علاقة لتكافؤ \Re و E اصناف التكافؤ

 χ مع \Re مع التي تحقق العناصر من E التي تحقق العلاقة \Re مع مع معنف تكافؤ العنصر

والتي نرمز لها بالرمز بروالمعرفة كمايلي

$$\dot{x} = \{ y \in E / x \Re y \}$$

مثال:

الله علاقة تكافؤ قى الله معرفة كمايلي

 $\forall x, y \in \mathbb{Z}, x \Re y \iff 3$ مضاعف ل x - y

 $\dot{0} = \{ y \in E / 0\Re y \}$

 $= \{ y \in E/y - 0 = 3k \}$

 $= \{...-9, -6, -3,0,3,6,9 ...\}$

 $\dot{1} = \{ y \in E / 1\Re y \}$

 $= \{ y \in E/y - 1 = 3k \}$

 $= \{...-10, -7, -4,0,4,7,10 \dots \}$

علاقة الترتيب : \Re علاقة ترتيب في E اذ وفقط اذا كان

R علاقة انعكاسية ضد تناظرية و متعدية

علاقة الترتيب الكلى \Re علاقة ترتيب كلى قى E اذ وفقط اذا كان

 $\forall x,y \in E$, $x \Re y$ او $y \Re x$ و E علاقة ترتيب قي E

اذا كانت \Re ليست علاقة ترتيب كلى قى E فانها علاقة ترتيب جزئى

علاقة الترتيب قي 🏿 :

 \mathbb{R} نعرف قي \mathbb{R} العلاقة $\cdots \leq \cdots \leq \dots$ وهي علاقة ترتيب كلي قي

مثال:

 \Re علاقة قي \Re معرفة كمايلي

 $\forall x, y \in \mathbb{R}, x \Re y \iff x \leq y$

 $\forall x \in \mathbb{R}, \ x \leq x$ علاقة انعكاسية لان \Re

 $\forall x \in \mathbb{R}, x \leq x \iff \forall x \in \mathbb{R}, x \Re x$

ومنه العكاسية

لان \Re علاقة ضد تناظرية قى \Re لان

$$\forall x, y \in \mathbb{R}, \begin{cases} x \Re y \\ y \Re x \end{cases} \Longrightarrow \begin{cases} x \leq y \\ y \leq x \end{cases}$$
$$\Rightarrow x = y$$

ومنه العلاقة ضد تناظرية قى الله

علاقة متعدية قى \mathbb{R} لان \Re (4)

$$\forall x, y, z \in \mathbb{Z}, \begin{cases} x \Re y \\ y \Re z \end{cases} \Longrightarrow \begin{cases} x \leq y \\ y \\ y \leq z \end{cases}$$
$$\Rightarrow x \leq z$$
$$\Rightarrow x \Re z$$

 ${\mathbb R}$ ومنه ${\mathbb R}$ علاقة متعدية قي

بمان \Re علاقة انعكاسية ضد تناظرية و متعدية اذا فهي علاقة ترتيب قي \Re

 $\forall x, y \in \mathbb{R}, x \leq y$ le $y \leq x$

 $\mathbb R$ اذا $\mathbb R$ علاقة ترتيب كلي قي

خواص علاقة الترتيب قي 🖫 :

(1) الجزء الصحيح:

من اجل کل عدد حقیقی x یوجد عدد صحیح [x] او E(x) یحقق $[x] \leq x < [x] + 1$

 χ يسمى الجوء الصحيح للعدد الم

امثلة:

$$[2,6]=2$$
 ويكون $2\leq 2,6<3$ اذا $2\leq 2,6$

 $\forall x, y \in \mathbb{R} ; x < y \Longrightarrow \exists r \in \mathbb{Q} \ x < r < y$

(3) الحواد العليا و السفلى:

 \mathbb{R} نتكن A مجموعة جزئية غير خالية من

نقول عن A انه محدود من الأعلى اذا وجد العدد M يحيث :

 $\forall x \in A$, $x \leq M$

: يحيث m يحيث M انه محدود من الأسفل اذا وجد العدد

 $\forall x \in A, \quad x \geq m$

A ل M حاد اعلى ل M حاد اعلى ل M عندئذ ان M حاد ادنى M انه محدود اذا كان محدود من الاعلى و من الاسفل اي نقول عن M انه محدود اذا كان محدود من الاعلى و

 $\forall x \in A, \exists M, m \quad m \leq x \leq M$

(4) الحد الاعلى – الحد الادنى

ليكن A جزء غير خال من \mathbb{R} ومحدود من الاعلى (من الاسفل من) نسمي اصغر الحواد العليا بالحد الاعلى ونرمز له بالرمز inf A نسمي الكبر الحواد الدنيا بالحد الادنى ونرمز له بالرمز

امثلة:

$$A =]-1,3]$$

$$sup A = 3, \quad inf A = -1$$

(5)الحد الاكبر والحد الاصغر

maxA اذا كان $SupA \in A$ فانه في هذه الحالة يسمى بالحد الاكبر ونرمز له بالرمز

minA فانه في هذه الحالة يسمى بالحد الاصغر ونرمز له بالرمز $infA \in A$ مثال:

$$A =]-1,3]$$

 $maxA = supA = 3 \in A$, غير موجود minA اذا $infA = -1 \notin A$ تمرين (1) :

$$A = \left\{ x \in \mathbb{R} , 2 + \frac{1}{n}, \quad n \in \mathbb{R}^* \right\}$$

minA و maxA , infA و supA

الحل

$$0 < \frac{1}{n} \le 1 \Longrightarrow 2 < 2 + \frac{1}{n} \le 3 \Longrightarrow 2 < A \le 3$$

$$maxA = supA = 3 \in A$$

غير موجود minA اذا $minA = 2 \notin A$

تمرين (2):

(1)
$$sup\{x \in \mathbb{R}, x^2 + x + 2 > 0 \}$$

$$(2) \quad inf\left\{x+\frac{1}{x}; \quad x>0\right\}$$

$$(3)^* \quad inf\left\{2^x + 2^{\frac{1}{2}}; \quad x > 0\right\}$$

الحل:

$$(1) \Delta = -7 < 0 \quad \Longrightarrow \forall x \in \mathbb{R}, \qquad x^2 + x + 2 > 0$$

ومنه انه غير موجود $sup\{x\in\mathbb{R}\;,x^2+x+2>0\;\;\}=+\infty$

$$(2)f(x) = x + \frac{1}{x}; \quad x > 0$$
 نضع $f'(x) = 1 - \frac{1}{x^2}$

$$\forall x > 0 \quad f(x) \ge f(1) = 2$$
$$inf\left\{x + \frac{1}{x}; \quad x > 0\right\} = 2$$

$$\phi \neq A \subset \mathbb{R}$$
 ليكن

$$sup A = M \Longleftrightarrow \begin{cases} \forall \ x \in A \ , x \leq M \\ \forall \varepsilon > 0, \exists \ x \in A, \quad M - \varepsilon < x \end{cases}$$

$$infA = m \iff \begin{cases} \forall x \in A, x \ge m \\ \forall \varepsilon > 0, \exists x \in A, x < m + \varepsilon \end{cases}$$

الاثبات

$$M_0 = M - arepsilon$$
 نضع $arepsilon > 0$ وليكن $sup A = M$

نجد
$$M_0 < M$$
 وبمان M اصغر الحواد العليا وبالتالي $M_0 < M$ ليس حاد ا من الاعلى

$$x \leq M$$
 ومن جهة اخرى $M_0 < x$ يحيث $x \in A$

$$\forall \varepsilon > 0, \exists x \in A, \qquad M - \varepsilon < x \le M$$

4.1 التطبيقات

 χ انه عنصر کا انه انه تطبیق من E نحو انه کان کل عنصر E انه عنصر عنصر E انه عنصر عنصر کانه کان کان عنصر

ن کے یرفق بعنصر وحید y من E ونکتب :

$$f: E \longrightarrow F$$

$$x \rightarrow y = f(t)$$

تسمى E مجموعة السوابق او (البدء) و F مجموعة الصور او (الوصول) X يسمى سابقة Y و Y صورة X

المعرف كمايلي المطابق : نسمى التطبيق المطابق كل تطبيق I_E من I_E من المعرف كمايلي التطبيق المعرف

$$I_E: E \to E$$

$$x \to I_F(x) = x$$

H اقتصار وتمدید تطبیق : لیکن f تطبیق من G قی G و G تطبیق من G قی G اقتصار G و G و G انقول ان G اقتصار G علی G و G امتداد G علی G

G تطبیق من G قی G و تطبیق من G قی G و تطبیق من G قی G و تطبیق من G تطبیق من G المرموز له بالرمز G و المعرف کمایلی G و G و المعرف کمایلی G و G و المعرف کمایلی G

gو التطبیقین fو

F قي E نطبيق من E الصورة المباشرة والصورة العكسية العكسية المباشرة والصورة العكسية

A الصورة المباشرة : ليكن f تطبيق من E قي F و E الصورة المباشرة ل

هي مجموعة صور عناصر A وفق f نرمز لها بf(A) والمعرفة كمايلي

$$f(A) = \{f(x), x \in A\} \subset F$$

 $B \subset F$ الصورة العكسية : ليكن

مجموعة عناصر E صورها وفق f في E نرمز لها ب $f^{-1}(B)$ والمعرفة كمايلي والمعرفة كمايلي

$$f^{-1}(B) = \{ x \in E, f(x) \in B \} \subset E$$

F خواص : ليكن f تطبيق من E

F مجموعتین جزئیتین من E مجموعتین جزئیتین من E مجموعتین جزئیتین من E یکون لدینا عندئذ

$$f(A \cup B) = f(A) \cup f(B)$$
. $f(A \cap B) \subset f(A) \cap f(B)$ (1)

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$
 (2)

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$

$$A \subset f^{-1}(f(A)), f(f^{-1}(C)) \subset C$$
 (3)

$$f^{-1}(C_FC) = C_E(f^{-1}(C))$$

$$f(x)=x^2$$
 حيث $f:\mathbb{R} \to \mathbb{R}^+$ مثال: ليكن التطبيق

$$f(A)$$
 عين $A = [-3:3] \subset \mathbb{R}$ (1)

$$f^{-1}(B)$$
 عين $B = [0,4] \subset \mathbb{R}^+(2)$

الحل:

$$f(A) = \{f(x) = x^2 / x \in [-3:3]\} = [0,9] (1)$$

$$f^{-1}(B) = \{ x \in \mathbb{R} / f(x) = x^2 \in [0:4] \}$$
 (2)

$$= \{x \in \mathbb{R} / 0 \le x^2 \le 4\} = [-2,2]$$

التطبيقات المتباينة - الغامرة - المتقابلة:

F ليكن f تطبيق من f قي

التطبيق المتباين :

$$F$$
 قي E تطبيق متباين من E قي $f \Leftrightarrow \forall x, x' \in E \ / \ x \neq x' \Longrightarrow f(x) \neq f(x')$ $\Leftrightarrow \forall x, x' \in E/f(x) = f(x') \Longrightarrow x = x'$

التطبيق الغامر:

$$\forall \ y \in F, \exists \ x \in E/y = f(x) \iff F$$
 تطبیق غامر من f

التطبيق التقابلي:

 $\forall y \in F, \exists ! \ x \in E/y = f(x) \Leftrightarrow F$ تطبيق تقابلي من E قي E متباين و غامر من E قي E مثال :

ليكن تطبيق من $\mathbb{R}-\{3\}$ قي $\mathbb{R}-\{-2\}$ المعرف كمايلي $f(x)=\frac{2x+4}{x-3}$

بین f متباین و غامر

$$\forall x, x' \in \mathbb{R} - \{3\}: \ f(x) = f(x') \iff \forall x, x' \in \mathbb{R} - \{3\}$$

$$\frac{2x+4}{x-3} = \frac{2x'+4}{x'-3} \iff (2x+4)(x'-3) = (2x'+4)(x-3)$$

$$\implies x = x'$$

ومنه f متباین

$$\forall y \in \mathbb{R} - \{2\} \exists x \in \mathbb{R} - \{3\}/y = f(x)$$
$$y = \frac{2x+4}{x-3} \Longrightarrow x = \frac{3y+4}{y-2}$$

ومنه f غامر

تمارين محلولة

التمرين الاول :

(1) هل القضايا التالية صحيحة ?

$$\frac{1}{2} \in \mathbb{N} \text{ if } 1 - 1 = 0 \quad \text{(i)}$$

$$x \in \emptyset \Longrightarrow x \in E \ (\downarrow)$$

(2) اكتب نفي القضيتين (ا) و (ب) وكذا عكس النقيض
$$(1)$$

اكتب القضية (١) على شكل استلزام

الحل:

$$\frac{1}{2} \notin \mathbb{N}$$
 نفي القضية (۱) هو $1-1 \neq 0$ و (2)

نفي القضية
$$x \notin \emptyset$$
 او $x \in E$ او $x \notin E$ هو نفي القضية القضية القضية نفي القضية المام القضية القضية القضية القضية القضية القضية القضية القضية القضية المام المام المام ا

$$x \in \emptyset \Rightarrow x \in E \Leftrightarrow x \notin \emptyset \quad x \in E$$

$$\Leftrightarrow x \in \emptyset$$
 $x \notin E$

$$\frac{1}{2} \in \mathbb{N} \text{ if } 1 - 1 = 0 \iff \frac{1}{2} \notin \mathbb{N} \implies x \in E$$

التمرين الثاني:

لتكن
$$E$$
 و D و D اجزاء للمجموعة E اثبت ان

$$A \cap B = \emptyset \iff A \subset \mathcal{C}_E^B \tag{1}$$

$$A \subset B \iff C_E^B \subset C_E^A \tag{2}$$

$$A \subset B \quad C \subset D \Longrightarrow A \cap C \subset B \cap B \quad (3)^*$$

الحل:

$$A \cap B = \emptyset \iff A \subset \mathcal{C}_E^B \tag{1}$$

للبرهان على التكافؤ يكفي البرهان على الاستلزام في الاتجاهين

$$A \cap B = \emptyset \implies A \subset C_F^B$$
 لنبر هن ان

$$A \subset C_E^B$$
 نفرض ان $A \cap B = \emptyset$ نبر هن ان

$$\forall x \in A \Longrightarrow x \notin B \quad (A \cap B = \emptyset \quad \forall x \in A)$$

$$\Rightarrow x \in C_E^B$$

$$A \subset C_E^B$$
 ومنه

$$A \subset C_E^B \Longrightarrow A \cap B = \emptyset$$
 لنبر هن ان

$$A\cap B=\emptyset$$
 انفرض ان $A\subset C_E^B$ لنفرض ان

 $A \cap B \neq \emptyset$ نستعمل البرهان بالخلف لنفرض ان

 $\forall x \in A \cap B \Longrightarrow x \in A \circ x \in B$

$$\Rightarrow x \notin B$$
 פ $x \notin B$ ציט $x \in B (A \subset C_E^B)$

 $A \cap B = \emptyset$ وهذا تناقض ومنه

$$A \cap B = \emptyset \iff A \subset C_E^B$$
 ومنه ان

$$A \subset B \iff C_E^B \subset C_E^A \tag{2}$$

للبرهان على التكافؤ يكفي البرهان على الاستلزام في الاتجاهين

$$A \subset B \implies C_E^B \subset C_E^A$$
لنبر هن ان

 $C_E^B \subset C_E^A$ لنفرض ان $A \subset B$ ونبر هن ان

$$\forall \ x \in C_E^B \Longrightarrow x \notin B$$

$$\implies x \notin B$$

 $\Rightarrow x \in C_E^A$

$$C_E^B \subset C_E^A$$
 each

 $C_E^B \subset C_E^A \Longrightarrow A \subset B$ بنفس الطريقة نبر هن ان

التمرين الثالث:

لتكن A و B و C اجزاء للمجموعة E اثبت ان

$$A \cup B = A \cup C \supset A \cap B = A \cap C \Longrightarrow B = C$$
 (1)

$$A - (B \cup C) = (A - B) \cap (A - C)$$
 (2)*

الحل:

$$B=C$$
 ونبر هن ان $A \cup B=A \cup C$ ونبر هن ان $A \cap B=A \cap C$ لنفر ض ان $B=B \cap (A \cup B)$

التمرين االرابع:

الحل:

لتكن A و B و C مجموعات جزئية للمجموعة E اثبت ان

$$C_E^{A\cap B} = C_E^A \cup C_E^B \qquad (1)$$

$$C_E^{A \cup B} = C_E^A \cap C_E^B \qquad (2)^*$$

$$A - B = A \cap C_E^{A \cap B} = A \cap C_E^B \tag{3}$$

$$(\overline{A \cap B}) \cup (\overline{C \cap \overline{A}}) = E \quad \circ (\overline{A \cup B}) \cap (\overline{C \cup \overline{A}}) = \phi \quad (4)^*$$

 $C_F^{A\cap B} = C_F^A \cup C_F^B$ البرهان على (1)

$$C_E^{A\cap B}\subset C_E^A$$
 للبر هان على $C_E^{A\cap B}=C_E^A$ ليكفي البر هان على $C_E^{A\cap B}=C_E^A$ للبر هان على C_E^A للبر هان على C_E^A

$$C_E^{A\cap B}\subset C_E^A$$
 البرهان على على C_E^B

$$\forall x \in C_E^{A \cap B} \Longrightarrow x \notin A \cap B$$
$$\Longrightarrow x \notin A \lor x \notin B$$

$$\Rightarrow x \in C_E^A \lor x \in C_E^B$$

$$\Longrightarrow x \in C_E^A \cup C_E^B$$

$$C_E^{A\cap B}\subset C_E^A$$
 ل ومنه

$$C_E^A$$
 U $C_E^B \subset C_E^{A\cap B}$ نبخس الطريقة نبرهن ان

البرهان على
$$A-B=A\cap C_E^{A\cap B}=A\cap C_E^B$$
 يكفي البرهان (3)

الاحتواء من الجهاتين

$$A-B\subset A\cap C_E^{A\cap B}$$
 البرهان على

$$\forall x \in A - B \Longrightarrow x \in A \land x \notin B$$

$$\Longrightarrow x \in A \land x \in C_E^B$$

$$\Longrightarrow x \in A \cap C_E^B$$

$$A - B \subset A \cap C_E^{A \cap B}$$
 ومنه

$$A\cap C_E^{A\cap B}\subset A-B$$
 بنغس الطريقة نبرهن ان

التمرين الخامس:

$$\mathcal{P}(E)$$
لتكن $\mathcal{P}(E)$ مجموعة احزاء المجموعة E و E تطبيق من $\mathcal{P}(E)$ قي $\mathcal{P}(E)$ ويحقق :

$$\forall A, B \in \mathcal{P}(E) \ A \cap B = \phi \Longrightarrow f \ (A \cup B) = f(A) + f(B)$$

$$f(\phi) = 0$$
 اثبت ان (1)

فان
$$A \cap B \neq \phi$$
 فان (2)

$$f(A \cup B) = f(A) + f(B) - f(A \cap B)$$

$$A,B$$
 , $C\in\mathcal{P}(E)$ حيث f $(A\cup B\cup C)$ احسب $(3)^*$

الحل:

$$f(\phi) = 0$$
 اثبات ان (1)

$$\phi \cap \phi = \phi \Longrightarrow f(\phi \cup \phi) = f(\phi) + f(\phi)$$

 $\Longrightarrow f(\phi) = f(\phi) + f(\phi)$

$$\Rightarrow f(\phi) = 0$$

$$f(A \cup B) = f(A) + f(B) - f(A \cap B)$$

الترتيب
$$A \cup B$$
 , $A \cup B$ تجزئة ل $A - B, B$ على الترتيب $\{A - B, B\}$

$$(A-B) \cap B = \phi$$
, $(A-B) \cap (A \cap B) = \phi$

$$(A-B) \cup B = A \cup B$$
 $(A-B) \cup (A \cap B) = A$

ومنه حسب (1) نجد

فان $A \cap B \neq \phi$ فان اثبات انه اذا کان فان

$$f(A \cup B) = f((A - B) \cup B) = f(A - B) + f(B)$$
$$f(A) = f(A - B) + f(A \cap B)$$

بطرح العبارتين طرف لطرف

$$f(A \cup B) - f(A) = f(B) - f(A \cap B)$$
$$f(A \cup B) = f(A) + f(B) - f(A \cap B)$$

التمرين السادس:

Fلیکن f تطبیق من E قی F و E مجموعتین جزئیتین من E قی E من E تطبیق من E ایکان E من E من E تطبیق من E من E

$$A \subset B \Rightarrow f(A) \subset f(B)$$
 اثبت ان (1)

$$C \subset D \Rightarrow f^{-1}(C) \subset f^{-1}(D)$$

$$f\left(A\cup B
ight)=f(A)\cup f(B)$$
 اثبت ان (2)

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$
 9

$$f\left(A\cap B
ight)\subset f(A)\cap f(B)$$
 اثبت ان (3)

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$

الحل:

$$A \subset B \implies f(A) \subset f(B)$$
 اثبات ان (1)

$$f(A) \subset f(B)$$
 نبر صن ال $A \subset B$ ونبر هن ان $A \subset B$ $A \subset B$

(1) ... $f(A \cup B) \subset f(A) \cup f(B)$ $(A) \cup f(B) \subset f(A \cup B)$ $(A) \cup f(B) \subset f(A \cup B)$

$$f(A) \cup f(B) \subset f(A \cup B)$$
 للبرهان على

$$A \subset A \cup B \Rightarrow f(A) \subset f(A \cup B)$$
 $B \subset A \cup B \Rightarrow f(B) \subset f(A \cup B)$
 $(2) \dots f(A) \cup f(B) \subset f(A \cup B)$
 $(3) \cup f(B) = f(A \cup B)$
 $(4) \cup f(B) = f(A \cup B)$
 $(5) \cup f(B) = f(A \cup B)$
 $(6) \cup f(B) = f(A \cup B)$
 $(7) \cup f(B) = f(B) = f(A \cup B)$
 $(7) \cup f(B) = f(A) \cup f(B)$
 $(7) \cup f(B) = f(B)$
 $(7) \cup f($

التمرين السابع:

Fمن D, C من E تطبیق من E قی F و E مجموعتین جزئیتین من E من E تطبیق من E من

$$f^{-1}(C-D) = f^{-1}(C) - f^{-1}(D)$$
 اثبت ان (1)

$$f^{-1}(C_F^B) = C_F^{f^{-1}(B)}$$
 اثبت ان (2)

اكتب المعادلة هنا

التمرين الثامن:

ليكن تطبيق معرف كمايلي

$$f: \mathbb{R} - \{2\} \to \mathbb{R}$$
$$x \to \frac{x+1}{x-2}$$

? بین ان f تطبیق متباین هل f غامر (1)

$$g(x)=f(x)$$
 هي $\mathbb{R}-\{a\}$ في $\mathbb{R}-\{2\}$ تطبيق من g تطبيق من g

(3) ليكن تطبيق معرف كمايلي

$$h: \mathbb{R} \to \mathbb{R}$$
 (3)

$$x \rightarrow 2x + 3$$

 $g\circ h$ و $h\circ g$ عين مجموعة تعريف كلا من $g\circ h\circ g$ و

الحل:

$$\forall x, x' \in \mathbb{R} - \{2\} : f(x) = f(x') \iff \forall x, x' \in \mathbb{R} - \{2\}$$
$$\frac{x+1}{x-2} = \frac{x'+1}{x'-2} \iff (x+1)(x'-2) = (x'+1)(x-2)$$
$$\implies x = x'$$

ومنه f متباین

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R} - \{3\}/y = f(x)$$
$$y = \frac{x+1}{x-2} \Longrightarrow x = \frac{2y+1}{y-1}$$

اذا کان y=1 فان x غیر موجود ومنه غیر غامر

$$g(x)=f(x) \ \mathbb{R}-\{a\}$$
 قي $y \in \mathbb{R}$ $y \in \mathbb{R}$

$$y = \frac{x+1}{x-2} \iff x = \frac{2y+1}{y-1} = g^{-1}(y)$$

$$g^{-1}: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}$$

$$x \to g^{-1}(x) = \frac{2x+1}{x-1}$$

$$h: \mathbb{R} \to \mathbb{R} \quad (3)$$

$$(h \circ g)(x) = h[g(x)] = 2g(x) + 3 = 2\left(\frac{x+1}{x-2}\right) + 3 = \frac{5x-4}{x-2}$$
$$(g \circ h)(x) = g[h(x)] = \frac{(2x+3)+1}{(2x+3)-2} = \frac{2x+4}{2x-1}$$

 $x \rightarrow 2x + 3$

التمرين التاسع:

 ${
m G}$ ليكن التطبيقين ${
m g}$, ${
m g}$ حيث ${
m g}$ من ${
m g}$ و ${
m g}$ من ${
m g}$

بین ان:

متباین
$$g \circ f \implies g$$
 متباین $g \circ f \implies g$ متباین

متباین
$$q \circ f$$
 غامر و $q \circ g$ متباین $q \circ g$

غامر
$$g \circ f \Rightarrow g$$
 غامر $g (3)^*$

غامر
$$g \Rightarrow g$$
 متباین و $g \circ f$ غاتر $g \Rightarrow g$

الحل:

متباین
$$g \circ f \Rightarrow$$
 متباین $g \circ f$ متباین (1)

لنفرض ان f متباین ونثبت ان $g \circ f$ متباین

$$\forall x, x' \in E: f(x) = f(x') \iff \forall x, x' \in \mathbb{R} - \{2\}$$

$$(g\circ f)(x)=(g\circ f)(x')$$
 تطبیق $g\circ f$ کان $g\circ f$ متباین $g\circ f$ کان $g\circ f$

وعلیه فانه اذا کان $g \circ f$ متباین فان f

متباین
$$g \circ f$$
 متباین $g \circ g$ متباین $g \circ g$

متباین فان f متباین ومنه f تقابلی و علیه فان التطبیق f^{-1} موجود $g\circ f$

$$[\forall x, x' \in E (g \circ f)(x) = (g \circ f)(x') \Longrightarrow x = x'] \Leftrightarrow$$

$$\Leftrightarrow \forall x, x' \in E, [(g \circ f) \circ f^{-1}](x) = [(g \circ f) \circ f^{-1}](x') \Longrightarrow x = x'$$

$$\Leftrightarrow \forall x, x' \in E, [g \circ (f \circ f^{-1})](x) = [g \circ (f \circ f^{-1})](x') \Rightarrow x = x'$$

$$\Leftrightarrow \forall x, x' \in E, g(x) = g(x') \Rightarrow x = x'$$

$$\Leftrightarrow$$
 متباین g

التمرين العاشر:

ليكن f تطبيق من $\mathbb R$ في $\mathbb R$ معرف كمايلي

$$f(x) = \frac{1}{1 + |x|}$$

? متباین f هل f غامر f

$$f$$
 عين $f(I)$ صورة $I = [0, \infty]$ عين $f(I)$

بین ان f تقابلی من I نحو مجال یطلب تحدیده (3)

غين
$$f^{(3)}=f\circ f\circ f$$
 ثم استنتج $f^{(2)}=f\circ f$ ثم استنتج

$$f^{(n)} = f \circ f \circ \dots \circ f$$

الحل:

? متباین جهل f عامر (1)

$$x \in \mathbb{R}$$
, $f(x) = \frac{1}{1+|x|}$

$$\forall x, x' \in \mathbb{R}, \qquad f(x) = f(x') \Rightarrow \frac{1}{1 + |x|} = \frac{1}{1 + |x'|}$$

$$\Rightarrow |x| = |x'|$$

$$\Rightarrow x = x' \lor x = -x'$$
ومنه f لیس متباین

التمرين الحادي عشر:

الله علاقة قى الله معرفة كمايلي

 $\forall x, y \in \mathbb{Z}, x \Re y \iff 7$ مضاعف ل x - y

- \mathbb{Z} بين ان \Re علاقة تكافؤ قي
- a عين صنف تكافؤ $a \in \mathbb{Z}$ ليكن (2)
- $\mathbb{Z} \ / \, \mathfrak{R}$ عين مجموعة حاصل قسمة مجموعة اصناف التكافؤ

التمرين الثاني عشر:

 \Re علاقة قي \Re معرفة كمايلي

$$\forall x, y \in \mathbb{R}, \qquad x \Re y \iff x^3 - y^3 = x - y$$

- \mathbb{R} بين ان \Re علاقة تكافؤ قي
- a عين صنف تكافؤ $a \in \mathbb{R}$ ليكن
 - $\frac{1}{2}$ عين صنف تكافؤ (3)

التمرين الثالث عشر:

E مجموعة و $\mathcal{P}(E)$ مدموعة اجزاء المجموخة

ولتكن \Re علاقة في $\mathcal{P}(E)$ معرفة كمايلي

$$\forall x, y \in \mathbb{R}, \qquad x \Re y \iff x^3 - y^3 \ge 0$$

 \mathbb{R} بين ان \mathfrak{R} علاقة ترتيب قي

$$\mathbb{R}$$
 علاقة ترتيب كلي قي \mathbb{R} ?

التمرين الرابع عشر:

E مدموعة و $\mathcal{P}(E)$ مدموعة اجزاء المجموخة

ولتكن \Re علاقة قى $\mathcal{P}(E)$ معرفة كمايلى

$$\forall A, B \in \mathcal{P}(E), \quad A \Re B \iff A \subset B$$

$$\mathcal{P}(E)$$
 بين ان \Re علاقة ترتيب قي (1)

$$\mathcal{P}(E)$$
 هل ها علاقة ترتيب كلي قي \Re (2)

التمرين الخامس عشر:

عين minA maxA, infA, supA عين

$$A = \{-x^2 + 2x, x \in]1,2[\}$$
 (1)

$$A = \left\{ 1 + \frac{(-1)^n}{n} ; n \in \mathbb{N}^* \right\}$$
 (2)

$$A = \left\{ \frac{1}{2} + \frac{n}{2n+1} ; n \in \mathbb{N}^* \right\}$$
 (3)

$$A = \{x \in \mathbb{R} ; x^3 > 8\}$$
 (4)*

الحل

$$A = \{-x^2 + 2x, x \in]1,2[\} \quad (1)$$

$$f(x) = -x^2 + 2x$$

$$f'(x) = -2x + 2$$

$$f'(x) < 0$$
 فان $x \in]1,2[$ اذا کان

$$sup A = f(1) = 1 \notin A$$
, $inf A = f(2) = 0 \notin A$

ومنه maxA, minA غير موجود

$$A = \{1+; n \in \mathbb{N}^*\}$$
 (2)

$$\forall n \in \mathbb{N}^* - 1 \le (-1)^n \le 1 \Longrightarrow -1 \le \frac{(-1)^n}{n} < 1$$

$$\Rightarrow 0 \le 1 + \frac{(-1)^n}{n} < 2$$

 $sup A = 2 \notin A$, $inf A = 0 \in A$

ومنه minA = 0 غير موجود

$$A = \left\{ \frac{1}{2} + \frac{n}{2n+1} ; n \in \mathbb{N}^* \right\}$$
 (3)

$$\forall n \in \mathbb{N}^* \quad \frac{1}{2} + \frac{n}{2n+1} = 1 - \frac{1}{4n+2}$$

$$n > 0 \Longrightarrow \frac{1}{2} < 1 - \frac{1}{4n+2} < 1$$

$$sup A = 1 \notin A$$
, $inf A = \frac{1}{2} \notin A$

ومنه maxA, minA غير موجود

التمرين السادس عشر:

لتكن المجموعة

$$A = \left\{ \frac{n+2}{n-1} \; ; n \in \mathbb{N}^* - \{1\} \right\}$$

infA = 1 , supA = 4 بين ان (1)

(2) هل minA maxA موجودة ?

(3)

$$B = \left\{ \frac{1}{4} + \frac{n+2}{n-1} ; n \in \mathbb{N}^* - \{1\} \right\}$$

infB , supB عين

$$C = \left\{ \frac{1}{4}, \frac{n+2}{n-1} ; n \in \mathbb{N}^* - \{1\} \right\}$$

عين supC

$$\frac{n+2}{n-1} = 1 + \frac{3}{n-1}$$

$$\forall n \ge 2 \Longrightarrow n-1 \ge 1 \Longrightarrow \frac{1}{n-1} \le 1 \Longrightarrow \frac{3}{n-1} \le 3$$

$$\Longrightarrow 1 + \frac{3}{n-1} \le 4$$

sup A = 4

maxA = 4 اذا $A \in A$ وبمان

$$\forall n \ge 2 \Longrightarrow n-1 > 0 \Longrightarrow \frac{1}{n-1} > 0 \Longrightarrow \frac{3}{n-1} > 0$$

$$\Longrightarrow 1 + \frac{3}{n-1} > 1$$

ومنه inf A = 1 وبمان M
ot # A ومنه inf A = 1

$$B = \left\{ \frac{1}{4} + \frac{n+2}{n-1} ; n \in \mathbb{N}^* - \{1\} \right\} = \underbrace{\left\{ \frac{n+2}{n-1} ; n \in \mathbb{N}^* - \{1\} \right\}}_{A} + \underbrace{\left\{ \frac{1}{4} \right\}}_{D}$$

$$supB = supA + supD = 4 + \frac{1}{4} = \frac{17}{4}$$

$$infB = infA + infD = +\frac{1}{4} = \frac{5}{4}$$

$$C = \left\{ \frac{1}{4}, \frac{n+2}{n-1} ; n \in \mathbb{N}^* - \{1\} \right\}$$

$$C = \left\{\frac{1}{4}, \frac{n+2}{n-1} ; n \in \mathbb{N}^* - \{1\}\right\} = \underbrace{\left\{\frac{n+2}{n-1} ; n \in \mathbb{N}^* - \{1\}\right\}}_{A} \cup \underbrace{\left\{\frac{1}{4}\right\}}_{D}$$

$$supC = sup(A \cup D) = maxs(upA, supD) = max\left(4, \frac{1}{4}\right) = 4$$

سلسلة تمارين رقم 1 (المنطق الرياضي - المجموعات - العلاقات - التطبيقات) التمرين الاول:

(1) هل القضايا التالية صحيحة ?

$$\frac{1}{2} \in \mathbb{N} \mid 1 - 1 = 0 \quad (\mid)$$

 $x \in \emptyset \Longrightarrow x \in E \ (\because)$

(2) اكتب نفي القضيتين (1) و (1) و كذا عكس النقيض ل

اكتب القضية (١) على شكل استلزام

التمرين الثاني:

لتكن A و B و D الجواء للمجموعة B اثبت ان

$$A \cap B = \emptyset \iff A \subset \mathcal{C}_E^B(1)$$

$$A \subset B \Leftrightarrow \mathcal{C}_E^B \subset \mathcal{C}_E^A \tag{2}$$

$$A \subset B \quad C \subset D \Longrightarrow A \cap C \subset B \cap B \quad (3)$$

التمرين الثالث:

لتكن A و B و C اجواء للمجموعة E اثبت ان

$$A \cup B = A \cup C \quad A \cap B = A \cap C \implies B = c$$
 (1)

$$A - (B \cup C) = (A - B) \cap (A - C) \tag{2}$$

التمرين االرابع:

لتكن A و B اجواء للمجموعة E اثبت ان

$$C_E^{A \cup B} = C_E^A \cap C_E^B \quad (2) \quad C_E^{A \cap B} = C_E^A \cup C_E^B \quad (1)$$

$$A - B = A \cap C_E^B \tag{3}$$

$$(\overline{A \cap B}) \cup (\overline{C \cap \overline{A}}) = E \quad (\overline{A \cup B}) \cap (\overline{C \cup \overline{A}}) = \phi \quad (4)^*$$

التمرين الخامس:

$$\mathcal{P}(E)$$
قي $\mathcal{P}(E)$ نطبيق من $\mathcal{P}(E)$ مجموعة احزاء المجموعة $\mathcal{P}(E)$ قي $\mathcal{P}(E)$ قي التكن ويحقق :

$$\forall A, B \in \mathcal{P}(E) \ A \cap B = \phi \Longrightarrow f \ (A \cup B) = f(A) + f(B)$$

$$f(\phi) = 0$$
 اثبت ان (1)

فان $A \cap B \neq \phi$ فان اثبت انه اذا کان (2)

$$f(A \cup B) = f(A) + f(B) - f(A \cap B)$$

$$A,B$$
 , $C \in \mathcal{P}(E)$ حيث $f(A \cup B \cup C)$ احسب (3)

التمرين السادس:

Fلیکن f تطبیق من E قیF و G مجموعتین جزئیتین من G و G من G

$$A \subset B \Rightarrow f(A) \subset f(B)$$
 اثبت ان (1)

$$C \subset D \Rightarrow f^{-1}(C) \subset f^{-1}(D)$$
 9

$$f\left(A\cup B
ight)=f(A)\cup f(B)$$
 اثبت ان (2)

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$

$$f(A \cap B) \subset f(A) \cap f(B)$$
 اثبت ان (3)

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
 9

التمرين السابع:

Fلیکن f تطبیق من E قی F و G مجموعتین جزئیتین من G قی G من G من G تطبیق من G ایکان G من G من G من G

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
 اثبت ان (1)

$$f^{-1}(C_F^B) = C_F^{f^{-1}(C)}$$
 اثبت ان (2)

التمرين الثامن:

ليكن تطبيق معرف كمايلي

$$f: \mathbb{R} - \{2\} \to \mathbb{R}$$
$$x \to \frac{x+1}{x-2}$$

- ? بین ان f تطبیق متباین هل f غامر (1)
- g(x)=f(x) قي $\mathbb{R}-\{a\}$ قي $\mathbb{R}-\{2\}$ تطبيق من g تطبيق من g

(3) ليكن تطبيق معرف كمايلي

$$h: \mathbb{R} \to \mathbb{R} \quad (3)$$
$$x \to 2x + 3$$

عين $g \circ h$ هل يمكن تعيين $h \circ g$ علل

التمرين التاسع:

 \mathbf{G} يكن التطبيقين \mathbf{g} , \mathbf{g} حيث \mathbf{g} من \mathbf{g} قي \mathbf{g} و \mathbf{g} من \mathbf{g} بين ان :

- متباین $g \circ f \Longrightarrow$ متباین f (1)
- متباین $g \circ f$ متباین $g \circ g$ متباین
 - غامر $g \circ f \Rightarrow g$ غامر g
- غامر $g \Rightarrow g$ متباین و $g \Rightarrow g$ غاتر

التمرين العاشر:

لیکن f تطبیق من $\mathbb R$ فی $\mathbb R$ معرف کمایلی

$$f(x) = \frac{1}{1 + |x|}$$

- ? مثباین و هل f غامر (1)
- f عين f(I) صورة $I=[0,\infty[$ ليكن (2)

بین ان
$$f$$
 تقابلی من I نحو مجال یطلب تحدیده (3)

ين
$$f^{(2)}=f\circ f\circ f$$
 ثم استنتج
$$f^{(n)}=f\circ f\circ \dots \qquad \circ f$$

التمرين الحادي عشر:

 \Re علاقة قي \mathbb{Z} معرفة كمايلي

 $\forall x, y \in \mathbb{Z}, x \Re y \iff 7$ مضاعف لx - y

- \mathbb{Z} بين ان \Re علاقة تكافؤ قي
- a عين صنف تكافؤ $a \in \mathbb{Z}$ ليكن (2)
- $\mathbb{Z} \ / \Re$ عين مجموعة حاصل قسمة مجموعة اصناف التكافؤ

التمرين الثاني عشر:

 \Re علاقة في \Re معرفة كمايلي

$$\forall x, y \in \mathbb{R}, \quad x \Re y \iff x^3 - y^3 = x - y$$

- \mathbb{R} بين ان \mathfrak{R} علاقة تكافؤ قى
- a عين صنف تكافؤ $a\in\mathbb{R}$ ليكن
 - $\frac{1}{2}$ عين صنف تكافؤ (3)

التمرين الثالث عشر:

E مجموعة و $\mathcal{P}(E)$ مدموعة اجزاء المجموخة

ولتكن \Re علاقة في $\mathcal{P}(E)$ معرفة كمايلي

$$\forall x, y \in \mathbb{R}, \qquad x \Re y \iff x^3 - y^3 \ge 0$$

- \mathbb{R} علاقة ترتيب قى \mathbb{R}
- \mathbb{R} هل \mathbb{R} علاقة ترتيب كلى قى \mathbb{R}

التمرين الرابع عشر:

E مجموعة و $\mathcal{P}(E)$ مدموعة اجزاء المجموخة

ولتكن \Re علاقة قى $\mathcal{P}(E)$ معرفة كمايلى

 $\forall A, B \in \mathcal{P}(E), \quad A \Re B \iff A \subset B$

 $\mathcal{P}(E)$ بين ان \Re علاقة ترتيب قي (1)

 $\mathcal{P}(E)$ هل \mathfrak{R} علاقة ترتيب كلي قي \mathfrak{R} (2)

التمرين الخامس عشر:

عين minA maxA, infA, supA قي كل حالة

$$A = \{-x^2 + 2x, x \in]1,2[\} (1)$$

$$A = \left\{ 1 + \frac{(-1)^n}{n} ; n \in \mathbb{N}^* \right\}$$
 (2)

$$A = \left\{ \frac{1}{2} + \frac{n}{2n+1} ; n \in \mathbb{N}^* \right\}$$
 (3)

$$A = \{x \in \mathbb{R} : x^3 > 8\}$$
 $(4)^*$

الدوال العددية لمتغير حقيقي

1 – عمومیات

ترفق $E\subseteq\mathbb{R}$ تعریف : نسمی دالة عددیة لمتغیر حقیقی کل علاقة من $E\subseteq\mathbb{R}$ قی

 f,g,h,\dots بكل عنصر من E ونرمز لها بالرمز E بكل عنصر من

$$f: E \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \to f(x)$$

f الدالة : هي مجموعة الاعداد الحقيقية التي لها صورة بالدالة 2-1 ونرم لها بالرمز D_f

$$D_f = \mathbb{R}$$
 معرفة على \mathbb{R} ومنه $f(x) = x^2 + 2x - 3$ (1)

$$D_f = \mathbb{R} - \{3\}$$
 معرفة على $f(x) = \frac{x^2 + 2x - 3}{x - 3}$ (2)

$$D_f = [-1,1]$$
 ومنه $f(x) = \sqrt{1-x^2}$ (3)

ملاحظات:

$$\mathbb{R}$$
 دوال كثيرات الحدود معرفة على \mathbb{R}

$$\mathbb{R}$$
 معرفة على $x \to sin(x)$ معرفة على (4)

: بيان دالة 3 – 1

تعریف : نسمي بیان الدالة f مجموعة النقط M(x,y) حیث

ونرمز لها بالرمز
$$\Gamma$$
 ونكتب $\{(x,y),x\in D_f,y=f(x)\}$

$$\Gamma = \{(x, y), x \in D_f, y = f(x)\}$$

2 – الدوال الزوجية – الفردية – الدورية

$$\forall x \in D_f : -x \in D_f ; f(-x) = f(x) \iff j \in f$$

$$\forall x \in D_f : -x \in D_f ; f(-x) = -f(x) \iff \dot{f}$$
فردیهٔ

$$\forall x \in D_f : x + r \in D_f$$
 ; $f(x + r) = f(x) \iff f$

ملاحطة: اذا كانت f زوجية (فردية على التوالي) فان بيانها متناظر بالنسبة

 D_f على التوالي) يكفي در اسة دالة زوجية او فردية على المحور الترتيب

ثم اتمام بیان f بالتناظر $D_f \cap \mathbb{R}_+$

ملاحطة : (1) اذا كانت f دورية يكفي دراستها مجال طوله الدور

$$\varphi(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

الدوال الرتيبة – الدوال المحدودة :

 $\forall \; x,y \in D_f: x \leq y \implies f(x) \leq f(y) \iff f(x)$ متزایدة

 $\forall \; x,y \in D_f: x \leq y \implies f(x) \leq f(y) \iff f(x) \in f$ متزایدهٔ

 $\forall x, y \in D_f : x \leq y \implies f(x) = f(y) \iff$ ثابة

رتيبة $\Leftrightarrow f$ متزايدة او fمناقصة f

 $\forall x, y \in D_f : x \le y \implies f(x) = f(y) \iff f(x) = f(y)$

 $\forall x \in E \exists \alpha \in \mathbb{R} \ f(x) \leq \alpha \iff \forall x \in E \exists \alpha \in \mathbb{R} \ f(x) \leq \alpha$ محدودة من الأعلى

 $\forall x \in E \exists \beta \in \mathbb{R} \ f(x) \geq \beta \iff d$ محدودة من الاسفل

 $\forall x \in E \exists \alpha, \beta \in \mathbb{R} \ \beta \leq f(x) \leq \alpha \iff f$ محدودة

ملاحطة:

$$M = \sup_{x \in E} f(x) \iff \begin{cases} \forall x \in E, f(x) \leq M \\ \forall \varepsilon > 0, \exists x \in E, & M - \varepsilon < f(x) \end{cases}$$
$$\inf_{x \in E} f(x) = m \iff \begin{cases} \forall x \in E, f(x) \geq m \\ \forall \varepsilon > 0, \exists x \in E, & f(x) < m + \varepsilon \end{cases}$$

مثلا

$$f(x) = sinx$$

$$f(\mathbb{R}) = [0,1] \sup_{x \in \mathbb{R}} f(x) = 1$$

عمليات على الدوال:

 \mathbb{R} نشيرب $\mathcal{F}(E,\mathbb{R})$ الى مجموعة الدوال من $\mathcal{F}(E,\mathbb{R})$ قي $\lambda\in\mathbb{R}$ من اجل كل $f,g\in\mathcal{F}(E,\mathbb{R})$ من اجل كل (f+g)(x)=f(x)+g(x)

$$(f.g)(x) = f(x).g(x)$$

$$(\lambda f)(x) = \lambda f(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$$

 $x \in E \subset \mathbb{R}$ $f \leq g \Leftrightarrow f(x) \leq g(x)$: ملاحطة

تمرين 1: عين مجموعة تعريف الدوال التالية

$$(1)f(x) = \sqrt{4 - x^2}, \quad (2)^* \quad f(x) = \frac{x}{(x^2 - 4)\sqrt{x^2 - 1}}$$

الحل

$$\forall x \in \mathbb{R} \ 4 - x^2 \ge 0 \iff \pi(x) = \sqrt{4 - x^2}$$
, معرفة

$$x \in [-2,2] \Leftrightarrow$$

$$D_f = [-2,2]$$

تمرین 2: بین ان f دوریة و عین دوؤها فی حالة

$$(1)f(x) = \cos 2x - 4\cos x, (2)f(x) = \frac{1}{3}\sin\left(4x - \frac{\pi}{3}\right)$$

$$(3)f(x) = \sin\left(\frac{\pi}{2}x\right)$$

تمرين 3: ادرس زوجية او فردية الدوال النالية

$$f(x) = \frac{x}{x^2 + 1}$$
 $f(x) = \frac{\sin^2(x) + \cos 3x}{x^2} = \frac{1}{x} ln\left(\frac{e^x + e^{-x}}{2}\right)$

$$f(x) = \frac{1}{x} ln\left(\frac{e^x + e^{-x}}{2}\right), \quad f(x) = \sqrt{x^3 - 4x}$$

النهايات

النهاية المنتهية عند عدد حقيقى:

a معرفة على مجال مفتوح $f:I\subset\mathbb{R} o\mathbb{R}$ يشمل تعريف 1 نامين

نقول ان $\lim_{x \to a} f(x) = b$ ونرمز لها بالرمز a عند b عند b نقول ان نهایة ل

 $\forall \varepsilon > 0, \exists \alpha > 0: |x - \alpha| < \alpha \Longrightarrow |f(x) - b| < \varepsilon$

a معرفة على مجال مفتوح $f:I\subset\mathbb{R}\to\mathbb{R}$ على نعريف : 2 تعريف

نقول ان $\lim_{\substack{x \to \alpha}} f(x) = b$ ونرمز لها بالرمز a على يمين a ونرمز لها بالرمز

 $\forall \varepsilon > 0, \exists \alpha > 0 : 0 < x - a < \alpha \Longrightarrow |f(x) - b| < \varepsilon$

a معرفة على مجال مفتوح $f:I\subset\mathbb{R} \to \mathbb{R}$ تعریف $g:I\subset\mathbb{R} \to \mathbb{R}$ تعریف

ا كان $\lim_{\substack{x \to a}} f(x) = b$ ونرمز لها بالرمز a على يسار a على يسار

 $\forall \varepsilon > 0, \exists \alpha > 0 : 0 < \alpha - x < \alpha \Longrightarrow |f(x) - b| < \varepsilon$

مثال:

$$\lim_{\substack{x > 2 \\ x \to 2}} x^2 = 4 \qquad \text{if } x^2 = 4$$

 $\varepsilon > 0$ من اجل

$$|f(x) - b| < \varepsilon \Leftrightarrow |x^2 - 4| < \varepsilon$$

 $\Leftrightarrow |x - 2||x + 2| < \varepsilon$

$$1 < x < 3$$
 لدينا $x \in]1,3[$ من اجل

$$|x-2| < 1$$
 و $|x+2| < 5$

$$|x + 2| < 5 \Leftrightarrow |x - 2||x + 2| < 5|x - 2| < 5\alpha$$

$$lpha < rac{arepsilon}{5}$$
 يكفي اختيار $lpha < arepsilon$ يعني

ومنه اذا اخذنا
$$\frac{\varepsilon}{5}$$
 نحصل على

$$|x-2| < \alpha \Longrightarrow |x^2-4| < \varepsilon$$

مثال:

$$\lim_{\substack{x \to 1 \\ x \to 1}} \sqrt{x - 1} = 0$$
 اثبت ان

ل الاثبات ان
$$\lim_{\substack{x \to 1 \ x o 1}} \sqrt{x-1} = 0$$
 نتحقق من صحة مايلي

$$\forall \varepsilon > 0, \exists \alpha > 0 : 0 < x - 1 < \alpha \Longrightarrow \left| \sqrt{x - 1} \right| < \varepsilon$$

لدينا

$$\left|\sqrt{x-1}\right| < \varepsilon \Longleftrightarrow 0 < x-1 < \varepsilon^2$$

ومنه

$$0 < x - 1 < \varepsilon^2 \implies |\sqrt{x - 1}| < \varepsilon$$

اذا اخذنا

نحصل على الاستلزام التالئ $\alpha \leq \varepsilon^2$

$$0 < x - 1 < \alpha \Longrightarrow \left| \sqrt{x - 1} \right| < \varepsilon$$

النهايات غير المنتهية عند عدد حقيقي:

 $[x_0, x_0 + a]$ تعریف f دالة معرفة على مجال من الشكل : 4 تعریف

: على يمين هي $+\infty$ على يمين على على على على على يمين على يمين على تكون نهاية f

$$\forall b > 0, \exists \alpha > 0 : 0 < x - x_0 < \alpha \Longrightarrow f(x) > b$$

$$\lim_{\substack{x \to x_0}} f(x) = +\infty$$

], x_0-a , x_0] الشكل المعرفة على مجال من الشكل المعرفة على على : 5 تعريف

: على اليسار هي ∞ + اذا وفقط اذا تحقق مايلي : χ_0 عند f عند على اليسار على :

$$\forall b > 0, \exists \alpha > 0 : 0 < x_0 - x < \alpha \Longrightarrow f(x) > b$$

$$\lim_{\substack{x < x \to x_0}} f(x) = +\infty$$

 x_0 على مجال مفتوح $I:I\subset\mathbb{R} \to \mathbb{R}$ تعریف $f:I\subset\mathbb{R} \to \mathbb{R}$ نعریف

: هي x_0 عند x_0 عند x_0 عند x_0 عند x_0 عند اذا وفقط اذا تحقق مايلي

$$\forall b > 0, \exists \alpha > 0: |x - x_0| < \alpha \Longrightarrow f(x) > b$$

$$\lim_{x \to x_0} f(x) = +\infty$$

 $-\infty$ النهايات عند $+\infty$ او $-\infty$

تعریف 7:

$$\lim_{x \to +\infty} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists b > 0 : x > b \Rightarrow |f(x) - l| < \varepsilon$$

$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall a > 0, \exists b > 0 : x > b \Rightarrow f(x) > a$$

$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall a > 0, \exists b > 0 : x < -b \Rightarrow f(x) < -a$$

نظريات الاولية على النهايات:

لتكن f و g دالتان عدديتان l' , l , χ_0 عدديتان عداد حقيقية

نقبل بدون برهان النظربات التالية

نهاية مجموع دالتين:

$\lim_{x \to x_0} f(x)$	l	l	l	+∞	-∞	+∞
$\lim_{x\to x_0}g(x)$	l'	+∞	-8	+∞	-8	-∞
$\lim_{x \to x_0} f(x) + g(x)$	l + l'	+∞	8	+8	-8	ح ع ت

نهاية جداء دالتين:

$\lim_{x \to x_0} f(x)$	l	l > 0	l > 0	<i>l</i> < 0	<i>l</i> < 0	+∞	-∞	+∞	0
$\lim_{x\to x_0}g(x)$	l'	+∞	-∞	+∞	-8	+8	-8	-8	8
$\lim_{x \to x_0} f(x) \\ \times g(x)$	ll'	+∞	-8	-8	+∞	+8	+8	-8	ح ع ت

نهاية حاصل قسمة دالتين:

$\lim_{x\to x_0} f(x)$	l	l	l	+∞	+∞	-∞	-∞	∞	∞	0
$\lim_{x\to\infty}f(x)$	l'	+8	-∞	l'	l'	l'	l'	0	8	0
$x \rightarrow x_0$	$\neq 0$			> 0	< 0	> 0	< 0			
$\lim_{x \to x_0} \frac{f(x)}{g(x)}$	$\frac{l}{l'}$	0	0	+∞	-∞	-∞	+8	∞	ح ع ت	ح ع ت

حالات عدم التعيين : هناك اربع حالات عدم التعيين و هي

$$\frac{\infty}{\infty}$$
, $\frac{0}{0}$, $0 \times \infty$, $+\infty - \infty$

نهاية دالة كثير حدود او دالة ناطقة عند ∞ + او ∞ :

النهاية عند ∞ + او ∞ - لدالة كثير حدود هي نهاية الحد درجةالاكبر عند

 $\infty + le \infty -$

النهاية عند $\infty + e^{-1}$ الدالة ناطقة هي نهايه حاصل قسمة الحدين الأكبر درجة

عند ∞ + او ∞ –

مثال

$$\lim_{x \to +\infty} x^3 + x^2 + 2x - 5 = \lim_{x \to +\infty} x^3 = +\infty \tag{1}$$

$$\lim_{x \to +\infty} \frac{x^3}{3x^3} = \frac{1}{3} \tag{2}$$

 $+\infty$ اعداد حقیقیهٔ او c,b , a اعداد حقیقیهٔ او f , g : نهایهٔ دالهٔ مرکبهٔ

$$\lim_{x \to b} g(x) = c$$
 و اذا کانت $\lim_{x \to a} f(x) = b$ او $\lim_{x \to a} g(f(x)) = c$ فان $\lim_{x \to a} g(f(x)) = c$

مثال

$$f(x) = \frac{1}{x} + \frac{\pi}{4} \ h(x) = \tan\left(\frac{1}{x} + \frac{\pi}{4}\right) \quad \lim_{x \to \infty} \tan\left(\frac{1}{x} + \frac{\pi}{4}\right)$$

$$\lim_{x \to \frac{\pi}{4}} g(x) = 1 \quad \lim_{x \to +\infty} f(x) = \frac{\pi}{4} \quad g(x) = \tan x$$

$$\lim_{x \to +\infty} g(f(x)) = \lim_{x \to \infty} \tan\left(\frac{1}{x} + \frac{\pi}{4}\right) = 1$$

 \mathbb{R} النهايات والمقارنة h, g, f ثلاث دوال معرفة على مجال I من

فان
$$\lim_{x \to a} g(x) = +\infty$$
 وکانت $\forall x \in I, g(x) \leq f(x)$ فان (1)

$$\lim_{x \to a} f(x) = +\infty$$

فان
$$\lim_{x \to a} g(x) = -\infty$$
 وکانت $\forall x \in I, g(x) \geq f(x)$ فان (2)

$$\lim_{x \to a} f(x) = -\infty$$

وكانت
$$\forall x \in I, h(x) \leq g(x) \leq f(x)$$
 وكانت (3)

$$\lim_{x \to a} g(x) = l \text{ if } \lim_{x \to a} h(x) = \lim_{x \to a} f(x) = l$$

ملاحظة : تبقى هذه القواعد صحيحة من اجل $\infty + \infty$

$$f(x) = x + sinx$$
 ب ه بالمعرفة على الدالة المعرفة على الدالة الدالة الدالة المعرفة على الدالة الدالة الدالة الدالة الدالة المعرفة على الدالة الدالة

$$\forall x \in \mathbb{R} - 1 \le sinx \le 1 \Longrightarrow \forall x \in \mathbb{R} \ x - 1 \le x + sinx \le x + 1$$

$$\lim_{x \to -\infty} f(x) = -\infty$$
 فان $\lim_{x \to -\infty} x + 1 = -\infty$ بمان

$$\lim_{x \to +\infty} f(x) = +\infty$$
 فان $\lim_{x \to +\infty} x - 1 = +\infty$ بمان

$$f(x) = \frac{\sin x}{x}$$
 ب تعتبر الدالة f المعرفة على \mathbb{R}^* بالمعرفة على (2)

$$\forall x \in \mathbb{R}^* - 1 \le sinx \le 1 \Longrightarrow \forall x \in]0, +\infty[\frac{-1}{x} \le \frac{sinx}{x} \le \frac{1}{x}]$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sin x}{x}$$
 فان $\lim_{x \to +\infty} \frac{-1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$ بمان $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x} = 0$

تمرین 1: بین ان

(1)
$$\lim_{x \to +\infty} \frac{1}{1+x} = 0$$
, (2) $\lim_{x \to 1} \frac{1}{x^2 - 1}$

- (1) باستعمال التعريف
- (2)باستعمال النظريات على النهايات

الحل

(1) باستعمال التعريف

$$(1) \lim_{x \to +\infty} \frac{1}{1+x} = 0$$

$$\forall \varepsilon > 0, \exists A > 0 : x > A \Longrightarrow \left| \frac{1}{1+x} \right| < \varepsilon$$

$$\left| \frac{1}{1+x} \right| < \varepsilon \Longrightarrow \frac{1}{1+x} < \varepsilon \Longrightarrow 1+x > \frac{1}{\varepsilon} \Longrightarrow x > \frac{1}{\varepsilon} - 1$$

اذا اخذنا lpha>0 الاستبزام التالي اذا اخذنا

$$x > A \Longrightarrow \left| \frac{1}{1+x} \right| < \varepsilon$$

$$\lim_{x \to +\infty} \frac{1}{1+x} = 0$$
 entitles

تمرين 2: احسب النهايات التالية

(1)
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$
, (2) $\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 2x^2 + 1}$, (3)* $\lim_{x \to -1} \frac{x^5 + 1}{x^3 + 1}$

الحل

(1)
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2}$$
$$= \lim_{x \to 2} x^2 + 2x + 4 = 12$$

$$(2)\lim_{x\to 1}\frac{x^3-3x+2}{x^4-2x^2+1}=\lim_{x\to 1}\frac{(x-1)^2(x+2)}{(x-1)^2(x+1)^2}=\lim_{x\to 1}\frac{(x+2)}{(x+1)^2}=\frac{3}{4}$$

تمرين 3: احسب النهايات التالية

(2)
$$\lim_{x \to 2} \frac{\sqrt{x+2} - 2}{\sqrt{x+7} - 3}$$
 (1) $\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x - 3}$

$$(3)^* \lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1} \qquad \qquad (4)^* \lim_{x \to 0} \frac{x}{\sqrt{x^2+1}-1}$$

$$(1) \lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x - 3} = \lim_{x \to 3} \frac{\left(\sqrt{x+1} - 2\right)\left(\sqrt{x+1} + 2\right)}{(x - 3)\left(\sqrt{x+1} + 2\right)}$$
$$= \lim_{x \to 3} \frac{(x - 3)}{(x - 3)\left(\sqrt{x+1} + 2\right)} = \lim_{x \to 3} \frac{1}{\left(\sqrt{x+1} + 2\right)} = \frac{1}{4}$$

$$(2) \lim_{x \to 2} \frac{\sqrt{x+2} - 2}{\sqrt{x+7} - 3} = \lim_{x \to 2} \frac{\left(\sqrt{x+2} - 2\right)\left(\sqrt{x+2} + 2\right)\left(\left(\sqrt{x+7} + 3\right)\right)}{\left(\sqrt{x+7} - 3\right)\left(\sqrt{x+2} + 2\right)\left(\left(\sqrt{x+7} + 3\right)\right)}$$
$$= \lim_{x \to 2} \frac{(x-2)\left(\left(\sqrt{x+7} + 3\right)\right)}{(x-2)\left(\sqrt{x+2} + 2\right)} = \lim_{x \to 2} \frac{\left(\left(\sqrt{x+7} + 3\right)\right)}{\left(\sqrt{x+2} + 2\right)} = \frac{3}{2}$$

*تمرين 4: احسب النهايات التالية

$$(1) \lim_{x \to +\infty} \sqrt{x^2 + x} - x + 1 \qquad (2)^* \lim_{x \to -\infty} \sqrt{x^2 + x} - x + 1$$

(3)
$$\lim_{x \to +\infty} \sqrt{x^2 + 3x} - \sqrt{x^2 + 1}$$
 (4)* $\lim_{x \to +\infty} \sqrt{x + \sqrt{x}} - \sqrt{x}$

(5)
$$\lim_{x \to +\infty} \frac{x}{\sqrt{x+1}} - \frac{x}{\sqrt{x+2}}$$
 (6)* $\lim_{x \to +\infty} \frac{\sqrt{x^2+1} - \sqrt{x}}{x}$

الحل

$$(1) \lim_{x \to +\infty} \sqrt{x^2 + x} - x + 1 = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + x} - (x - 1)\right)\left(\sqrt{x^2 + x} + (x - 1)\right)}{\left(\sqrt{x^2 + x} + (x - 1)\right)}$$

$$= \lim_{x \to +\infty} \frac{3x - 1}{x\left(\sqrt{1 + \frac{1}{x}} + \left(1 - \frac{1}{x}\right)\right)} = \lim_{x \to +\infty} \frac{3 - \frac{1}{x}}{\left(\sqrt{1 + \frac{1}{x}} + \left(1 - \frac{1}{x}\right)\right)}$$

$$= \frac{3}{2}$$

$$(3) \lim_{x \to +\infty} \sqrt{x^2 + 3x} - \sqrt{x^2 + 1}$$

$$= \lim_{x \to +\infty} \frac{(\sqrt{x^2 + 3x} - \sqrt{x^2 + 1})(\sqrt{x^2 + 3x} + \sqrt{x^2 + 1})}{(\sqrt{x^2 + 3x} + \sqrt{x^2 + 1})}$$

$$= \lim_{x \to +\infty} \frac{3x - 1}{x\left(\sqrt{1 + \frac{3}{x}} + \sqrt{1 + \frac{1}{x}}\right)} = \lim_{x \to +\infty} \frac{3 - \frac{1}{x}}{\left(\sqrt{1 + \frac{3}{x}} + \sqrt{1 + \frac{1}{x}}\right)}$$

$$= \frac{3}{2}$$

$$(5) \lim_{x \to +\infty} \frac{x}{\sqrt{x+1}} - \frac{x}{\sqrt{x+2}} = \lim_{x \to +\infty} \frac{x\left(\frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{x+2}}\right)\left(\frac{1}{\sqrt{x+1}} + \frac{1}{\sqrt{x+2}}\right)}{\left(\frac{1}{\sqrt{x+1}} + \frac{1}{\sqrt{x+2}}\right)}$$

$$= \lim_{x \to +\infty} \frac{x \left(\frac{1}{x+1} - \frac{1}{x+2}\right)}{\frac{1}{\sqrt{x+1}} + \frac{1}{\sqrt{x+2}}} = \lim_{x \to +\infty} \frac{\frac{1}{\sqrt{x}} \left(\frac{1}{1 + \frac{3}{x} + \frac{2}{x^2}}\right)}{\left(\frac{1}{1 + \frac{1}{\sqrt{x}}} + \frac{1}{\sqrt{1 + \frac{2}{\sqrt{x}}}}\right)} = 0$$

تمرين 5: احسب النهايات التالية

$$(1)\lim_{x\to 0}\frac{x.\sin x}{1-\cos x} \qquad (2)^* \lim_{x\to 0}\frac{.\tan 2x}{\sqrt{1-\cos x}}$$

(3)
$$\lim_{x\to 0} \frac{\sin x - \tan x}{x^3}$$
 (4)* $\lim_{x\to 0} \frac{\sin 2x + \sin x}{\sin x - \sin 2x}$

الحل

$$(1)\lim_{x\to 0}\frac{x.\sin x}{1-\cos x}=\lim_{x\to 0}\frac{2x.\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right)}{2\sin^2\left(\frac{x}{2}\right)}=\lim_{x\to 0}\frac{.\cos\left(\frac{x}{2}\right)}{\frac{2\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}}=\frac{1}{2}$$

(3)
$$\lim_{x \to 0} \frac{\sin x - \tan x}{x^3} = \lim_{x \to 0} \frac{\sin x \left[\cos x - .1\right]}{x^3 \cos x} = \lim_{x \to 0} \frac{\sin x \left[-2\sin^2\left(\frac{x}{2}\right)\right]}{x^3 \cos x}$$
$$= -\frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} \times \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} \times \frac{1}{\cos x} = -\frac{1}{2}$$

الاستمرار

 x_0 الاستمرار عند نفطة

 x_0 نعریف $I \subset \mathbb{R}$ نتکن f دالهٔ معرفهٔ علی مجال f نتکن f نتکن

$$\lim_{x \to x_0} f(x) = f(x_0)$$
 دالة مستمرة عند x_0 اذا تحقق ا

مثال : لتكن f دالة معرفة ب

$$f(x) = \frac{2}{x^2 + 1}$$

$$\lim_{x \to 0} f(x) = f(0) = 2$$

0 عند f مستمرة عند

 χ_0 الاستمرار على يمين

 $\alpha>0$ حيث [$x_0,\ x_0+lpha$] حيث على مجال الكن f دالة معرفة على مجال

 $\lim_{\substack{x > x > x_0}} f(x) = f(x_0)$ اذا تحقق $\lim_{x \to x_0} f(x) = f(x_0)$ دالة مستمرة على يمين

مثال : لتكن f دالة معرفة

$$f(x) = \sqrt{x - 2}$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = \lim_{\substack{x \to x_0 \\ x \to x_0}} = \sqrt{x - 2} = 0 = f(2)$$

 χ_0 الاستمرار على يسار

lpha>0 حيث $]x_0-lpha$, x_0] حيث على مجال $[x_0+lpha]$ حيث عريف

 $\lim_{\substack{x < x_0 \ x o x_0}} f(x) = f(x_0$ اذا تحقق x_0 اذا تحقق f

مثال : لتكن f دالة معرفة

$$f(x) = \sqrt{1 - x}$$

$$\lim_{\substack{x \\ x \to x_0}} f(x) = \lim_{\substack{x \\ x \to x_0}} = \sqrt{1 - x} = 0 = f(1)$$

 $I \subset \mathbb{R}$ على مجال f دالة معرفة على مجال : 4

 $\lim_{\substack{x > x_0 \ x o x_0}} f(x) = \lim_{\substack{x > x_0 \ x o x_0}} f(x) = f(x_0)$ دالة مستمرة عند f

الاستمرار على مجال:

 $I \subset \mathbb{R}$ لتكن f دالة معرفة على مجال : 5

I دالة مستمرة على المجال $I\subset\mathbb{R}$ اذا كانت f مستمرة عند اي نقطة من I

دالة مستمرة على المجال a,b[اذا كانت f مستمرة عند اي نقطة منه f

اذا كانت f مستمرة على المجال [a,b[ادا كانت f مستمرة على المجال f

و عند a على اليمين a

]a,b[اذا كانت f مستمرة على المجال [a,b] اذا كانت f مستمرة على المجال [a,b] وعند b على اليسار

]a,b[المجال على المجال [a,b] اذا كانت f مستمرة على المجال f (5) و عند a على اليمين و عند a على اليسار

مثال:

 \mathbb{R} دوال کثیرات الحدودمستمرة على \mathbb{R}

(2) الدوال الناطقة مستمرة على مجموعة تعريفها

 \mathbb{R} above $x \to sinx$, $x \to cosx$ also (3)

التمديد يالاستمرار:

 x_0 تعریف $I \subset \mathbb{R}$ لایشمل معرفة علی مجال f دالة معرفة علی مجال

اذا كانت g المعرفة كمايلي فان الدالة d المعرفة كمايلي اذا كانت

$$g(x) = \begin{cases} f(x) & \text{if } x \neq x_0 \\ l, & \text{if } x = x_0 \end{cases}$$

 x_0 عند f عند وتسمى تمديد يالاستمرار ل

مثال : لتكن f دالة معرفة ب

$$f(x) = \frac{2}{x^2 - 1} - \frac{1}{x - 1}$$

اوجد g تمدید یالاستمرار ل f عند 1

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2}{x^2 - 1} - \frac{1}{x - 1} = \lim_{x \to 1} - \frac{1}{x + 1} = -\frac{1}{2}$$

$$g(x) = \begin{cases} f(x), & x \neq 1 \\ -\frac{1}{2}, & x = 1 \end{cases}$$

مثال : لتكن f دالة معرفة

$$f(x) = \frac{\sin x}{x}$$

0 عند f عند g عند g

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$g(x) = \begin{cases} f(x), & x \neq 0 \\ 1, & x = 0 \end{cases}$$

نظريات على الدوال المستمرة:

و g دالتان عددیتان f

نظریة l مستمرة عند d مستمرة و خانت d مستمرة عند d فان نظریة d نظریة d د اذا كانت d مستمرة عند d

$$\lim_{x \to x_0} g(f(x)) = g(l)$$

الأثبات:

مستمرة عند l حسب تعریف النهایة نجد g

$$\forall \varepsilon > 0, \exists \alpha > 0: |y - l| < \alpha \Longrightarrow |g(y) - g(l)| < \varepsilon$$

وبمان a'>0 عند a'>0 فانه یوجد وبمان انهایة وبمان ا

$$|x - x_0| < \alpha' \Longrightarrow |f(x) - l| < \alpha$$

وبالتالي يكون

$$|x - x_0| < \alpha' \Longrightarrow |f(x) - l| < \alpha \implies |g(y) - g(l)| < \varepsilon$$

اذا

$$\forall \varepsilon > 0, \exists \alpha' > 0 |x - x_0| < \alpha' \Longrightarrow |g(y) - g(l)| < \varepsilon$$

$$\lim_{x \to x_0} g(f(x)) = g(l)$$
 ومنه

استمرار دالة مركبة:

نظریة 2 : اذا کانت f مستمرة عند x_0 وکانت g مستمرة عند x_0 فان x_0 مستمرة عند x_0

الاثبات:

لدينا

 $\lim_{x \to x_0} f(x) = f(x_0)$ من جهة f دالة مستمرة عند x_0 اذا تحقق أدالة مستمرة عند

 $\lim_{x \to x_0} g(f(x)) = g(f(x_0))$ من جهة اخرى

 $\lim_{x \to x_0} (gof)(x) = (gof)(x_0)$ انظریة 1 نجد وحسب النظریة 1

 x_0 عند مستمرة عند اذا الدالة

نظریة 2 : اذا کانت f و g مستمرتان عند k عدد حقیقی فان

 $g(x_0) \neq 0$ دوال مستمرة عند يد دوال مستمرة دوال $kf, f \times g, f + g$

$$x_0$$
 مستمرتان عند مستمرتان معد مستمرتان

نظرية القيم المتوسطة : اذا كانت f دالة مستمرة على المجال [a,b] وكان

f(c)=0 الأقل ميث $c\in]a,b[$ فانه يوجد على الأقل f(a) imes f(b)<0

مثال:

[-1,0] بين ان المعادلة $x^3+x+1=0$ تقبل حلا على المجال

الحل:

$$f(x) = x^3 + x + 1$$

[-1,0] دالة كثير حدود مستمرة على $\mathbb R$ فهي مستمرة على المجال f

$$f(-1) = -1^3 - 1 + 1 = -1,$$

 $f(0) = 0^3 + 0 + 1 = 1$

$$f(-1) imes f(0) = -1 < 0$$
 حسب نظرية القيم المتوسطة فان المعادلة $x^3 + x + 1 = 0$ تقبل حلا على المجال $[-1,0]$

نظرية : اذا كانت f دالة مستمرة على المجال [a,b] وكان a عدد حقيقي f(c)=k محصور بين $c\in [a,b]$ فانه يوجد على الاقل f(a) و f(b) بحيث f(c) :

c=a من اجل k=f(a) من اجل

c=b من اجل k=f(b) من اجل

نضع f(b) < k < f(a) f(a) < k < f(b) نضع g(x) = f(x) - k

[a,b] لانها مجموع دالتين مستمرة على المجال [a,b] لانها مجموع g(a) imes g(b) < 0 و

حسب نظرية القيم المتوسطة فانه يوجد على الاقل

$$g(a) = f(c) - k = 0$$
 بحیث $c \in [a, b]$ بمعنی ان

 $\left[\frac{\pi}{3},\frac{\pi}{2}\right]$ المجال على المعادلة $4 \ xcosx=1$ مثال : بين ان المعادلة

 $\left[\frac{\pi}{3},\frac{\pi}{2}\right]$ دالة مستمرة على هي مستمرة على \mathbb{R} فهي مستمرة على f

الحل:

$$f(x) = 4x\cos x - 1$$

$$f\left(\frac{\pi}{3}\right) = 4\frac{\pi}{3}\cos\frac{\pi}{3} - 1 = 2\frac{\pi}{3} - 1 > 0,$$

$$f\left(\frac{\pi}{2}\right) = 4\frac{\pi}{2}\cos\frac{\pi}{2} - 1 = -1 < 0$$

$$f\left(\frac{\pi}{3}\right) \times f\left(\frac{\pi}{2}\right) < 0$$

4xcosx - 1 = 0 حسب نظرية القيم المتوسطة فان المعادلة

$$\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$$
 تقبل حلا على المجال

k نتیجهٔ : اذا کانت f دالهٔ مستمرهٔ ورتیبهٔ علی المجال a,b وکان $c\in [a,b]$ عدد حقیقیا محصور بین f(b) و f(b) فانه یوجد f(c)=k بحیث

صورة مجال بواسطة دالة مستمرة:

لتكن الدالة f معرفة ومستمرة المجال $\mathbb{R} \supset I$ محدود او غير محدود

صورة المجال I بالدالة f المجال هو f(I) المعرف كمايلي

$$f(I) = \{ y \in \mathbb{R}, \exists x \in I : y = f(x) \}$$

نظریة : اذا کانت f مستمرة علی مجال I فان صورة I بالدالة f هو مجال من \mathbb{R} تمرین محلول

$$f(x) = \frac{x+1}{x-1}$$

$$D_f =]-\infty, 1[\ \cup\]1, +\infty[$$

 $I\subset]1,+\infty[$ او $I\subset]-\infty,1[$ مستمرة على كل مجال I حيث $I\subset]-\infty,-1[$ او I=[0,1] اذا كان I=[0,1] فان I=[-1,0] فان I=[-1,0]

$$f(I)=]1,3]$$
 فان $I=[2,+\infty[$ اذا كان

تمرين $\alpha:1$ عدد حقيقي f الدالة العددية المعرفة كمايلي

$$f(x) = \begin{cases} x^2, & x \ge 0 \\ x + \alpha, & x < 0 \end{cases}$$

 \mathbb{R} عین قیمهٔ α حتی تکون f مستمرهٔ علی

الحل

اذا کان $x \geq 0$ فان $x \geq 0$ مستمرة لانها دالمة مربع

اذا کان x < 0 فان x < 0 مستمرة لانها دالة تالفية

0 عند fمستمرة على \mathbb{R} يجب ان تكون مستمرة عند

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} x^2 = 0 = \lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} x + \alpha = \alpha = f(0)$$

lpha=0 حتى تكون fمستمرة على $\mathbb R$ يجب ان تكون

تمرين 2: لتكن f الدالة العددية المعرفة كمايلي

$$f(x) = \frac{x^3 + 2x - 3}{x - 1}$$

 $x_0=1$ عند بالاستمرار عند f بين ان

الحل

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^3 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x^2 + x - 3)(x - 1)}{x - 1}$$
$$= \lim_{x \to 1} x^2 + x - 3 = -1$$

ومنه f تقبل الدالة g تمديد بالاستمرار عند f والمعرفة كمايلي

$$g(x) = \begin{cases} \frac{x^3 + 2x - 3}{x - 1}, & x \neq 1 \\ -1, & x = 1 \end{cases}$$

تمرین g: U العددیة المعرفة کمایلی f

$$f(x) = \frac{x^2 + |x|}{x^2 - |x|}$$

 $x_0=0$ عند بالاستمرار عند f بين ان ب

تمرين 4: لتكن f الدالة العددية المعرفة كمايلي *

$$f(x) = \pi \frac{\cos^2(x) - \cos x}{2\cos^2(x) - 3\cos x + 1}$$

 $x_0=0$ عند بالاستمرار عند f بين ان

الدالة العددية المعرفة كمايلي f الدالة العددية المعرفة كمايلي أ

$$f(x) = \begin{cases} x - \alpha & , & x \ge 0 \\ \frac{e^x - 1}{\sin x} & , & x < 0 \end{cases}$$

 $x_0=0$ عين قيمة lpha حتى تكون f مستمرة عند

نظریة : اذا کانت f مستمرة وؤتیبة تماما علی مجال I فان f تقبل دالة عکسیة f^{-1} لها الخواص التالیة :

I الدالة f^{-1} معرفة على المجال الدالة ألا معرفة على المجال

الدالة f^{-1} مستمرة وؤتيبة تماما على المجال f(I) ولها نفس اتجاه

f تفير الدالة

الأثبات:

 $orall x_1, x_2 \in I: x_1
eq x_2 \implies f(x_1)
eq f(x_2) \Leftrightarrow I$ رتبية تماما على $f \Leftrightarrow f(x_1) \neq f(x_2)$ متباين على $f \Leftrightarrow f(x_1) \neq f(x_2)$

f(I) في I عندئذ f غامر من I في المن f دالة مستمرة على I من I عندئذ

f بالفعل. حسب تعریف f(I) صورة المجال I بواسطة الدالة المستمرة

 $\forall y \in f(I)$, $\exists x \in I: y = f(x)$

f(I) مما يعنى ان f غامر من I في

ومنه اذا كانت f مستمرة ورتيبة تماما على مجال

 f^{-1} فان fتطبیق تقابلی من I فی I فی من اللہ فہی تقبل تطبیق عکسی

I معرف f(I) معرف

الدالة f^{-1} تطبيق تقابلي من f(I) في I اذن فهي مستمرة وؤتيبة تماما على

f(I) مجال

 $\forall y_1,y_2\in f(I)$ بحیث $y_1\neq y_2$ $\exists x_1,x_2\in I: y_1=f(x_1)$, $y_2=f(x_2)$ و هذا یکافی ایظا

 $x_1 \neq x_2$ فيكون لدينا مع ملاحظة $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$

$$\frac{f^{-1}(y_1) x_2 - f^{-1}(y_2)}{y_1 - y_2} = \frac{x_1 - x_2}{f(x_1) - f(x_2)} = \frac{1}{\frac{f(x_1) - f(x_2)}{x_1 - x_2}}$$

f مما یعنی ان f^{-1} لها نفس اتجاه تفیر

مثال : f دالة معرفة على \mathbb{R} ب

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

بين ان f تقبل دالة عكسية على المجال $[0,+\infty[$ يطلب تعينها

الحل:

 $f([0,+\infty[)$ تعيين

$$f(0) = -1, \lim_{x \to \infty} f(x) = 1$$

$$f([0,+\infty[)=[-1,1[$$

مستمرة على $]\infty+0$ لانها دالة ناطقة f

دالة متزايدة تماما على المجال $[0,+\infty[$ لان f

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{2(x_1 + x_2)}{(x_1^2 + 1)(x_2^2 + 1)} > 0$$

 $[0,+\infty[$ المجال على المجال متزايدة تماما ما مرتيبة تماما ما متزايدة بمان f

 $[0,+\infty[$ معرفة على المجال ا-1,1[نحو المجال معرفة على معرفة على المجال المجال المجال

$$\forall y \in [-1,1[\exists x \in [0,+\infty[: y = f(x) \Longleftrightarrow y = \frac{x^2 - 1}{x^2 + 1}]$$

$$\Leftrightarrow x = \sqrt{\frac{y+1}{1-y}} \quad \forall \, x = -\sqrt{\frac{y+1}{1-y}}$$

بمان
$$x=\sqrt{\dfrac{y+1}{1-y}}$$
 معرفة كمايلي $x\in[0,+\infty[$ بمان $x\in[0,+\infty[$

$$f^{-1}$$
: $[-1,1[\rightarrow [0,+\infty[$

$$x \to f^{-1}(x) = \sqrt{\frac{x+1}{1-x}}$$

الدوال المثلثية ودوالها العكسية:

: (Arcsin, sin) الجيب وقوس الجيب

: نعتبر الدالة f المعرفة كمايلي

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1]$$
$$x \to f(x) = \sin x$$

 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ المجال على المجال (متزايدة تماما متزايدة تماما على المجال المجال المجال مستمرة ورتيبة تماما (

فهي نقبل دالة عكسية f^{-1} معرفة على المجال[-1,1] ونرمز لها بالرمز

[-1,1] فهي مستمرة ورتيبة تماما (متزايدة تماما) على المجال Arcsinx

وتاخذ قيمها في المجال $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ حيث

 $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] , \forall y \in [-1, 1] \ y = sinx \iff x = Arcsiny$

: (Arccos, cos) الجيب التمام وقوس الجيب التمام

: نعتبر الدالة f المعرفة كمايلي

$$f\!:\![0,\pi] \to [-1,\!1]$$

$$x \to f(x) = \cos x$$

 $[0,\pi]$ بمان f دالة مستمرة ورتيبة تماما (متناقصة تماما) على المجال

فهى تقبل دالة عكسية f^{-1} معرفة على المجال[-1,1] ونرمز لها بالرمز

[-1,1] فهي مستمرة ورتيبة تماما (متناقصة تماما) على المجال Arccosx

وتاخذ قيمها في المجال $[0,\pi]$ حيث

 $\forall x \in [0, \pi], \forall y \in [-1, 1] \ y = cosx \Leftrightarrow x = Arccosy$

الظل وقوس الظل (Arctan, tan)

: نعتبر الدالة f المعرفة كمايلي

$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to] - \infty, + \infty [$$
$$x \to f(x) = tanx$$

 $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ المجال على المجال متزايدة تماما (متزايدة تماما مستمرة ورتيبة تماما)

فهي تقبل دالة عكسية f^{-1} معرفة على المجال] ∞,∞ ونرمز لها بالرمز

] $-\infty,\infty$ [فهي مستمرة ورتيبة تماما (متزايدة تماما) على المجال Arctanx

وتاخذ قيمها في المجال
$$-\frac{\pi}{2}$$
, $\frac{\pi}{2}$ حيث

 $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \forall y \in \left] -\infty, \infty \right[y = tanx \iff x = Arctany \right]$

نتائج:

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] Arcsin(sinx) = x \ (1)$$

$$\forall x \in [0, \pi] Arcscos(cos x) = x$$
 (2)

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[Arctan(tanx) = x (3)$$

$$\forall x \in [-1,1] \sin(Arcsinx) = x \ (4)$$

$$\forall x \in [-1,1] \cos(Arccos x) = x (5)$$

$$\forall x \in]-\infty, +\infty[tan(Arctanx) = x (6)$$

$$\forall x \in [-1,1] \quad (Arcsinx)' = \frac{1}{\sqrt{1-x^2}} \quad (7)$$

$$\forall x \in [-1,1] \quad (Arccos x)' = \frac{-1}{\sqrt{1-x^2}}$$
 (8)

$$\forall x \in]-1,1[(Arctanx)' = \frac{1}{1+x^2}$$
 (9)

الأثبات:

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] , \forall y \in [-1, 1] \ y = sinx \iff x = Arcsiny \ (1)$$

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] Arcsin(sinx) = Arcsiny = x$$

$$\forall x \in [0, \pi], \forall y \in [-1, 1] \ y = cosx \Leftrightarrow x = Arccosy \ (2)$$

$$\forall x \in [0, \pi] Arccos(sinx) = Arccosy = x$$

$$\forall x \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[, \forall y \in \left]-\infty, \infty\right[y = tanx \Leftrightarrow x = Arctany \ (3)$$

$$\forall x \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[Arctan(tanx) = Arctany = x$$

$$\forall y \in [-1, 1] sin(Arcsiny) = y \ (4)$$

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \forall y \in [-1, 1] \ y = sinx \Leftrightarrow x = Arcsiny$$

$$\forall y \in [-1, 1] sin(Arcsiny) = sinx = y$$

$$\forall x \in [-1, 1] \ (Arcsinx)' = \frac{1}{\sqrt{1 - x^2}} \ (7)$$

$$\forall \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \forall x \in [-1, 1] \ y = Arcsinx \Leftrightarrow x = siny$$

$$\Leftrightarrow 1 = (siny)' = y'cosy$$

$$\Leftrightarrow y' = \frac{1}{cosy} = \frac{1}{\sqrt{1 - (siny)^2}} = \frac{1}{\sqrt{1 - x^2}}$$

$$\Leftrightarrow \forall x \in [-1, 1] \ (Arcsinx)' = \frac{1}{\sqrt{1 - x^2}}$$

$$0, 1, \frac{\sqrt{2}}{2} \text{ is a cosx } Arcsinx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is a cosx } Arctanx = 1$$

$$|x| \text{ is$$

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] , \forall y \in [-1, 1] \ y = sinx \iff x = Arcsiny$$

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \ x = Arcsin0 \Leftrightarrow sinx = 0 \Leftrightarrow x = 0$$

حسب تعريف قوس الجيب التمام

$$\forall x \in [0,\pi] \ , \forall y \in [-1,1] \ y = cosx \Longleftrightarrow x = Arccosy$$

$$x = Arccos0 \Leftrightarrow 0 = cosx \Leftrightarrow x = \frac{\pi}{2}$$

حسب تعريف قوس الظل

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \forall y \in \left] -\infty, \infty \right[y = tanx \Leftrightarrow x = Arctany \right]$$

$$x = Arctan0 \Leftrightarrow 0 = tanx \Leftrightarrow x = 0$$

حسب تعريف قوس الجيب

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] , \forall y \in [-1, 1] \ y = sinx \Leftrightarrow x = Arcsiny$$

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \ x = Arcsin1 \Leftrightarrow sinx = 1 \Leftrightarrow x = \frac{\pi}{2}$$

حسب تعريف قوس الجيب التمام

$$\forall x \in [0, \pi] , \forall y \in [-1, 1] \ y = cosx \iff x = Arccosy$$

$$x = Arccos1 \Leftrightarrow 1 = cosx \Leftrightarrow x = 0$$

حسب تعريف قوس الظل

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \forall y \in \left] -\infty, \infty \right[y = tanx \iff x = Arctany \right]$$

$$x = Arctan1 \iff 1 = tanx \iff x = \frac{\pi}{4}$$

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] , \forall y \in [-1,1] \ y = sinx \iff x = Arcsiny$$

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \ x = Arcsin\frac{\sqrt{2}}{2} \Leftrightarrow sinx = \frac{\sqrt{2}}{2} \Leftrightarrow x = \frac{\pi}{4}$$

حسب تعريف قوس الجيب التمام

 $\forall x \in [0, \pi] , \forall y \in [-1, 1] \ y = cosx \Leftrightarrow x = Arccosy$

$$x = Arccos \frac{\sqrt{2}}{2} \Leftrightarrow \frac{\sqrt{2}}{2} = cosx \Leftrightarrow x = \frac{\pi}{4}$$

حسب تعريف قوس الظل

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \forall y \in \left] -\infty, \infty \right[y = tanx \iff x = Arctany \right]$$

$$x = Arctan\sqrt{3} \Leftrightarrow \sqrt{3} = tanx \Leftrightarrow x = \frac{\pi}{3}$$

الدوال الزائدية ودوالها العكسية :

دالة الجيب الزائدي:

$$sh(x)$$
 الدالة $x o rac{e^x - e^{-x}}{2}$ تسمى دالة الجيب الزائدي ونرمز لها يالرمز $x o rac{e^x - e^{-x}}{2}$ الدالة $sh(x) = rac{e^x - e^{-x}}{2}$, $x \in \mathbb{R}$

دالة الجيب التمام الزائدي:

$$ch(x)$$
 الدالة $x o rac{e^x + e^{-x}}{2}$ الدالة $x o rac{e^x + e^{-x}}{2}$ الدالة $ch(x) = rac{e^x + e^{-x}}{2}$, $x \in \mathbb{R}$

دالة الظل الزائدي:

$$th(x)$$
 الدالة $x o rac{e^x - e^{-x}}{e^x + e^{-x}}$ الدالة الخال الزائدي ونرمز لها يالرمز

$$th(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, x \in \mathbb{R}$$

نتائج:

$$ch^2(x) - sh^2(x) = 1$$
 (1)

$$Ch^{2}(x) - Sh^{2}(x) = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} = 1$$

 $\forall x, y \in \mathbb{R} \ ch(x+y) = chxchy + shxshy$ (2)

sh(x + y) = shxchy + shychx

,
$$\forall x \in \mathbb{R} \ ch2x = ch^2(x) - sh^2(x)$$
, $sh2x = 2shxchx$ (3)
 $ch2x = 2 \ ch^2(x) - 1$, $ch2x = 2 \ sh^2(x) + 1$

$$\forall x \in \mathbb{R}$$
 $ch(-x) = ch(x)$ الجيب التمام الزائدي دالة زوجية لان (4)

 $\forall x \in \mathbb{R}$ sh(-x) = -sh(x) الجيب الزائدي دالة فردية لان

$$\forall x \in \mathbb{R} \quad (shx)' = chx, (chx)' = shx \quad (5)$$

$$(thx)' = 1 - th^2(x) = \frac{1}{ch^2(x)}$$

الدوال العكسية للدوال الزائدية :

عمدة الجيب الزائدي (Argsh) :

لدينا

$$\forall x \in \mathbb{R} \quad (shx)' = chx > 0$$

وبالتالي

$$sh: \mathbb{R} \to \mathbb{R}$$

$$x \rightarrow shx$$

مستمرة ورتيبة تماما (متزايدة تماما) على آلفهي تقبل دالة عكسية نرمز لها بالؤمز Arash حيث

 $Argsh: \mathbb{R} \to \mathbb{R}$

$$x \rightarrow Argshx$$

وهي مستمرة ورتيبة تماما (متزايدة تماما) على \mathbb{R} وتحقق $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$; $y = shx \Leftrightarrow x = Argshx$

عمدة جيب التمام الزائدي (Argch) :

لدينا

$$\forall x \in \mathbb{R} \quad (chx)' = shx > 0$$

وبالتالي

 $\forall x \in [0, \infty[(chx)' = shx > 0]$

$$ch \colon [0,\infty[\to [1,\infty[$$

 $x \rightarrow chx$

مستمرة ورتيبة تماما (متزايدة تماما) على $]\infty,\infty[$ فهي تقبل دالة عكسية نرمز لها بالؤمز Argch حيث

 $Argch: [1, \infty[\to [0, \infty[$ $x \to Argchx$

وهي مستمرة ورتيبة تماما (متزايدة تماما) على $]\infty$ [$[0,\infty[$ وتاخذ قيمها في $]\infty,\infty[$ وتحقق $\forall x\in[0,\infty[$, $\forall y\in[1,\infty[$; $y=chx\Leftrightarrow x=Argchx$ عمدة الظل الزائدي (Argth) :

لدينا

$$\forall x \in \mathbb{R} \quad (thx)' = \frac{1}{ch^2(x)} > 0$$

وبالتالي $\forall x \in \mathbb{R} \ (thx)' > 0$

 $th: \mathbb{R} \rightarrow]-1,1[$

 $x \rightarrow thx$

مستمرة ورتيبة تماما (متزايدة تماما) على ١٦ فهي تقبل دالة عكسية

$$Argth:]-1,1[\to \mathbb{R}$$
$$x \to Argthx$$

وهي مستمرة ورتيبة تماما (متزايدة تماما) على
$$]-1,1[$$
 وتاخذ قيمها في \mathbb{R} وتحقق $\forall x\in\mathbb{R}$, $\forall y\in]-1,1[$; $y=thx\Leftrightarrow x=Argthx$ نتائج :

$$\forall x \in \mathbb{R} \, Argshx = ln\left(x + \sqrt{x^2 + 1}\right)(1)$$

$$\forall x \in \mathbb{R} , \forall y \in \mathbb{R} ; \quad y = Argshx \Leftrightarrow x = shy = \frac{e^y - e^{-y}}{2}$$
$$\Leftrightarrow e^{2y} - 2xe^y - 1 = 0$$

$$\Leftrightarrow e^{y} = x + \sqrt{x^{2} + 1} > 0 \qquad e^{y} = x - \sqrt{x^{2} + 1} < 0$$
$$\Leftrightarrow y = \ln\left(x + \sqrt{x^{2} + 1}\right)$$

$$\forall x \in \mathbb{R} \quad Argshx = ln\left(x + \sqrt{x^2 + 1}\right)$$

$$\forall x \in \mathbb{R} Argchx = ln\left(x + \sqrt{x^2 - 1}\right)$$
 (2)

 $\forall x \in [1, \infty[, \forall y \in [0, \infty[; y = Argchx \iff x = chy]$

$$x = chy = \frac{e^y + e^{-y}}{2}$$

$$\Leftrightarrow e^{2y} - 2xe^y + 1 = 0$$

$$\Leftrightarrow e^{y} = x + \sqrt{x^{2} - 1} > 0 \quad \forall \quad e^{y} = x - \sqrt{x^{2} - 1} > 0$$

$$\Leftrightarrow y = \ln\left(x + \sqrt{x^2 - 1}\right) \ge 0 \ \lor \ y = \ln\left(x - \sqrt{x^2 - 1}\right) \le 0$$

$$\forall x \in [1, \infty | Argchx = ln\left(x + \sqrt{x^2 - 1}\right) \ge 0$$

$$\forall x \in \mathbb{R} \quad Argshx = ln\left(x + \sqrt{x^2 + 1}\right)$$

$$\forall x \in]-1,1[Argtnx = \frac{1}{2}ln\left(\frac{1+x}{1-x}\right) (3)$$

 $\forall x \in [-1,1[, \forall y \in \mathbb{R} ; y = Argthx \iff x = thy]$

$$x = chy = \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}}$$

$$\Leftrightarrow e^{y} - e^{-y} = x(e^{y} + e^{-y})$$

$$\Leftrightarrow (1 - x)e^{2y} = 1 + x$$

$$\Leftrightarrow e^{2y} = \frac{1 + x}{1 - x} > 0$$

$$\Leftrightarrow y = \frac{1}{2}ln\left(\frac{1 + x}{1 - x}\right)$$

$$\forall x \in]-1,1[Argtnx = \frac{1}{2}ln\left(\frac{1 + x}{1 - x}\right)$$

تمارين محلولة

تمرين (1): عين مجموعة تعريف الدوال النالية

$$f(x) = argch\left(\frac{1}{2}\left(x + \frac{1}{x}\right)\right)$$
 $f(x) = arcsin(2 - x)$

$$f(x) = arctg\left(\frac{x-1}{x+3}\right)$$
 $f(x) = arccos\left(\frac{1+x}{x}\right)$ $f(x) = arccos\left(\frac{1}{2}\left(x+\frac{1}{x}\right)\right)$ $f(x) = arccos\left(\frac{1}{2}\left(x+\frac{1}{x}\right)\right)$ $f(x) = arccos\left(\frac{1+x}{x}\right)$ $f(x) = arccos\left(\frac{1+$

 $\Leftrightarrow x \leq -\frac{1}{2}$

 $D_f = \left[-\infty, -\frac{1}{2} \right]$

الحل:

:2 تمرین

$$\forall x \in]0, +\infty[$$
 $arctgx + arctg\left(\frac{1}{x}\right) = \frac{\pi}{2}$ بين ان

$$\forall x \in]0, +\infty[\quad f(x) = \operatorname{arct} gx + \operatorname{arct} g\left(\frac{1}{x}\right)$$

$$\forall x \in]0, +\infty[\quad f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \times \frac{1}{1+\frac{1}{x^2}} = 0$$

$$\forall x \in]0, +\infty[\quad f(x) = c$$

$$\forall x \in]0, +\infty[\quad f(x) = f(1) = 2 \operatorname{arct} g1$$

$$= 2\left(\frac{\pi}{4}\right) = \frac{\pi}{2}$$

$$\forall x \in]0, +\infty[$$
 $f(x) = arctgx + arctg(\frac{1}{x}) = \frac{\pi}{2}$

تمرين 3:

: نعتبر الدالة f المعرفة على المجال من [01] نحو نعتبر الدالة

$$f(x) = \frac{2x}{1 + x^2}$$

بين ان f تقابل من المجال [01] نحو [01] ثم عين دالتها العكسية الحل

مستمرة على المجال [01] لانها دالة ناطقة f

$$f'(x) = \frac{-2(x^2 - 1)}{(x^2 + 1)^2} > 0$$
, $\forall x [01]$

fرتيبة تماما $\left(\,$ متزايدة تماما $\left(\,$ على المجال f

تقبل دالة عكسية f^{-1} معرفة كمايلي f

$$\forall x \in [01], \forall y \in [01] \ y = f(x) \Longleftrightarrow x = f^{-1}(y)$$

$$y = f(x) \Leftrightarrow y = \frac{2x}{1+x^2} \Leftrightarrow yx^2 - 2x + y = 0$$

$$\Leftrightarrow y = 1 - \sqrt{1-y^2} < 1 \lor y = 1 + \sqrt{1-y^2} > 1$$

$$\Leftrightarrow x = f^{-1}(y) = 1 - \sqrt{1-y^2}$$

ومنه

$$f^{-1}$$
: [01] \to [01]
$$x \to f^{-1}(x) = 1 - \sqrt{1 - x^2}$$

التمرين (1): عين مجموعة تعريف الدوال التالية

(1)
$$f(x) = \sqrt{-x^2 + 5x - 4}$$
 (2) $f(x) = \frac{\sqrt{x - 1}}{\sqrt{x^2 - 5x + 4}}$

(3)
$$f(x) \sqrt{\frac{x-1}{x^2-5x+4}}$$
 (4) $f(x) = \sqrt{E(x)-x}$

(5)
$$f(x) = ln\left(\frac{1-x}{1+x}\right)$$
 (6)* $f(x) = ln[ln(lnx)]$

$$(7)^* f(x) = \frac{1}{E(x) - x} \quad (8) \ f(x) = \ln\left(\sqrt{\frac{1 - x}{1 + x}}\right)$$

(9)
$$f(x) = e^{\frac{1-x}{1+x}}$$

التمرين (2): ادرس ان كانت الدوال التالية زوجية او فردية او غير ذالك

(1)
$$f(x) = \frac{x}{1+|x|}$$
 (2) $f(x) = \sqrt[3]{x^5+x}$

$$(3)f(x) = \ln\left(\frac{1-x}{1+x}\right) \quad (4) f(x) = |x|(1-3x)(1+3x)$$

$$(5)^* f(x) = \frac{\sin^2(x) - \cos 3x}{x^2}$$

التمرين(3):

احسب النهابات التالبة

$$(2) \lim_{x \to +\infty} \left(\frac{x}{\sqrt{x+1}} - \frac{x}{\sqrt{x+2}} \right) (1) \lim_{x \to +0} \frac{\sqrt{1+x} - \sqrt{1-x}}{sinx}$$

(3)
$$\lim_{x \to +\infty} \sqrt{x^2 + x - 2} - (x - 1)$$
 (4) $\lim_{x \to \pi} \frac{1 + \cos x}{x - \pi}$

$$(5)^* \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}} \quad (6)^* \lim_{x \to +\infty} \sqrt{x^2 + x - 2} - (4x - 1)$$

التمرین $x_0 = 1$ عند f عند ادرس استمراریه (1) : (4) عند

$$f(x) = \begin{cases} \frac{\sqrt{2x+7}-3}{\sqrt{2x+2}-2}, & x \neq 1 \\ \frac{2}{3}, & x = 1 \end{cases}$$

(2) هل الدوال التالية تقبل التمديد بالاستمرار عند 0

$$f(x) = \frac{(1 - \cos x)^2}{x^4} f(x) = \frac{\sin 2x}{\sqrt{x+1} - 1} f(x) = 3x^2 \sin\left(\frac{1}{x}\right)$$

التمرين(5):

بین ان المعادلة $x^4 - 5x + 1 = 0$ تقبل ثلاث حلول کل حل محصور بین

عددين صحيحين متتاليين

*التمرين(6):

بین ان المعادلة $2x^2 + 2x + 1 = 0$ تقبل ثلاث حلول کل حل محصور بین عدین صحیحین متتالیین

 $-1,0,1,\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$ للقيم التالية Arccos , Arcsin التمرين (1) : (1) احسب

-1,0 , $1,\sqrt{3}$ للقيم التالية Arccotan , Arctan (2)

 $Arctan\left(\tan\left(\frac{3\pi}{4}\right)\right)$, $Arccos\left(\cos\left(-\frac{\pi}{4}\right)\right)$, $Arcsin\left(\sin\frac{3\pi}{4}\right)$ حسب (3)*

التمرين(8): اثبت ان

(1) $Arccos(x) + Arccos(-x) = \pi$, $x \in [-1,1]$

(2) $Arcsin(x) + Arccos(x) = \frac{\pi}{2}$, $x \in [-1,1]$

(3) $Arctan(x) + Arctan(\frac{1}{x}) = \frac{\pi}{2}$, x > 0

 $(4) \cos(Arcsin(x)) = \sqrt{1 - x^2}, \quad x \in [-1, 1]$

(5) $sin(Arctan(x)) = \frac{x}{\sqrt{1+x^2}}$

(6) $sin(Arctan(x)) = \frac{\sqrt{1-x^2}}{x}$, $x \in [-1,1] - \{0\}$

التمرين (9): نعتبر الدالة f المعرفة كتايلي

$$f(x) = Arccos\left(\frac{2x}{2-x}\right)$$

f مجموعة تعريف الدالة D_f عين

$$\forall x \in D_f \ f'(x) = \frac{-4}{(2-x)\sqrt{4-4x-3x^2}}$$
 بين ان (2)

شكل جدول تغيرات f ثم ارسم تمثيلها البياني (3)

التمرين (10): نعتبر الدالة f المعرفة كتايلي

$$f(x) = Arctan\left(\frac{1}{1-x}\right)$$

f مجموعة تعريف الدالة D_f عين (1)

$$\forall x \in D_f \ f'(x) = \frac{1}{(1-x)^2 + 1}$$
 بين ان (2)

شکل جدول تغیرات f ثم ارسم تمثیلها البیانی (3)

التمرين (11) نعتبر الدالة f المعرفة كتايلي التمرين f

$$f(x) = \frac{\sqrt{1-x}}{\sqrt{1+x}} Arccos(x)$$

f عين D_f مجموعة تعريف الدالة D_f

f ادرس استمراریة f

f'(x) عين (3)

التمرين (12) نعتبر الدالة f المعرفة كتايلي التمرين f

$$f(x) = Arctan\left(\frac{\sqrt{3}}{x-1}\right) + Arctan\left(x\frac{\sqrt{3}}{4-x}\right)$$

f عين D_f مجموعة تعريف الدالة

f(0), f(2), f(5) -----(2)

f ثم اوجد عبارة بسيطة ل f'(x) عين (3)

التمرين 13: اثبت ان

$$y = Argch(x) \iff y = ln\left(x + \sqrt{x^2 - 1}\right) \ \forall x \in [1, +\infty[\ (1)$$

$$y = Argsh(x) \iff y = ln\left(x + \sqrt{x^2 + 1}\right) \ \forall x \in]-\infty, +\infty[$$
 (2)

$$y = Argth(x) \iff y = \frac{1}{2} ln\left(\frac{1+x}{1-v}\right) \ \forall x \in]-1,1[(3)$$

$$y = Argcoth(x) \iff y = \frac{1}{2} ln\left(\frac{1+x}{v-1}\right) \ \forall x \in]-\infty, 1[\ \cup\]1, +\infty[\ (4)$$

$$Argth(x) + Argth(y) = Argth\left(\frac{x+y}{1+xy}\right) \ \forall x, y \in]-1,1[$$
 (5)

$$Argch\left(\sqrt{1+x^2}\right) = Argsh(x) \quad \forall x \in]-\infty, +\infty[(6)$$

$$Argsh\left(\sqrt{x^2-1}\right) = Argch(x) \quad \forall x \in [1, +\infty[$$
 (7)

$$\forall \theta \in]-\infty, +\infty[sh(3\theta) = 3sh\theta + 4sh^3\theta$$
 (8)

$$Argsh(3x + 4x^2) = 3Argshx$$
 استنتج ان

$$Argsh\left[\sqrt{\frac{1+ch(x)}{2}}\right] - \frac{x}{2} = \begin{cases} -x, & x \le 0\\ 0, & x > 0 \end{cases}$$
 (9)

التمرين 14: بسط العبارات التالية

$$Argth\left(\frac{\sqrt{chx-1}}{\sqrt{chx+1}}\right)$$
, $Argsh\left(2x\sqrt{x^2+1}\right)$, $Argth\left(\frac{3x+x^2}{1+3x^2}\right)$

التمرين (15) : نعتبر الدالة f المعرفة كتايلي

$$f(x) = Argth\left(\frac{x+2}{x-2}\right)$$

$$D_f$$
 عين D_f مجموعة تعريف الدالة f احسب النهايات على اطراف (1)

عين
$$f'(x)$$
 شكل جدول تغيرات f ثم ارسم تمثيلها البياني (2)

الحلول

التمرين (1): عين مجموعة تعريف الدوال التالية التالي

(1)
$$f(x) = \sqrt{-x^2 + 5x - 4}$$
 (2) $f(x) = \frac{\sqrt{x - 1}}{\sqrt{x^2 - 5x + 4}}$

(3)
$$f(x) \sqrt{\frac{x-1}{x^2-5x+4}}$$
 (4) $f(x) = \sqrt{E(x)-x}$

(5)
$$f(x) = ln\left(\frac{1-x}{1+x}\right)$$
 (6)* $f(x) = ln[ln(lnx)]$

$$(7)^* f(x) = \frac{1}{E(x) - x} \quad (8)^* f(x) = \ln\left(\sqrt{\frac{1 - x}{1 + x}}\right)$$

(9)
$$f(x) = e^{\frac{1-x}{1+x}}$$

(1) معرفة
$$f(x) = \sqrt{-x^2 + 5x - 4} \Leftrightarrow -x^2 + 5x - 4 \ge 0$$

$$\Leftrightarrow x \in]-\infty, -1] \cup [4, +\infty[$$

$$D_f =]-\infty, -1] \cup [4, +\infty[$$

$$(2) \text{ معرفة } f(x) = \frac{\sqrt{x-1}}{\sqrt{x^2 - 5x + 4}} \Leftrightarrow \begin{cases} x \in \mathbb{R} : x - 1 \ge 0 \\ & \wedge \\ x^2 - 5x + 4 > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \in \mathbb{R} \ x \in]1, \infty[\\ & \wedge \\]-\infty, 1[\ \cup\]4, +\infty[$$

$$\Leftrightarrow]4,+\infty[$$

$$D_{f} =]4,+\infty[$$

$$(3) \quad \text{if } x - 1 = \sqrt{\frac{x-1}{x^{2}-5x+4}} \Leftrightarrow \begin{cases} \frac{x-1}{x^{2}-5x+4} \geq 0 \\ x^{2}-5x+4 \neq 0 \end{cases}$$

$$\Leftrightarrow x \in]4,+\infty[$$

$$D_{f} =]4,+\infty[$$

$$(4) \quad \text{if } x = \sqrt{E(x)-x} \Leftrightarrow E(x)-x \geq 0$$

$$\Leftrightarrow E(x) \geq x \Leftrightarrow x \leq E(x)$$

$$\forall x \in \mathbb{R} E(x) \geq x \Rightarrow x \leq E(x)$$

$$\forall x \in \mathbb{R} E(x) \geq x \Rightarrow x \in \mathbb{Z}$$

$$D_{f} = \mathbb{Z}$$

$$(5) \quad \text{if } x = \ln\left(\frac{1-x}{1+x}\right) \Leftrightarrow \frac{1-x}{1+x} > 0$$

$$\Leftrightarrow (1-x)(1+x) > 0$$

$$\Leftrightarrow x \in]-1,1[$$

$$D_{f} =]-1,1[$$

$$(9) \quad \text{if } x = e^{\frac{1-x}{1+x}} \Leftrightarrow 1+x \neq 0$$

$$\Leftrightarrow x \neq -1$$

$$\Leftrightarrow x \in \mathbb{R} \setminus \{-1\}$$

التمرين (2): ادرس ان كانت الدوال التالية زوجية او فردية او غير ذالك

(1)
$$f(x) = \frac{x}{1+|x|}$$
 (2) $f(x) = \sqrt[3]{x^5 + x}$

 $D_f = \mathbb{R} \setminus \{-1\}$

$$(3)f(x) = \ln\left(\frac{1-x}{1+x}\right) \quad (4) f(x) = |x|(1-3x)(1+3x)$$

$$(5)^* \qquad f(x) = \frac{\sin^2(x) - \cos 3x}{x^2}$$

$$(1) \ \forall x \in \mathbb{R} f(-x) = \frac{-x}{1+|-x|} = \frac{-x}{1+|x|} = -f(x)$$

ومنه fفردیة

$$(2) \forall x \ge 0 \ f(-x) = \sqrt[3]{(-x)^5 - x} = \sqrt[3]{-x^5 - x} = -\sqrt[3]{x^5 + x}$$

$$= -f(x)$$

$$f(-x) = \sqrt[3]{(-x)^5 - x} = \sqrt[3]{-x^5 - x} \Leftrightarrow f(-x)^3 = -x^5 - x$$

$$\Leftrightarrow [-f(-x)]^3 = x^5 + x$$

$$\Leftrightarrow -f(-x) = \sqrt[3]{x^5 + x} = f(x)$$

ومنه fفردية

$$(3)\forall x \in]-1,1[\,f(-x)=\ln\left(\frac{1+x}{1-x}\right)==-\ln\left(\frac{1-x}{1+x}\right)=-\,\,f(x)$$
ومنه f فردیة

$$(4)\forall x \in \mathbb{R} \ f(-x) = |-x|(1+3x)(1-3x) = |x|(1+3x)(1-3x)$$
$$= f(x)$$

ومنه f زوجیة

التمرين(3):

احسب النهايات التالية

(2)
$$\lim_{x \to +\infty} \left(\frac{x}{\sqrt{x+1}} - \frac{x}{\sqrt{x+2}} \right)$$
 (1) $\lim_{x \to +\infty} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x}$ (3) $\lim_{x \to +\infty} \sqrt{x^2 + x - 2} - (x^2 - 1)$

(4)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}$$
 (5)
$$\lim_{x \to \pi} \frac{1 + \cos x}{x - \pi}$$

(1)
$$\lim_{x \to +0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x} = \lim_{x \to +0} \frac{\left(\sqrt{1+x} - \sqrt{1-x}(\sqrt{1+x} + \sqrt{1-x})\right)}{\left(\sqrt{1+x} + \sqrt{1-x}\right)\sin x}$$

$$= \lim_{x \to +0} \frac{2x}{\left(\sqrt{1+x} + \sqrt{1-x}\right)\sin x}$$

$$= \lim_{x \to +0} \frac{2}{\left(\sqrt{1+x} + \sqrt{1-x}\right)} \times \frac{1}{\sin x} = 1$$

$$(2) \lim_{x \to +\infty} \left(\frac{x}{\sqrt{x+1}} - \frac{x}{\sqrt{x+2}} \right) \\ = \lim_{x \to +\infty} x \left(\frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{x+2}} \right) \left(\frac{1}{\sqrt{x+1}} + \frac{1}{\sqrt{x+2}} \right) \\ = \lim_{x \to +\infty} x \left(\frac{1}{x+1} - \frac{1}{x+2} \right) = \lim_{x \to +\infty} \frac{x}{(x+1)(x+2)} = 0$$

$$(3) \lim_{x \to +\infty} \sqrt{x^2 + x - 2} - (x - 1)$$

$$= \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + x - 2} - (x - 1)\right)\left(\sqrt{x^2 + x - 2} + (x - 1)\right)}{\sqrt{x^2 + x - 2} + (x^2 - 1)}$$

$$= \lim_{x \to +\infty} \frac{x-1}{\sqrt{x^2 + x - 2} + (x-1)} = \lim_{x \to +\infty} \frac{x\left(1 - \frac{1}{x}\right)}{x\left(\sqrt{1 + \frac{1}{x} - \frac{2}{x^2}} + 1 - \frac{1}{x}\right)} = \frac{1}{2}$$

$$(4) \lim_{x \to \pi} \frac{1 + \cos x}{(x - \pi)^2} = \begin{cases} \lim_{z \to 0} \frac{z = x - \pi}{1 + \cos(z + \pi)} \\ \lim_{z \to 0} \frac{1 - \cos z}{z^2} = \lim_{z \to 0} \frac{2\sin^2 z}{z^2} = 2 \end{cases}$$

$$= \lim_{z \to 0} \frac{1 - \cos z}{z^2} = \lim_{z \to 0} \frac{2\sin^2 z}{z^2} = 2$$

$$|x_0| = 1 \quad \text{aligned} \quad |x_0| = 1 \quad \text{alig$$

$$f(x) = \begin{cases} \frac{\sqrt{2x+7}-3}{\sqrt{2x+2}-2} , & x \neq 1 \\ \frac{2}{3} , & x = 1 \end{cases}$$

*(2) هل الدوال التالية تقبل التمديد بالاستمرار عند 0

$$f(x) = \frac{(1 - \cos x)^2}{x^4}, f(x) = \frac{\sin 2x}{\sqrt{x+1} - 1}, f(x) = 3x^2 \sin\left(\frac{1}{x}\right)$$

$$(1) \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sqrt{2x+7} - 3}{\sqrt{2x+2} - 2}$$

$$= \lim_{x \to 1} \frac{\left(\sqrt{2x+7} - 3\right)\left(\sqrt{2x+7} + 3\right)\left(\sqrt{2x+2} + 2\right)}{\left(\sqrt{2x+2} - 2\right)\left(\sqrt{2x+2} + 2\right)\left(\sqrt{2x+7} + 3\right)}$$

$$= \lim_{x \to 1} \frac{(2x-2)(\sqrt{2x+2}+2)}{(2x-2)(\sqrt{2x+7}+3)} = \lim_{x \to 1} \frac{(\sqrt{2x+2}+2)}{(\sqrt{2x+7}+3)} = \frac{2}{3} = f(1)$$

ومنه ان f مستمرة عند 1

التمرين(5):

بین ان المعادلة $x^5 - 5x + 1 = 0$ تقبل ثلاث حلول کل حل محصور بین

عددين صحيحين متتاليين

$$f'(x) = 5x^4 - 5 = 5(x^4 - 1) = 5(x^2 - 1)(x^2 + 1)$$

 $]-\infty,-1[$ U $]1,+\infty[$ متزايده تماما على المجال f

]-1,1[ومتناقصة تماما على المجال

 $]-\infty,-1$ مستمؤة و رتيبة تماما (متزايده تماما) ملتمؤة و رتيبة ماما f-

و منه حسب نظریة القیم المتوسطة فان المعادلة f(-2) imes f(-1) < 0

$$]-\infty,-1[$$
 على المجال على تقيل حلا وحيدا على المجال $x^5-5x+1=0$

$$]1,+\infty[$$
 مستمؤة و رتيبة تماما $($ متزايده تماما $)$ على المجال $f-$

و منه حسب نظرية القيم المتوسطة فان المعادلة f(2) imes f(1) < 0

$$]1,+\infty[$$
 تقيل حلا وحيدا على المجال $x^5-5x+1=0$

]-1,1[مستمؤة و رتيبة تماما (متناقصة تماما) على المجال f-

$$Arctan(\sqrt{3}) = y \Leftrightarrow y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[tany = \sqrt{3} \Leftrightarrow y = \frac{\pi}{6}$$

التمرين(8): اثبت ان

(1)
$$Arccos(x) + Arccos(-x) = \pi$$
, $x \in [-1,1]$

(2)
$$Arcsin(x) + Arccos(x) = \frac{\pi}{2}$$
, $x \in [-1,1]$

(3)
$$Arctan(x) + Arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$$
, $x > 0$

$$(4) \cos(Arcsin(x)) = \sqrt{1 - x^2}, \quad x \in [-1, 1]$$

(5)
$$sin(Arctan(x)) = \frac{x}{\sqrt{1+x^2}}, \quad x \in [-1,1]$$

(6)
$$tan(Arccos(x)) = \frac{\sqrt{1-x^2}}{x}$$
, $x \in [-1,1] - \{0\}$

الحل

نعلم ان

$$(Arccos(x))' = \frac{-1}{\sqrt{1-x^2}}, x \in]-1,1[$$

$$\left(Arcsin(x)\right)' = \frac{1}{\sqrt{1-x^2}} , x \in]-1,1[$$

$$\left(Arctan(x)\right)' = \frac{1}{1+x^2}$$
, $x \in]-\infty, +\infty[$

(1)
$$Arccos(x) + Arccos(-x) = \pi$$
, $x \in [-1,1]$

$$f(x) = Arccos(x) + Arccos(-x)$$

$$f'(x) = \frac{-1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-x^2}} = 0$$

ومنه ان f ثابتة وعليه

$$\forall x \in [-1,1] \quad f(x) = c = f(0)$$

$$Arccos(x) + Arccos(-x) = 2$$
 $Arccos(x) = 2\left(\frac{\pi}{2}\right) = \pi$

 $\forall x \in [-1,1] Arccos(x) + Arccos(-x) = \pi$ ومنه

(2)
$$Arcsin(x) + Arccos(x) = \frac{\pi}{2}$$
, $x \in [-1,1]$

$$f(x) = Arcsin(x) + Arccos(x)$$

$$f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0$$

ومنه ان f ثابتة وعليه

$$\forall x \in [-1,1] \quad f(x) = c = f(0)$$

Arcsin(x) + Arccos(x) = Arcsin(0) + Arccos(0)

$$=\frac{\pi}{2}+0=\frac{\pi}{2}$$

 $\forall x \in [-1,1] \quad Arcsin(x) + Arccos(x) = \frac{\pi}{2}$ ومنه

(3)
$$Arctan(x) + Arctan(\frac{1}{x}) = -\frac{\pi}{2}$$
, $x < 0$

$$f(x) = Arctan(x) + Arctan(\frac{1}{x})$$

$$f'(x) = \frac{1}{1+x^2} - \left(\frac{1}{x}\right)^2 \frac{1}{1+\left(\frac{1}{x}\right)^2} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

ومنه ان f ثابتة وعليه

$$\forall x \in]-\infty, 0[f(x) = c = f(-1)$$

$$Arctan(x) + Arctan(\frac{1}{x}) = Arctan(-1) + Arctan(-1)$$

$$= -\frac{\pi}{4} - \frac{\pi}{4} = -\frac{\pi}{2}$$

$$\forall x \in]-\infty, 0[\quad Arctan(x) + Arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2} \quad \text{خلو (4)} cos(Arcsin(x)) = \sqrt{1-x^2}, \quad x \in [-1,1]$$

$$Arcsin(x) = t, t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$x = sint = sin(Arcsin(x)) \quad \text{خلو (Arcsin(x))} = 1 - x^2$$

$$cos^2(Arcsin(x)) = 1 - sin^2(Arcsin(x)) = 1 - x^2$$

$$cos(Arcsin(x)) = \sqrt{1-x^2}, \quad x \in [-1,1] \quad \text{خلو (Arctan(x))} = \frac{x}{\sqrt{1+x^2}}, \quad x \in]-\infty, +\infty[$$

$$Arctan(x) = t, t \in \left]-\frac{\pi}{2}, \quad \frac{\pi}{2}\right[$$

$$sin(Arctan(x)) = sint \quad \text{⇒ } x = tant \quad \text{خلe (Arctan(x))} = \frac{1}{t+tan^2t}$$

$$\Rightarrow cost = \sqrt{\frac{1}{1+tan^2t}}$$

$$\Rightarrow sint = tant \times cost = tant \quad \sqrt{\frac{1}{1+tan^2t}} = \frac{x}{\sqrt{1+x^2}}$$

$$\Rightarrow sin(Arctan(x)) = sint = \frac{x}{\sqrt{1-x^2}}, \quad x \in]-\infty, +\infty[$$

(6) $tan(Arccos(x)) = \frac{\sqrt{1-x^2}}{x}$, $x \in [-1,1] \setminus \{0\}$

$$x \in [-1,1] \setminus \{0\} \operatorname{Arccos}(x) = \mathsf{t} \Longrightarrow x = \operatorname{cost} \ \mathsf{,t} \in [0,\pi] \setminus \left\{\frac{\pi}{2}\right\}$$

$$t \in [0,\pi] \setminus \left\{\frac{\pi}{2}\right\} \ sint > 0$$
و $tan \left(Arccos(x)\right) = tant$ اذ ن

$$tan(Arccos(x)) = tant = \frac{sint}{cost} = \frac{\sqrt{1 - cos^2t}}{cost} = \frac{\sqrt{1 - x^2}}{x}$$

التمرين (9): نعتبر الدالة f المعرفة كتايلي

$$f(x) = Arccos\left(\frac{2x}{2-x}\right)$$

f عين D_f مجموعة تعريف الدالة D_f

$$\forall x \in D_f \ f'(x) = \frac{-4}{(2-x)\sqrt{4-4x-3x^2}}$$
 بین ان (2)

شكل جدول تغيرات f ثم ارسم تمثيلها البياني (3)

الحل

$$2-x \neq 0 \ \land -1 \leq \frac{2x}{2-x} \leq 1 \iff f$$
معرفة

$$2-x \neq 0 \land \frac{2x}{2-x} + 1 \ge 0 \land \frac{2x}{2-x} - 1 \le 0 \Leftrightarrow$$

$$2 - x \neq 0 \ \land \frac{2 + x}{2 - x} \ge 0 \ \land \ \frac{3x - 2}{2 - x} \le 0 \Leftrightarrow$$

$$2 - x \neq 0 \ \land x \in [-2,2] \ \land \ x \in \left] -\infty, \frac{2}{3} \right] \cup [2, +\infty[\iff$$

$$x \in \left[-2, \frac{2}{3}\right] \Leftrightarrow$$

$$D_f = \left[-2, \frac{2}{3} \right]$$

$$\forall x \in D_f \ f'(x) = \frac{-\left(\frac{2x}{2-x}\right)'}{\sqrt{1 - \left(\frac{2x}{2-x}\right)^2}} = \frac{\frac{-4}{(2-x)^2}}{\sqrt{\frac{4 - 4x - 3x^2}{(2-x)^2}}}$$

$$= \frac{-4}{(2-x)\sqrt{4-4x-3x^2}} < 0 \quad j$$

التمرين (10) : نعتبر الدالة f المعرفة كتايلي

$$f(x) = Arctan\left(\frac{1}{1-x}\right)$$

f عين D_f مجموعة تعريف الدالة D_f

$$\forall x \in D_f \ f'(x) = \frac{1}{(1-x)^2 + 1}$$
 بين ان (2)

شكل جدول تغيرات f ثم ارسم تمثيلها البياني (3)

الحل

$$1-x \neq 0 \iff f$$
معرفة $x \neq 1 \Leftrightarrow$

$$D_f =]-\infty, 1[\ \cup\]1, +\infty[$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} Arctan\left(\frac{1}{1-x}\right)$$

باستخدام نهاية دالة مركبة

$$\lim_{x \to -\infty} \left(\frac{1}{1-x} \right) = 0, \lim_{x \to 0} Arctan(x) = 0$$

$$\lim_{\substack{s \\ s \to 1}} Arctan\left(\frac{1}{1-x}\right) = 0$$

$$\lim_{\substack{x \to 1 \\ x \to 1}} f(x) = \lim_{\substack{x \to 1 \\ x \to 1}} Arctan\left(\frac{1}{1-x}\right)$$

باستخدام نهاية دالة مركبة

$$\lim_{\substack{s \\ s \to 1}} \left(\frac{1}{1-x} \right) = +\infty, \lim_{x \to +\infty} Arctan(x) = \frac{\pi}{2}$$

$$\lim_{\substack{x \to 1 \\ x \to 1}} Arctan\left(\frac{1}{1-x}\right) = \frac{\pi}{2}$$

$$\lim_{\substack{x \to 1 \\ x \to 1}} f(x) = \lim_{\substack{x \to 1 \\ x \to 1}} Arctan\left(\frac{1}{1-x}\right)$$

باستخدام نهایة دالة مرکبة

$$\lim_{\substack{x \to 1 \\ x \to 1}} \left(\frac{1}{1-x} \right) = -\infty, \lim_{x \to -\infty} Arctan(x) = -\frac{\pi}{2}$$

$$\lim_{\substack{x \to 1 \\ x \to 1}} Arctan\left(\frac{1}{1-x}\right) = -\frac{\pi}{2}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} Arctan\left(\frac{1}{1-x}\right)$$

باستخدام نهاية دالة مركبة

$$\lim_{x \to +\infty} \left(\frac{1}{1-x} \right) = 0, \lim_{x \to 0} Arctan(x) = 0$$

$$\lim_{x \to +\infty} Arctan\left(\frac{1}{1-x}\right) = 0$$

$$\forall x \in D_f \ f'(x) = \frac{\left(\frac{1}{1-x}\right)'}{1+\left(\frac{1}{1-x}\right)^2} = \frac{\frac{1}{(1-x)^2}}{\frac{(x-1)^2+1}{(1-x)^2}}$$

$$=\frac{1}{(x-1)^2+1}>0$$

 D_f متزایدة تماما علی f

البني الجبرية

العملية الداخلية : لتكن E مجموعة غير خالية

كل تطبيق للمجموعة E imes E نحو E يسمى عملية داخلية في E ونرمز لها بالرمز

 $\dots \ ,+,\times ,\Delta ,\nabla ,\star$

اذا كانت \star عملية داخلية في E نكتب

 $\star : E \times E \to E$ $(x, y) \to x \star y$

مثلا : ×,+ عمليتان داخليتان في R

E خواص : \star , مملیتان داخلیتان في

 \star تبدیلیة فی E اذا وفقط اذا تحقق

 $\forall x, y \in E : x \star y = y \star x$

 \star تجميعية في E اذا وفقط اذا تحقق

 $\forall x, y, z \in E: (x \star y) \star z = y \star (x \star z)$

 \star توزیعیهٔ علی Δ فی E اذا وفقط اذا تحقق

 $\forall x, y, z \in E : \begin{cases} x \star (y\Delta z) = (x \star y)\Delta(x \star z) \\ (y\Delta z) \star x = (y \star x)\Delta(z \star x) \end{cases}$

يكون العنصر e من E حيادي للعملية \star اذا و فقط اذا تحقق

 $\forall x \in E : x \star e = e \star x = x$

يكون العنصر x' من E نضير العنصر x من E نضير العنصر E نضير العنصر X' من X' كان العنصر X' بالعنصر X' من X' اذا وفقط اذا تحقق X'

نتائج وملاحطات:

(1) العنصر الحيادي ان وجد فهو وحيد

شیم $e'\star e=e$ ایکن E یف \star فیصران حیادیان للعملیة \star فی عنصران حیادیان للعملیة خون العملیة عنصران حیادیان العملیة خون العملی العملی

e'=e افینتج ان $e'\star e=e'$ عنصر حیادی من جهة اخری e'

(2) اذا كانت العملية تجميعية فان العنصر النضير ان وجد فهو وحيد

 \star عنصران نضيران ل χ من E عنصران نضيران عنصران عنصران ك عنصران نضيران ل

E و عنصر حيادي للعملية \star في

 $x' = x' \star e = x' \star (x \star x'') = (x' \star x) \star x'' = e \star x'' = x''$: امثلة

 \mathbb{R} الجمع (+) والضرب (\times) عمليتان تبدليتان وتجميعيتان في

الضرب توزيعي على الجمع قي ١

البنى الجبرية

E عملیتان داخلیتان فی المجموعة E

الزمرة: تكون (\star, \star) زمرة اذا وفقط اذا تحقق

- (1) * تجميعية
- \star عنصر حيادي للعملية \star
- \star يقبل نضير في E بالنسبة للعملية E كل عنصر من

اذا كانت العملية \star تبدلية نقول ان الزمرة (\star,\star) زمرة تبديلية امثلة:

 $(\mathbb{Z}^{/},\times)$, $(\mathbb{N},+)$ زمرة تبدیلیة بینما $(\mathbb{Z},+)$, (\mathbb{R}^{*},\times) , $(\mathbb{R},+)$ لیست زمرة

E الزمرة الجزئية : لتكن (*, *) زمرة و H مجموعة جزئية من (*, *) اذا وفقط اذا تحقق تكون (*, *) زمرة جزئية من الزمرة (*, *) اذا وفقط اذا تحقق

 $\forall x, y \in H, x \star y \in H \quad (1)$

E قى \star قالعملية العنصر الحيادي للعملية e قى $e \in H(2)$

- E قي x' نضير x' للعملية x' قي $x' \in H$ (3) امثلة:
 - $(\mathbb{R},+)$ زمرة جزئية من $(\mathbb{Z},+)$
 - (\mathbb{R}^*, \times) زمرة جزئية من (\mathbb{Z}^*, \times)
 - $(\mathbb{Z},+)$ زمرة جزئية من $(2\mathbb{Z},+)$
 - $(\mathbb{Z}^{/},+)$ لیست زمرهٔ جزئیهٔ من $(\mathbb{N},+)$

الحلقة: تكون (Δ, \star, Δ) حلقة اذا وفقط اذا تحقق

- (1) (*, E) زمرة تبديلية
 - تجميعية $\Delta(2)$
- E قوزيعية على \star في $\Delta(3)$

اذا كانت العملية Δ تبدلية نقول ان الحلقة (E,\star,Δ) حلقة تبديلية اذ كانت العملية Δ عنصر حيادي نقول ان الحلقة (E,\star,Δ) حلقة واحدية

حلقة تبديلية واحدية ($\mathbb{Z}, +, \times$),

حلقة تبديلية واحدية $(\mathbb{R}, +, \times)$

حلقة تبديلية واحدية ($\mathbb{R}^*,+,\times$)

E الحلقة الجزئية : لتكن (E,\star,Δ) حلقة و H مجموعة جزئية من

تكون (E,\star,Δ) حلقة جزئية من الحلقة (E,\star,Δ) اذا وفقط اذا تحقق

 (E,\star) زمرة جزئية من الزمرة (H,\star) (1)

 $\forall x, y \in H, x \Delta y \in H$ (2)

امثلة:

 $(\mathbb{R},+,\times)$ حلقة جزئية من الحلقة $(\mathbb{Z},+,\times)$

 $(\mathbb{Z},+,\times)$ ليست حلقة جزئية من الحلقة $(\mathbb{N},+,\times)$

الجسم: تكون (E,\star,Δ) جسما اذا وفقط اذا تحقق

حلقة تبدلية و واحدية (E,\star,Δ) (1)

 Δ يقبل نضير بالنسبة للعملية عير لبخالية $E\setminus\{e\}$ عنصر من المجموعة غير لبخالية

اذا كانت العملية Δ تبدلية نقول ان الجسم (E,\star,Δ) جسم تبديلي

امثلة

جسم تبدیلي ($\mathbb{Q}, +, \times$),

جسم تبدیلي $(\mathbb{R},+, imes)$

جسم تبدیلي $(\mathbb{R}^*,+, imes)$

لیس جسم $(\mathbb{Z},+,\times)$

تمرین تطبیقی:

* عملية داخلية قى ١ معرفة كمايلى:

 $x \star y = x + y + xy$

 $\forall x \in \mathbb{Q} \setminus \{-1\}: \ x \star e = x$

 $\forall x \in \mathbb{Q} \setminus \{-1\}: x + e + xe = x$

$$\forall x \in \mathbb{Q} \setminus \{-1\}: \ e + xe = 0$$
 $\forall x \in \mathbb{Q} \setminus \{-1\}: \ (1+x)e = 0$
 $\forall x \in \mathbb{Q} \setminus \{-1\}: \ e = 0$
ومنه ان 0 هو العنصر الحيادي للعملية * قي 10 هو العنصر الحيادي للعملية عليه 40

وهده ال (-1) ال مو المعطر الحيدي للمعلية x الحيدي للمعلية (-1) الكل عنصر من (-1) (-1) النسبة للمعلية (-1) فيتحقق مايلي ليكن (x) نضير (x) من (-1) (-1) بالنسبة للمعلية (x) فيتحقق مايلي

$$x' \star x = 0 \Longrightarrow x' + x + x' \ x = 0$$
$$\Longrightarrow x' (1 + x) = -x$$
$$\Longrightarrow x' = \frac{-x}{1 + x} \in \mathbb{Q} \setminus \{-1\}$$

وبالتالي $(\star,\{-1\}\setminus \mathbb{Q})$ زمرة تبديلية تمرين محلول

لتكن \star عملية في [-1,1] معرفة كمايلى

$$x \star y = \frac{x + y}{1 + xy}$$

$$I =]-1,1[$$
 بين ان \star عملية داخلية في (1)

بین ان
$$(\star, \{-1\}, \star)$$
 زمرة تبدیلیة (2)

الحل

$$I =]-1,1[$$
 في عملية داخلية في اـ (1)

$$\Rightarrow 1 + xy > 0$$

الفضاءات الشعاعية

 $(\mathbb{K}=\mathbb{R})$ او $\mathbb{K}=\mathbb{C}$ او نعریف الفضاء الشعاعي : لنعتبر $(\mathbb{K},+, imes)$ حقل تبدیلي

للكن E مجموعة. نسمي (E,+,*) فضاء شعاعيا على الحقل التكن

(او 🔣 - فضاء شعاعي) اذا كانت

زمرة تبديلية (E, +) (1)

* مزودة بقانون تركيب خارجي E(2)

 $\mathbb{K} \times E \to E$

 $(\lambda, x) \rightarrow \lambda. x$

من اجل کل x,y من \mathbb{K} من کا لدینا μ

$$(\lambda + \mu).x = \lambda.x + \mu.x \quad (1)$$

$$\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$$
 (2)

$$\lambda.(\mu.x) = (\lambda.\mu).x \quad (3)$$

العنصر الحيادي للعملية (.) في I_E حيث I_E حيث I_E حيث عبد العنصر الحيادي العملية (4)

ملاحظات:

- سلمبات \mathbb{K} تسمى اشعة وعناصر E تسمى سلمبات
- $\lambda.x$ بدلا من $\lambda.x$ بنسمي الكتابة $\lambda.x$ بضرب الشعاع $\lambda.x$ بالسلمي الكتابة الكتابة الشعاع بالشعاع الشعاع المساع الشعاع المساع ا
- $\lambda 0 = 0$ نجد $\lambda x = \lambda (x + 0) = \lambda x + \lambda 0$ وذالك لأن $\forall \lambda \in \mathbb{K} \ \lambda 0 = 0$ (3)
- 0x = 0 نجد 0x = (0+0)x = 0x + 0x وذالك لأن 0x = 0 نجد 0x = 0
 - $\lambda x = 0 \Leftrightarrow \lambda = 0 \lor x = 0$ (5)

امثلة:

- (1) كل حقل تبديلي ١٨ هو فضاء شعاعي على ١٨
- $orall \ ec{u}, ec{v} \in V \Longrightarrow ec{u} + ec{v} \in V$ وذلك لان $\mathbb R$ وذلك على هغاعي على $\mathbb R$

$$\forall \lambda \in \mathbb{R}, \ \vec{u} \in V \implies \lambda \ \vec{u} \in V \ (V \)$$
 جمع الاشعة عملية داخلية في

(V فعرب شعاع بعدد حقیقی عملیة خارجیة فی V)

حيث \mathbb{R} حيث فضاء شعاعي على \mathbb{R} حيث

$$\forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2, \forall \lambda \in \mathbb{R},$$

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \lambda(x_1, x_2) = (\lambda x_1, \lambda x_2)$$

فضاء شعاعي على
$$\mathbb{R}$$
 حيث $E=\mathfrak{F}(I,\mathbb{R})$ مجموعة الدوال المعرفة $(E,+,.)(4)$

من Iنحو \mathbb{R} و

$$\forall x \in I : (f+g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda f(x)$$

الفضاء الشعاعي الجزئي:

: انه فضاء شعاعي جزئي لE اذا تحقق

- $F \neq \emptyset$ (1)
- $\forall x, y \in F \Longrightarrow x + y \in F \quad (2)$
- $\forall x \in F, \forall \lambda \in \mathbb{K} \Longrightarrow x + y \in F$ (3)

E نتیجة : لیکن (E,+,.) فضاء شعاعي على \mathbb{K} نقول عن جزء

: انه فضاء شعاعي جزئي لE اذا تحقق

- $F \neq \emptyset$ (1)
- $\forall x, y \in F, \quad \forall \lambda, \mu \in \mathbb{K} \Longrightarrow \lambda x + \mu y \in F \quad (2)$

امثلة:

- E من جزئیان من E فضاءان و $\{0_E\}$
- $\mathbb{R} \times \{0\} = \{(x,0) \mid x \in \mathbb{R}\}$ حيث $\mathbb{R} \times \{0\} = \{(x,0) \mid x \in \mathbb{R}\}$ فضاء شعاعی جزئی من

وذلك لان $\{0\} imes \mathbb{R} imes \{0\}$ وبالتالي $\emptyset
eq \mathbb{R} imes \{0\}$ و

 $\forall (x,0), (y,0) \in \mathbb{R} \times \{0\}, \forall \lambda, \mu \in \mathbb{K}$

$$\lambda(x,0) + \mu(y,0) = (\lambda x + \mu y, 0) \in \mathbb{R} \times \{0\}$$

الاسس والابعاد : لنفرض في كل ما يلي ان E فضاء شعاعي على E المزج الخطى:

E تعریف : نسمي مزجا خطیا للاشعة $x_1, x_2, \dots x_n$ من الفضاء الشعاعي

کل شعاع من الشکل : $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$: کل شعاع من الشکل

 $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$

E من (2,1) من $E=\mathbb{R}^2$ من عثال : ليكن $E=\mathbb{R}^2$

(2,1) = 2.(1,0) + 1.(0,1) لدينا الكتابة التالية

الشعاع (2,1) هو مزج خطي للشعاعين (2,1) هو

العائلة المولدة:

تعریف : نقول ان العائلة $\{x_1, x_2, ... x_n\}$ مولدة للفضاء الشعاعي اذا كتب

کل شعاع من E کمز E من کل شعاع من

 $\forall x \in E, \exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$:

 $x = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n$

 $E = \langle x_1, x_2, \dots x_n \rangle$ ونكتب

امثلة:

 \mathbb{R}^2 الشعاعي $E=\mathbb{R}^2$ الشعاعي $E=\mathbb{R}^2$ (1)

لیکن u = (x, y) من u = (x, y) لیکن

$$u = (x, y) = \alpha (1,1) + \beta (1,0) = (\alpha + \beta, \alpha)$$

$$\begin{cases} \alpha + \beta = x \\ \alpha = y \end{cases} \Longrightarrow \begin{cases} \beta = x - y \\ \alpha = y \end{cases}$$

$$u = (x, y) = (x - y)(1,1) + y(1,0)$$

$$u = (x, y, z) \in \mathbb{R}^3$$
 $E = \mathbb{R}^3$ (1)

$$u = (x, y, z) = (x, 0,0) + (y, 0,0) + (z, 0,0) = x(1,0,0) + y(0,1,0) + z(0,0,1)$$

$$= x e_1 + y e_2 + z e_3$$

 \mathbb{R}^3 اشعة مولدة للفضاء $e_1=(1,0,0), e_2=(0,1,0), e_3=(0,0,1)$

 $\mathbb{R}^3 = \langle e_1, e_2, e_3 \rangle$ وبالتالي

الارتباط الخطى - الاستقلال الخطى:

نقول عن الاشعة $x_1, x_2, \dots x_n$ من E انها مرتبطة خطيا اذا وفقط اذا وجد ت (1)

الاعداد $\lambda_1, \quad \lambda_2, \dots, \lambda_n \in \mathbb{K}$ الاعداد

 $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0$

انها مستقلة خطيا اذا وفقط اذا $x_1, x_2, \dots x_n$ نقول عن الاشعة $x_1, x_2, \dots x_n$

وجد ت الاعداد $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ بحیث تحقق

 $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0 \implies \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$

u=(0,1,0,0),v=(0,0,1,0),w=(0,1,1,0) الاشعة \mathbb{R}^4 في \mathbb{R}^4 الاشعة

u + v - w = 0 مرتبطة خطيا لان

 $lpha \, u + eta v + \gamma w = 0$ اعداد حقیقیة بحیث $lpha, eta, \gamma$ اعداد

 $\alpha (0,1,0,0) + \beta (0,0,1,0) + \gamma (0,1,1,0) = 0$

$$\begin{cases} \alpha + \gamma = 0 \\ \beta + \gamma = 0 \end{cases}$$

$$\alpha = \beta = -\gamma$$

$$\alpha(\mathbf{u} + \mathbf{v} - \mathbf{w}) = 0$$

اذا كان lpha
eq 0 فان a
eq v - w = 0 ومنه ان الاشعة u,v,w مرتبطة خطيا

مرتبطة خطيا u, v, w

u=(0,1,0,0),v=(0,0,1,0),w=(0,1,1,0) الاشعة \mathbb{R}^4 الاشعة

u + v - w = 0 مرتبطة خطيا لان

 $\alpha u + \beta v + \gamma w = 0$ اعداد حقیقیة بحیث α, β, γ

u=(6,2,4), v=(2,0,2), w=(1,1,0) في \mathbb{R}^3 الأشعة (2)

$$u-2v-2w=0$$
 مرتبطة خطيا لان $lpha\,u+eta v+\gamma w=0$ مرتبطة خطيا $lpha\,\mu+\beta v+\gamma w=0$ لتكن $lpha\,(6,2,4)+eta(2,0,2)+\gamma(1,1,0)=0$
$$\begin{cases} 6\alpha+2\beta+\gamma=0\\ 2\alpha+\gamma=0\\ 4\alpha+2\beta=0 \end{cases}$$

$$\begin{cases} 6\alpha + 2\beta + \gamma = 0 \\ 2\alpha = -\gamma \\ 2\alpha = -\beta \end{cases}$$

$$\alpha u - 2\alpha v - 2\alpha w = 0$$

$$\alpha(u - 2v - 2w) = 0$$

لنفرض ان $\alpha \neq 0$ نجد $\alpha \neq 0$ نجد $\alpha \neq 0$ ومنه الاشعة $\alpha \neq 0$ مرتبطة خطيا $\alpha \neq 0$ مرتبطة خطيا

$$e_3=~(0,0,1), e_2=(0,1,0), e_1=(1,0,0)$$
 في \mathbb{R}^3 الاشعة (3)

اعداد حقیقیة e_1,e_2,e_3 اعداد حقیقیة الاشعة الاثمان مستقلة خطیا الاثمان الاشعة

$$\alpha e_1, +\beta + \gamma e_3 = 0 \Rightarrow \alpha(1,0,0) + \beta(0,1,0) + \gamma(0,0,1) = 0 \ \alpha, \beta, \gamma$$
$$\Rightarrow (\alpha, \beta, \gamma) = 0$$
$$\Rightarrow \alpha = \beta = \gamma = 0$$

اساس الفضاء الشعاعي:

 $\{x_1,x_2,...x_n\}$ نعریف : لیکن E فضاء شعاعي على الحقل الحقل الحقل الحقل الحقل الحقاء فضاء تعریف

تشكل اساسا للفضاء الشعاعي E اذا كانت

$$E$$
 مولدة ل $\{x_1, x_2, ... x_n\}$ مولدة ل (1)

$$E$$
 في الاشعة $\{x_1, x_2, \dots x_n\}$ مستقلة خطيا في

امثلة:

,
$$e_2=(0,1,0,...,0)$$
, $e_1=(1,0,0,...,0)$ الاشعة \mathbb{R}^n الاشعة (1)

$$\mathbb{R}^n$$
 الاشعة e_1,e_2,\dots,e_n تشكل اساس ل $e_n=(0,0,\dots,1)$ لانه : اذا كانت

$$\lambda_1 e_1, +\lambda_2 e_2 + \dots + \lambda_n e_n = 0 \Longrightarrow (\lambda_1, \lambda_2, \dots, \lambda_n) = 0$$
$$\Longrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

ومنه الاشعة e_1, e_2, \dots, e_n تشكل مستقلة خطيا

$$\forall x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

$$\mathbb{R}^n = \langle e_1, e_2, ..., e_n \rangle$$
 ومنه

$$\mathbb{R}^2$$
 الشعاعان $u=(1,2)$ $v=(3,1)$ الشعاعان (2) في \mathbb{R}^2

$$\lambda_1 u + \lambda_2 v = 0 \Longrightarrow (\lambda_1 + 3\lambda_2, 2\lambda_1 + \lambda_2) = 0$$

$$\Longrightarrow \begin{cases} \lambda_1 + 3\lambda_2 = 0 \\ 2\lambda_1 + \lambda_2 = 0 \end{cases}$$

$$\Longrightarrow \lambda_1 = \lambda_2 = 0$$

ومنه الشعاعان u, v مستقلان خطیا

$$\forall x = (x_1, x_2) \in \mathbb{R}^2$$

$$x = \lambda_1 u + \lambda_2 v \Longrightarrow (x_1, x_2) = (\lambda_1 + 3\lambda_2, 2\lambda_1 + \lambda_2)$$

$$\Longrightarrow \begin{cases} \lambda_1 + 3\lambda_2 = x_1 \\ 2\lambda_1 + \lambda_2 = x_2 \end{cases}$$

$$\Longrightarrow \begin{cases} \lambda_1 = \frac{3x_2 - x_1}{5} \\ \lambda_2 = \frac{2x_1 - x_2}{5} \end{cases}$$

$$\mathbb{R}^2 = \langle u, v \rangle$$
 ومنه

الأثبات:

نظرية : تكون مجموعة الاشعة u_1,u_2,\dots,u_n اساس ل E اذا وفقط اذا كان كل شعاع من E يكتب بصورة وحيدة كمزج خطي للاشعة u_1,u_2,\dots,u_n

E من u_1,u_2,\ldots,u_n اساس ل u_1,u_2,\ldots,u_n لنفرض ان الاشعة

$$x = \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n \tag{1}$$

x لنفرض عبارة اخرى ل

$$x = \lambda'_1 u_1 + \lambda'_2 u_2 + \dots + \lambda'_n u_n \qquad (2)$$

من (1) و (2)ينتج

$$(\lambda_{1} - \lambda'_{1})u_{1} + (\lambda_{2} - \lambda'_{2})u_{2} + \dots + \lambda_{1}(\lambda_{n} - \lambda'_{n})u_{n} = 0$$

$$\Rightarrow (\lambda_{1} - \lambda'_{1}) = (\lambda_{2} - \lambda'_{2}) = \dots = (\lambda_{n} - \lambda'_{n}) = 0$$

$$\Longrightarrow \lambda_1 = {\lambda'}_1, \lambda_2 = {\lambda'}_2, \ldots, \lambda_n = {\lambda'}_n$$

 $x=\lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_n u_n$ لنفرض ان الشعاع x له كتابة وحيدة

E لساس u_1,u_2,\ldots,u_n اساس الاشعة

 u_1,u_2,\dots,u_n من الفرض لدينا $E=\langle u_1,u_2,\dots,u_n
angle$ من الفرض لدينا مستقلة خطبا

ليكن

 $\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n = 0 \Longrightarrow \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n$ = $0u_1 + 0u_2 + \dots + 0u_n$

$$\Longrightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_n \ = 0$$

 $u_1,u_2,...,u_n$ ومنه الاشعة $u_1,u_2,...,u_n$ مستقلة خطيا اذا الاشعة

E اساس لE تشکل

ملاحظات:

اذا الاشعة x من E فان اساس ل E فان الاشعة u_1,u_2,\dots,u_n فان (1)

$$x = \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n$$

والسلميات x بالنسبة للاساس مركبات الشعاع $\lambda_1,\lambda_2,\dots,\lambda_n$

$$\{u_1, u_2, \dots, u_n\}$$

باختیار $x=\lambda_1e_1+\lambda_2e_2$ اذا مثلنا هندسیا الشعاع \mathbb{R}^2 باختیار (2)

 $e_1 = (1,0) \; e_2 = (0,1)$ معلما للمستوي (o,i,j) فان الشعاعين المعلم $ec{l}, ec{f}$ مالس المعلم المع

اذا کان الشعاع $A=\lambda_1e_1+\lambda_2e_2$ يرفق بالنقطة Aفان

$$\overrightarrow{OA} = \lambda_1 \, \vec{\iota} + \lambda_2 \vec{J}$$

: نفول عن فضاء شعاعي E انه ذو بعد منته اذا كان مولد بعدد منته بعد الفضاء الشعاعي : تعریف E

من الاشعة

امثلهٔ $\langle e_1, e_2 \rangle = \mathbb{R}^2$ ذو بعد منته

نو بعد منته $\mathbb{R}^3 = \langle e_1, e_2, e_3 \rangle -$

E النا كان E فضاء شعاعى بعده منته على الحقل E فان جميع اسس تعريف E اذا كان E فضاء شعاعى بعده منته على الحقل E

dimE لها نفس عدد الاشعة يسمى هذا العدد ببعد E ونرمز له بالرمز

 $dim \mathbb{R}^n = n$, $dim \mathbb{R}^3 = 3$, $dim \mathbb{R}^2 = 2$: امثلة

ملاحظات:

 $dim(0_E)=0\ (1)$

(2) نسمي الفضاء الشعاعي ذو بعد 1 بالمستقيم الشعاعي

(3) نسمي الفضاء الشعاعي ذو بعد 2 بالمستوي الشعاعي

بعد جداء فضائين شعاعيين:

نظریة : اذا کان E و E فضائین شعاعیین ببعد ین منتهین علی الحقل E فان

 $dimE \times F = dimE + dimF$

الاثبات:

يمكن التاكد ان E imes F فضاء شعاعي على الحقل \mathbb{K} بالنسبة للعمليتين التاليتين

$$\forall (x,y), (x',y') \in E \times F: (x,y) + (x',y') = (x+x',y+y')$$

 $\forall (x, y) \in E \times F, \forall \lambda \in \mathbb{K} : \lambda(x, y) = (\lambda x, \lambda y)$

 $dimE \times F = n + m$ ونبر هن ان dimE = n, dimF = m لنفر ض ان

n+m یکفی ان نبر هن ان E imes F یقبل اساس عدد عناصره

 $\{v_1,v_2,\dots,v_m\}$ تشكل اساس ل E و الجملة $\{u_1,u_2,\dots,u_n\}$ تشكل اتكن الجملة

F اساس ل $^{\circ}$

 $(x,y) = (\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n , \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m)$

 $(\lambda_1, \lambda_2, \dots, \lambda_n, \alpha_1, \alpha_2, \dots, \alpha_m) \in \mathbb{K}^{n+m}$ حيث

 $(x,y) = (\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n, 0) + (0, \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m)$

 $= \lambda_1(u_1, 0) + \lambda_2(u_2, 0) + \dots + \lambda_n(u_n, 0) + \alpha_1(0, v_1) + \alpha_2(0, v_2) + \dots + \alpha_m(0, v_m)$

يعني الجملة $\{(u_1,0),(u_2,0),...,(u_n,0),(0,v_1),(0,v_2),...,(0,v_m)\}$ مولدة

 $E \times F$ \cup

نستقلة خطیا $\{(u_1,0),(u_2,0),\dots,(u_n,0),(0,v_1),(0,v_2),\dots,(0,v_m)\}$ نشبت ان

 $(\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n , \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m) = (0,0)$

$$\begin{cases} \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n = 0 \\ \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m = 0 \end{cases}$$

 $\lambda_1=\lambda_2=\cdots=\lambda_n=lpha_1=lpha_2=\cdots=lpha_m=0$ ومنه

 $\{(u_1,0),(u_2,0),\ldots,(u_n,0),(0,v_1),(0,v_2),\ldots,(0,v_m)\}$ فالجملة

dimE imes F = n + m = dimE + dimF اساس ل E imes F ومنه

تمرین محلول 1:

u = (1,1,1)

 \mathbb{R}^3 الشعاع u بالنسبة للاساس القانوني لu الشعاع مركبات الشعاع u

 \mathbb{R}^3 الساس ل $\{u_1,u_2,u_3\}$ بين ان (2)

اوجد مركبات الشعاع u بالنسبة للاساس الجديد (3)

$$u = (1,1,1) = 1(1,0,0) + 1(0,1,0) + 1(0,0,1) = 1e_1 + 1e_2 + 1e_3$$

مركبات الشعاع u بالنسبة للاساس القانوني ل \mathbb{R}^3 هي 1,1,1 على الترتيب

 \mathbb{R}^3 لشاس ل شکل اساس ل $\{u_1,u_2,u_3\}$ نا اثبات ان (2)

 $\forall x=(x_1,x_2,x_3)\in~\mathbb{R}^3~\exists \alpha,\beta,\gamma\in~\mathbb{R}:x=\alpha u_1+\beta u_2+\gamma u_3$

$$x = \alpha u_1 + \beta u_2 + \gamma u_2 \Leftrightarrow \begin{cases} \alpha + \beta = x_1 \\ \alpha - \beta = x_2 \\ 2\alpha - \gamma = x_3 \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha = \frac{x_1 + x_2}{2} \\ \beta = \frac{x_1 - x_2}{2} \\ \gamma = x_1 + x_2 - x_3 \end{cases}$$

 $\mathbb{R}^3 = \langle u_1, u_2, u_3 \rangle$ ومنه

$$\alpha u_1 + \beta u_2 + \gamma u_3 = 0 \Leftrightarrow \begin{cases} \alpha + \beta = 0 \\ \alpha - \beta = 0 \\ 2\alpha - \gamma = 0 \end{cases}$$

$$\Longleftrightarrow \alpha = \beta = \gamma = 0$$

ومنه الاشعة u_1,u_2 , u_3 مستقلة خطيا

 \mathbb{R}^3 اذا الأشعة u_1,u_2,u_3 تشكل اساس ل

ايجاد مركبات الشعاع u بالنسبة للاساس الجديد u

$$x = \alpha u_1 + \beta u_2 + \gamma u_3$$

$$= \frac{x_1 + x_2}{2}u_1 + \frac{x_1 - x_2}{2}u_2 + (x_1 + x_2 - x_3)u_3$$

 $= 1.u_1 + 0.u_2 + 1.u_3$

u(1,0,1) هي $\{u_1,u_2,u_3\}$ مركبات الشعاع u بالنسبة للاساس

تمرین محلول 2:

 $v_1(1,1,1)$ $v_2(1,2,3)$ $v_3(2,-1,1)$ v(1,-2,5) نعتبر في \mathbb{R}^3 الاشعة

 v_1, v_2, v_3 بين ان v مزج خطي للاشعة v

الحل

$$v = \alpha v_1 + \beta v_2 + \gamma v_3 = \alpha(1,1,1) + \beta(1,2,3) + \gamma(2,-1,1)$$
$$= (\alpha + \beta + 2\gamma, \alpha + 2\beta - \gamma, \alpha + 3\beta + \gamma)$$

$$\Rightarrow \begin{cases} \alpha + \beta + 2\gamma = 1 \\ \alpha + 2\beta - \gamma = -2 \\ \alpha + 3\beta + \gamma = 5 \end{cases}$$

$$\Rightarrow \alpha = -6, \beta = 3, \gamma = 2$$

$$v = -6v_1 + 3v_2 + 2v_3$$

تمرین محلول 3:

ادرس ان كانت الاشعة التالية مستقلة في كل حالة من الحالات

$$v_2(3,4,5), v_1(1,2,3)$$
 الاشعة (1)

$$v_3(5,6), v_2(3,4), v_1 \Rightarrow \alpha(1,2,3) + \beta(3,4,5) = 0$$

نعتبر في \mathbb{R}^2 الاشعة (2)

الحل

$$lpha v_1 + eta v_2 = 0 \Longrightarrow lpha = eta = 0 \Longleftrightarrow$$
 مستقلان خطیا خطیا $v_2, v_1(1)$

$$\alpha v_1 + \beta v_2 = 0 \Longrightarrow \alpha(1,2,3) + \beta(3,4,5) = 0$$

$$\Rightarrow$$
 $(\alpha + 3\beta, 2\alpha + 4\beta, 3\alpha + 5\beta) = (0,0,0)$

$$\Rightarrow \begin{cases} \alpha + 3\beta = 0 \\ 2\alpha + 4\beta = 0 \\ 3\alpha + 5\beta = 0 \end{cases}$$

$$\Rightarrow \alpha = \beta = \gamma = 0$$

ومنه الشعاعان v_2,v_1 مستقلان خطیا

$$= \alpha v_1 + \beta v_2 + \gamma v_3 = 0 \Rightarrow \alpha(1,2) + \beta(3,4) + \gamma(5,6) = 0$$
$$\Rightarrow (\alpha + 3\beta + 5\gamma, 2\alpha + 4\beta + 6\gamma) = (0,0)$$

$$\Rightarrow \begin{cases} \alpha + 3\beta + 5\gamma = 0 \\ 2\alpha + 4\beta + 6\gamma = 0 \end{cases}$$
$$\Rightarrow \begin{cases} \alpha + 3\beta + 5\gamma = 0 \\ \alpha + 2\beta + 3\gamma = 0 \end{cases}$$
$$\Rightarrow \begin{cases} \beta = -2\gamma \\ \alpha = -\gamma \end{cases}$$

ومنه الاشعة v_3 v_2 , v_1 ليست مستقلة خطيا

التطبيقات الخطية

F فضاءان شعاعيان على نفس الحقل \mathbb{K} وليكن F فضاءان شعاعيان على نفس الحقل وليكن المجتوبية من F

نقول ان f تطبیق خطی من E فی F اذا وفقط اذا تحقق

$$\forall x, y \in E \ f(x+y) = f(x) + f(y) \ (1)$$

$$\forall \ x \in E \ \forall \lambda \in \mathbb{K} \ f(\lambda x) = \lambda f(x) \quad (2)$$

F وفي E من E ايظا انه تماثل من E ايظا

امثلة:

ليكن
$$\alpha$$
 ثابت حقيقي و f تطبيق من α في α معرف كمايلي (1)

$$f(x) = ax$$

هو تطبيق جطي

$$\forall x, y \in \mathbb{R} \ \forall \lambda, \mu \in \mathbb{R} \quad f(\lambda x + \mu y) = a(\lambda x + \mu y)$$
$$= \lambda(ax) + \mu(ax)$$

$$= \lambda f(x) + \mu f(y)$$

: من \mathbb{R}^2 في \mathbb{R} التطبيق f من f التطبيق عند (2)

$$f(x,y) = x - y$$

هو تطبيق جطي

$$\forall (x,y), (x',y') \in \mathbb{R}^2 \, \forall \lambda, \mu \in \mathbb{R}$$

$$f(\lambda(x,y) + \mu(x',y')) = f(\lambda x + \mu x', \lambda y + \mu y')$$

$$= \lambda x + \mu x' - \lambda y - \mu y'$$

$$= \lambda(x - y) + \mu(x' - y')$$

$$= \lambda f(x, y) + \mu f(x', y')$$

$$E = \mathbb{R}^3, F = \mathbb{R}^2 \quad (3)$$

$$f[(x, y, z)] = (x + 2y - 3z, 3x - y + 5z)$$

تعریف f:2 نطبیق خطی من f:2 اذا وفقط اذا تحقق

$$\forall x, y \in E \ \forall \lambda, \mu \in \mathbb{K} \quad f(\lambda x + \mu y) = \lambda f(x) + \mu f(x)$$

الأثبات

$$(2)$$
 و (1) حسب اذا کان (1) و اذا کان ان (1)

$$\forall \, x,y \, \in E \, \forall \lambda,\mu \in \mathbb{K} \quad f(\lambda x + \mu y) = f(\lambda x) + f(\mu y)$$

$$= \lambda f(x) + \mu f(y)$$

اذا كان f تطبيق خطى فانه

 $\forall x, y \in E \ \forall \lambda, \mu \in \mathbb{K} \quad f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$

باخذ $\lambda = \mu = 1$ نجد

 $\forall a, b \in E \ f(x + y) = f(x) + f(y)$

باخذ $\mu = 0$ نجد

 $\forall x, by \in E \ \forall \lambda \in \mathbb{K} \quad f(\lambda x) = \lambda f(x)$

ملاحطة

L(E,F) نرمز لمجموعة التطبيقات الخطية بالرمز –

تعريف 3:

نقول ان f منتشاكل من E في F اذا كان f تطبيق خطي تقابلي -

E يقال عن f انه تماثل داخلي اذا كان f تطبيق خطي من E في E

نسمى كل تشاكل من E في E تشاكلا ذاتيا -

نتيجة : ليكن f تطبيق خطي من E في لدينا

 $f(0_E) = 0_F \ (1)$

 $\forall x \in E, f(-x) = -f(x) (2)$

الاثبات:

بوضع $\lambda=0_E$ في العبارة (2) من التعريف 2 نجد (1)

 $f(0_E) = 0_E f(x) = 0_F$

بوضع $\lambda=-1$ في العبارة (2) بوضع $\lambda=-1$ بوضع

 $\forall x \in E, f(-x) = f((-1)x) = (-1)f(x) = -f(x)$

العمليات على التطبيقات الخطية:

الكن G, F, E فضاءات شعاعية على الحقل

 λf و کان β عدد من کا فان β فان β و کان β و کان کان β تطبیقان خطیان من β معرفین کمایلی β معرفین کمایلی

$$\forall x \in E, (f+g)(x) = f(x) + g(x)$$
$$\forall x \in E \ f(\lambda x) = \lambda f(x)$$

gof فان G في G فان G و G تطبيقا خطيا من G في G فان G في في G في G

 \mathbb{K} فضاء شعاعي على الحقل (L(E,F),+,.)(3)

E في F نشاكل من F في F فان f^{-1} نشاكل من f في (4)

صورة ونواة تطبيق خطي:

F ليكن f تطبيق من الفضاء الشعاعي E في الغضاء الشعاعي ليكن

Imf صورة التطبيق الخطي f هو المجموعة f(E) والتي نرمز لها بالرمز f(E) f(E) f(E) اf(E) f(E) f(E) f(E) f(E) f(E) f(E)

والتي نرمز لها $f(x)=0_E$ بحيث والتي نرمز لها بالرمز $f(x)=0_E$ والمعرفة كمايلي بالرمز $f(x)=0_E$

$$Kerf = \{ x \in E/f(x) = 0_F \} \subset E.$$
$$= f^{-1}\{0_F\}$$

امثلة:

ليكن a ثابت حقيقي و f تطبيق من \mathbb{R} في \mathbb{R} معرف كمايلي f(x)=ax

 $Imf = \{0\}$ $Kerf = \mathbb{R}$ فان a = 0

 $Imf=\mathbb{R}$ $Kerf=\{0\}$ فان a
eq 0 اذا کان

(2)

 $f: \mathbb{R}^2 \to \mathbb{R}$

$$(x,y) \rightarrow f((x,y)) = x - y$$

Kerfتعيين

$$Kerf = \{(x, y) \in \mathbb{R}^2 : x - y = 0\}$$

$$= \{(x, y) \in \mathbb{R}^2 : x = y\}$$

$$= \{(x, x), x \in \mathbb{R}\}$$

$$= \{x(1, 1), x \in \mathbb{R}\}$$

$$= \langle (1, 1) \rangle$$

Imfتعيين

$$Imf = \{f(x, y) : (x, y) \in \mathbb{R}^2 \}$$

$$Imf = \{(x - y)1 : (x, y) \in \mathbb{R}^2 \}$$

$$= \langle 1 \rangle = \mathbb{R}$$

نظرية:

$$E$$
 من جزئي من $Kerf$ (1)

$$F$$
 فضاء شعاعی جزئی من Imf (2)

الأثبات:

$$Kerf \neq \emptyset$$
 ومنه $0_E \in Kerf$ معناه $f(0_E) = 0_F$ (1) $\forall x, x' \in Kerf \Rightarrow f(x + x') = f(x) + f(x') = 0_F$ $\Rightarrow x + x' \in Kerf$ $\forall x \in Kerf \forall \lambda \in \mathbb{R} \Rightarrow f(\lambda x) = \lambda f(x) = 0$ $\Rightarrow \lambda x \in Kerf$

E ومنه Kerf فضاء شعاعي جزئي

$$Imf
eq \emptyset$$
 ومنه $0_f \in Imf$ معناه $f(0_E) = 0_F$ (2)

$$\forall y, y' \in Imf \implies \exists x, x' \in E : y = f(x), y' = f(x')$$

$$\implies y + y' = f(x) + f(x') = f(x + x'), x + x' \in E$$

$$\implies y + y' \in Imf$$

$$\forall y \in fIm \forall \lambda \in \mathbb{R} \implies \lambda y = \lambda f(x) = f(\lambda x), \lambda x \in E$$

$$\implies \lambda y \in Imf$$

F ومنه Imf فضاء شعاعي جزئي من

تمرین:

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \to f((x,y)) = (2x - 4y, x - 2y)$$

بین ان f تطبیق خطی (1)

(2) عين Kerf و Imf

الحل

$$\forall (x,y)(x',y') \in \mathbb{R}^2, \forall \lambda, \mu \in \mathbb{R}$$

$$f(\lambda(x,y) + \mu(x',y')) = f(\lambda x + \mu x', \lambda y + \mu x')$$

$$= (2(\lambda x + \mu x') - 4(\lambda y + \mu y'), (\lambda x + \mu x') - 2(\lambda y + \mu y'))$$

$$= \lambda(2x - 4y, x - 2y) + \mu(2x' - 4y', x' - 2y')$$

$$= \lambda f((x,y)) + \mu f((x',y'))$$

تعيين Kerf

$$Kerf = \{(x,y) \in \mathbb{R}^2 : f((x,y)) = (0,0)\}$$

$$= \{(x,y) \in \mathbb{R}^2 : \}(2x - 4y, x - 2y) = (0,0)$$

$$= \{(x,y) \in \mathbb{R}^2 : \}2x - 4y = 0, x - 2y = 0$$

$$= \{(x,y) \in \mathbb{R}^2, x = 2y\}$$

=
$$\{(2y, y), y \in \mathbb{R}\} = \{y(2,1), y \in \mathbb{R}\} = \langle (2,1) \rangle$$

(2,1) lhoele elements

Imf تعيين

$$Imf = \{f(x,y): (x,y) \in \mathbb{R}^2 \}$$

$$Imf = \{(2x - 4y, x - 2y): (x,y) \in \mathbb{R}^2 \}$$

$$= \{(2x,x) + (-4y, -2y): (x,y) \in \mathbb{R}^2 \}$$

$$= (x(2,1) - 2y(2,1): (x,y) \in \mathbb{R}^2)$$

$$= \{(x - 2y)(2,1): x - 2y \in \mathbb{R} \}$$

$$= \langle (2,1) \rangle$$

$$(2,1) \in \mathbb{R}^2$$

F نظریة : لیکن f تطبیقا خطیا من E نظریة : نظریة

متباین
$$f \iff Kerf = \{0_E\}$$
 (1)

غامر
$$f \iff Imf = F$$
 (2)

الأثبات:

$$Kerf=\{x\in E, f(x)=0_F\}$$
 لنفرض ان f متباین و نعتبر f نعتبر f لنفرض ان f لان f لان f او لان f او لان f فضاء شعاعي جزئي من f ومنه f f لان f f او لان f او لان f او لان f

$$orall x,y\in E$$
 , $f(x)=f(y)\Rightarrow f(x-y)=0_Fig($ لان f خطي
$$\Rightarrow x-y\in Kerf=\{0_E\}$$

$$\Rightarrow x=y$$

وبالتالي f متباين

(2)
$$Kerf = \{0_E\} \Longrightarrow \text{ arr} f \text{ also } f$$

$$Kerf = \{0_E\} \Leftrightarrow$$
 من (1) من (2) من من النتج ان الن

والعكس صحيح
$$Imf = F$$
 والعكس صحيح والخان $f(E) = F$

تمرین:

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x,y) \to f((x,y)) = (x,x,y)$

بین ان f تطبیق خطی (1)

? مل f متباین و هل f عامر (2)

الحل

$$(x,y)(x',y') \in \mathbb{R}^2, \forall \lambda, \mu \in \mathbb{R}$$

$$f(\lambda(x,y) + \mu(x',y')) = f(\lambda x + \mu x', \lambda y + \mu x')$$

$$= (\lambda x + \mu x', \lambda x + \mu x', \lambda y + \mu y')$$

$$= (\lambda x, \lambda x, \lambda y) + (\mu x', \mu x', \mu y')$$

$$= \lambda f((x,y)) + \mu f((x',y'))$$

ومنه f تطبیق خطي

$$Kerf = \{0_{\mathbb{R}^2}\} = \{(0,0)\}$$
 نبر هن ان نبر هن ان نبر عنی یکون متباین یکفی ان نبر هن ان $Kerf = \{(x,y) \in \mathbb{R}^2, f\big((x,y)\big) = 0_F = (0,0,0)\}$

$$= \{(x,y) \in \mathbb{R}^2, (x,x,y) = (0,0,0)\}$$

$$= \{(x,y) \in \mathbb{R}^2, x = 0, y = 0\}$$

ومنه f تطبیق متباین

 $Imf = \mathbb{R}^3$ ان نبر هن ان غامر یکفی ان خامر حتی یکون

 $(1,2,3) \notin Imf$ کن $(1,2,3) \in \mathbb{R}^3$ ناخذ مثال مضاد لدینا

ومنه f لیس تطبیق غامر

التطبيقات الخطية والفضاءات الشعاعية ذات البعد المنته:

لیکن E فضاء شعاعی بعده E ولیکن

F نظریة : اذا کان v_1,v_2 , ... , v_n و کانت E اساس E اساس E المعة من E المعة من E المعة من E اذا کان E المعة من E المعة من

 $\forall \alpha, \beta \in \mathbb{K}$, $\forall x, y \in E$: $f(\alpha x + \beta y) =$

 $= f(\alpha \lambda_{1} u_{1} + \alpha \lambda_{2} u_{2} + \dots + \alpha \lambda_{n} u_{n} + \beta \mu_{1} u_{1} + \beta \mu_{2} u_{2} + \dots + \beta \mu_{n} u_{n})$ $= f((\alpha \lambda_{1} + \beta \mu_{1}) u_{1} + (\alpha \lambda_{2} + \beta \mu_{2}) u_{2} + \dots + (\alpha \lambda_{n} + \beta \mu_{n}) u_{n})$ $= (\alpha \lambda_{1} + \beta \mu_{1}) v_{1} + (\alpha \lambda_{2} + \beta \mu_{2}) v_{2} + \dots + (\alpha \lambda_{n} + \beta \mu_{n}) v_{n}$ $= \alpha (\lambda_{1} v_{1} + \lambda_{2} v_{2} + \dots + \lambda_{n} v_{n}) + \beta (\mu_{1} v_{1} + \mu_{2} v_{2} + \dots + \mu_{n} v_{n})$ $= \alpha f(x) + \beta f(y)$

 \mathbf{F} المحيث يكون \mathbf{F} المحيث المحيث و تطبيق خطي من \mathbf{F} المحيث يكون \mathbf{G} المحيث يكون \mathbf{G} المحيث يكون \mathbf{G} المحيث يكون \mathbf{G}

 $x=\lambda_1u_1+\lambda_2u_2+\cdots+\lambda_nu_n$ من اخل کل x من x من اخل کل ک

F اشعة من v_1,v_2 , ... , v_n وكانت E وكانت $B=\{u_1,u_2$, ... , $u_n\}$ اندا كان E وكان E نطبيقا خطيا من E في E بحيث E بحيث E مع E فان

- مستقلة خطيا v_1,v_2,\ldots,v_n مستقلة خطيا اذا كانت الاشعة متباين اذا وفقط اذا كانت الاشعة متباين اذا وفقط اذا كانت الاشعة
- F ل مولدة ل v_1,v_2 , ... , v_n اذا وفقط اذا كانت الاشعة v_1,v_2 , ... , v_n مولدة ل
- F ل اساسا v_1, v_2, \dots, v_n اساسا اذا وفقط اذا كانت الاشعة التطبيق f تقابلا اذا وفقط اذا كانت الاشعة الاثبات :
 - v_1,v_2 مستقلة خطيا v_1,v_2 مستقلة خطيا v_1,v_2 مستقلة خطيا v_1,v_2 مستقلة خطيا v_1,v_2 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_8 v_8 v_8 v_8 v_8 v_8 v_8 v_9 v_9 v

 من F مركن كتابته v_1,v_2,\ldots,v_n مولدة ل v_1,v_2,\ldots,v_n من كتابته (2)

 $y = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$: على الشكل التالي

 $y = f(\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n)$ ومنه

معناه $y \in Imf$ معناه

اذا کان f غامر لنفرض y من f بحیث f بحیث g ولما کان

 $x = \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n$

فيكون

 $y = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$

رموناه ان الاشعة v_1,v_2 , ... , v_n مولدة ل v_1,v_2

تمرین محلول 1:

ليكن $\{e'_1,e'_2,e'_3\}$ الاساسين القانونيين للفضائين الشعاعيين $\{e'_1,e'_2,e'_3\}$, $\{e_1,e_2\}$ ليكن $f(e_2)=e'_2-e'_1$, $f(e_1)=2e'_2+e'_3$ يحين النطبيق الخطي من في الذي يحقق $\{e'_1,e'_2,e'_3\}$

الحل

 $e'_1=(1,0,0), e'_2=(0,1,0), e'_3=(0,0,1)$ $e_2=(0,1)$ $e_1=(1,0)$ نعلم ان $f(e_1)=2e'_2+e'_3=2(0,1,0)+(0,0,1)=(0,2,1)$

$$f(e_2) = e'_2 - e'_1 = (0,1,0) - (1,0,0) = (-1,1,0)$$

من اجل (x,y) من \mathbb{R}^2 یکون لدینا

 $f((x,y)) = f(xe_1 + e_2y)$ $= xf(e_1) + yf(e_2)$ = x(0,2,1) + y(-1,1,0) = (-y, 2x + y, x)

وبالتالي التطبيق الخطي f معرف كمايلي

 $f: \mathbb{R}^2 \to \mathbb{R}^3$

$$(x,y) \to f((x,y)) = (-y,2x+y,y)$$

رتبة تطبيق خطى:

F فضائين شعاعيين ببعديين منتهيين على الحقل E و f تطبيقا خطيا من E في F فضائين شعاعيين ببعديين منتهيين على الحقل

تعریف : نسمي بعد f(E) برتبة التطبیق الخطي f ونرمز له بالرمز f(E) ونكتب

$$rg(f) = dim(Imf)$$

نظریة : اذا کان f تطبیقا خطیا من E فان

dim(E) = dim(Kerf) + rg(f)

الاثبات

اذا كان f(E) فان f متباين وبالتالي f تقابل من E في f(E) ومنه dim(E)=dim(f(E))=rg(f)

Kerf اساس ل $\{u_1,u_2,...,u_n\}$ اذا کان $\{u_1,u_2,...,u_n\}$ انفرض ان الاشعة

و الاشعة u_{n+1},u_{n+2} , ... , u_{n+p} ان نفرض ان v_1,v_2 , ... , v_p اشعة و

 $1 \leq i \leq p$ من اجل $f(u_{n+i}) = v_i$ من E

 $\lambda_1 u_1 + \cdots + \lambda_n u_n + \lambda_{n+1}$ نفرض ان (1) لاجل ذالك نفرض ان (1) لاجل ذالك الك الم

 $f\left(\lambda_1 u_1+\cdots+\lambda_n u_n+\lambda_{n+1} u_{n+1}+\cdots+\lambda_{n+p} u_{n+p}\right)=0$ (2) وبمان f خطي فان

فان Kerf من $\lambda_1 u_1 + \dots + \lambda_n u_n$ فان

$$f(\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n) = 0 \quad (3)$$

 $\lambda_{n+1}v_{n+1}+\lambda_{n+2}v_{n+2}+\cdots+\lambda_{n+p}v_p=0$ من العلاقتين (2)و (3) من العلاقتين (4)

 $\lambda_{n+1}=\lambda_{n+2}=\cdots=\lambda_{n+p}=0$ فان f(E) اساس ل v_1,v_2 , ... , v_p وبمان الاشعة

 $\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n = 0$ فتصبح العلاقة (1) كمايلي

 $\lambda_1=\,\lambda_2=\cdots=\lambda_n=0\,$ فان Kerf اساس $\{\,\,u_1,u_2\,,\ldots,u_n\}$ وبمان

 $\lambda_1=~\lambda_2=\cdots=\lambda_n=~\lambda_{n+1}=\lambda_{n+2}=\cdots=\lambda_{n+p}=0$ وبالتالي اذا تحقق (1) ينتج ان

وهذاا يعني ان الاشعة $u_1,u_2\dots,u_n$, ... , u_{n+p} مستقلة خطيا

لناخذ الان شعاع كيفي \mathbf{x} من \mathbf{y} ولنفرض ان $\mathbf{y}=f(\mathbf{x})$ اساس ل E من من من عام كيفي لناخذ الان شعاع كيفي

وبفرض $\mathbf{y} = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_p v_p$ وبفرض f(E)

f(x-x') = 0وبالتالي y = f(x') نجد $x' = \alpha_1 u_{n+1} + \alpha_2 u_{n+2} + \dots + \alpha_p u_{n+p}$

التالي الشكل التالي ي $x-x' \in Kerf$

وهذا يؤدي الى $x-x'=eta_1u_1+eta_2u_2+\cdots+eta_nu_n$

 $x = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_n u_n + \alpha_1 u_{n+1} + \alpha_2 u_{n+2} + \dots + \alpha_p u_{n+p}$

وهذا يعني ان الاشعة E مما يعني ان $u_1,u_2...,u_n$ مولدة ل $u_1,u_2...,u_n$ مما يعني ان

dim(E) = dimKerf + rg(f) | dim(E) = dimKerf + dim(f(E))

نتيجة :

متباین $f \Leftrightarrow dim(E) = rg(f)$

غامر $f \Leftrightarrow dim(F) = rg(f)$

الأثبات

متباین $f \Leftrightarrow Kerf = \{0_E\} \Leftrightarrow dimKerf = 0 \Leftrightarrow dim(E) = rg(f)$

غامر $f \Leftrightarrow f(E) = F \iff dim(F) = rg(f)$

تمرین محلول :

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \to f((x,y)) = (3x - 4y, x - y)$$

بین ان f تطبیق خطي (1)

rg(f) و Im f و Kerf عين (2)

الحل:

 $(x,y)(x',y') \in \mathbb{R}^2, \forall \lambda, \mu \in \mathbb{R}$

$$f(\lambda(x,y) + \mu(x',y')) = f(\lambda x + \mu x', \lambda y + \mu y')$$

$$= (3(\lambda x + \mu x') - 4(\lambda y + \mu y'), \lambda x + \mu x' - \lambda y - \mu y')$$

$$= \lambda(3x - 4y, x - y) + \mu(3x' - 4y, x' - y')$$

$$= \lambda f((x,y)) + \mu f((x',y'))$$

ومنه f تطبیق خطی

$$Kerf = \{(x,y) \in \mathbb{R}^2, f((x,y)) = 0_F = (0,0) \}$$

$$= \{(x,y) \in \mathbb{R}^2, (3x - 4y, x - y) = (0,0) \}$$

$$= \{(x,y) \in \mathbb{R}^2, x = y = 0 \}$$

$$= \{(0,0) \}$$

$$Imf = \{f((x,y)) / (x,y) \in \mathbb{R}^2 \}$$

$$= \{(3x - 4y, x - y) / (x,y) \in \mathbb{R}^2 \}$$

$$= \{(3x,y) + (-4y,y) / (x,y) \in \mathbb{R}^2 \}$$

$$= \{x(3,1) + y(-4,1)(x,y) / (x,y) \in \mathbb{R}^2 \}$$

$$= ((3,1), (-4,1))$$

$$rg(f) = dim(Imf) = 2$$

تمرين محلول 2

ليكن التطبيق الخطي f معرف كمايلي

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x,y) \to f((x,y)) = (-y,2x+y,x)$$

مستوي شعاعي يطلب تعيين معادلة ديكارتية له Imf بين ان

علل ? متباین متباین علل (2)

الحل

عين Imf

$$Imf = \{f((x,y)) \in \mathbb{R}^3 / (x,y) \in \mathbb{R}^2\}$$

$$= \{(-y,2x+y,x) / (x,y) \in \mathbb{R}^2\}$$

$$= \{(0,2x,x) + (-y,y,0) / (x,y) \in \mathbb{R}^2\}$$

$$= \{x(0,2,1) + y(-1,1,0) / (x,y) \in \mathbb{R}^2\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0,2,1), (-1,1,0)\}$$

$$= \{(0$$

$$f((x,y)) = (X,Y,Z) \Leftrightarrow (-y,2x+y,x) = (X,Y,Z)$$
$$\Leftrightarrow \begin{cases} X = -y \\ Y = 2x + y \\ Z = x \end{cases}$$
$$\Leftrightarrow X + 2Z - Y = 0$$

$$dim(\mathbb{R}^2)=dimkerf+rgf\Rightarrow dimkerf=dim(\mathbb{R}^2)-rgf=0$$
 (2)
$$\Rightarrow kerf=\{0_{\mathbb{R}^2}\}=\{(0,\!0)\}$$

$$\Rightarrow \text{ or } f$$

سلسلة تمارين رقم 3حول (العماليات الداخلية – الفضاء الشعاعي – المطبيقات الخطية '

(1) العمليات الداخلية

التمرين الاول:

لتكن مجموعة الاعداد الصحيحة \mathbb{Z} المزودة بالعملية * والمعرفة كمايلي $\forall x,y \in \mathbb{Z}, \qquad x*y=x+2y$

 \mathbb{Z} بين ان العملية * داخلية في

(2)ادرس خصائص هذه العملية

التمرين الثاني:

لتكن مجموعة الاعداد الحقيقية ₪ المزودة بالعملية التجميعية * والمعرفة كمايلي

$$\forall x, y \in \mathbb{R} , \qquad x * y = \sqrt[3]{x^3 + y^3}$$

 \mathbb{R} بين ان (*,*) زمرة تبدلية في

التمرين الثالث:

لتكن مجموعة الاعداد الحقيقية $\mathbb R$ المزودة بالعملية * والمعرفة كمايلي $\forall \, x,y \in \mathbb R$, $x*y = \ln(e^x + e^y)$

(1) بين ان العملية * داخلية

(2) ادرس خصائص هذه العملية

التمرين الرابع:

لتكن المجموعة $\{2\}$ $\mathbb{R}\setminus\{2\}$ المزودة بالعملية * والمعرفة ب

$$\forall x, y \in E \quad , \qquad x * y = xy - 2x - 2y + 6$$

 $xy - 2x - 2y + 6 \neq 2$ فان $x \neq 2$ و $y \neq 2$ فان (1) اثبت انه اذا کان (2

ماذا تستنتخ ?

بين ان (E,*) زمرة تبدلية (2)

التمرين الخامس:

نعرف على ١ العملية الداخلية * كمايلي

$$\forall (a,b) \in \mathbb{R}^2 \ a * b = \frac{1}{2}(ab + a + b - 1)$$

(1)حل في 🏗 المعادلات التالية

$$x * 5 = 2$$
, $(-2) * x = 0$, $x * x = 2$

- \mathbb{R} تحقق ان * تبدلیة و تجمیعیة فی
- \mathbb{R} او خد العنصر الحيادي للعتلية * في
- \mathbb{R} يقبل نضير بالنسبة للعملية * في \mathbb{R}
- * التي تقبل نضير بالنسبة للعملية Ω عين Ω مجموعة العناصر من
 - (2) الفضاءات الشعاعية

التمرين الاول:

$$\mathbb{R}^3$$
 تولد $w=(2,-1,1)$ $v=(1,2,3)$ $u=(1,1,1)$ تولد

التمرين الثاني:

$$\mathbb{R}^3$$
 من $w=(1,-1,0)\ v=(-1,0,1)\ u=(0,-1,1)$ من

- (1) اثبت ان هذه الاشعة مستقلة خطيا مثنى مثنى
- (2) هل $\{\uparrow u, v, w\}$ مستقلة خطيا ? ماهو بعد الفضاء الشعاعي الجزئي الذي تولده هذه الاشعة التمرين الثالث :

: اثبت ان التوابع f,g,h المعرفة ب

$$f(x) = x, g(x) = sinx, h(x) = cosx$$

 $\mathcal{F}(\mathbb{R},\mathbb{R})$ مستقلة خطيا في

التمرين الرابع:

ليكن E الفضاء الشعاعي الجوئي من \mathbb{R}^3 والمولد بالاشعة التالية

$$c = (-1,1,-3,0)b = (1,2,0,1)a = (2,1,3,1)$$

E عين اساسا ل E وكذا بعد

(3) التطبيقات الخطية

التمرين الاول:

ليكن التطبيق الخطي f معرف كمايلي

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y,z) \to f((x,y,z)) = (x,x-y,y-z)$$

بین ان f تطبیق خطی (1)

(2) عين Kerf و Imf

التمرين الثاني:

ليكن التطبيق الخطي f معرف كمايلي

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x, y, z) \to f((x, y, z)) = (-x + y + z, x - y + z)$$

و التطبيق الخطى g المعرف كمايلي

$$g: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x,y) \rightarrow f((x,y,z)) = (y,x,x+y)$$

بین ان التطبیقین f و g خطیین (1)

rg(g) و Img و Img و Imf و Kerf و Kerf

fog gof عين (3)

التمرين الثالث:

يكن $\{e'_1,e'_2,e'_3\}$ من $\{e'_1,e'_2,e'_3\}$ من $\{e'_1,e'_2,e'_3\}$ من أيكن $\{e'_3=2e_2+3e_3\ ,e'_2=e_1+2e_2,e'_1=e_1\}$ من في الذي يحقق $\{e'_3=2e_2+3e_3\ ,e'_2=e_1+2e_2,e'_1=e_1\}$ الساس ل

ليكن f التطبيق الخطى من \mathbb{R}^3 في يحقق f الذي يحقق

$$f(e_3) = e'_3$$
 , $f(e_2) = e'_2 f = (e_1) = e'_1$

هل f تقابلی ? علل ثم عین عبارته f

التمرين الرابع:

: المعرفة ب المجموعة الجزئية من \mathbb{R}^3 المعرفة ب

 \mathbb{R}^3 بین ان H فضاء شعاعی جزئی من H

(2) اوجد بعد H

التمرين الخامس

ليكن التطبيق الخطي f معرف

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \to f((x,y)) = (2x - 4y, x - 2y)$$

و التطبيق الخطي g المعرف كمايلي

$$g: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \to g((x,y)) = (3x - 4y, x - y)$

? عين f و f بين يعديهما f متباين f علم f غامر f عين f علم f عين f علم f

Img و g^{-1} و g^{-1} و g^{-1} و g بين ان g تقابلي عين g

التمرين الاول:

لتكن مجموعة الاعداد الصحيحة المزودة بالعملية * والمعرفة كمايلي

$$\forall x, y \in \mathbb{Z}, \quad x * y = x + 2y$$

 \mathbb{Z} بين ان العملية * داخلية في

(2) ادرس خصائص هذه العملية

الحل

 $\forall x, y \in \mathbb{Z}, \quad x + 2y \in \mathbb{Z} \Longrightarrow \forall x, y \in \mathbb{Z}, \quad x * y \in \mathbb{Z}$

ومنه ان * داخلية في ٦

(2)

 $\forall x, y \in \mathbb{Z}$, $x * y = x + 2y \neq y + 2x = y * x$

 \mathbb{Z} ومنه ان * لیست تبدیلیه فی

 $\forall x, y, z \in \mathbb{Z}, (x * y) * z = (x + 2y) * z = x + 2y + 2z (a)$

 $\forall x, y, z \in \mathbb{Z}, \ x * (y * z) = x * (y + 2z) = x + 2y + 4z \ (b)$

 \mathbb{Z} ومنه ان * لیست تجمیعیة في $a \neq b$

 $\forall x \in \mathbb{Z}, c \in \mathbb{Z} x * c = x, c * x = x$

 $x * c = x \Leftrightarrow x + 2c = x \Leftrightarrow c = 0$

ردا کان c=0 فان

 $c * x = x \Leftrightarrow 0 + 2x = x, \forall x \in \mathbb{Z}$

لتكن مجموعة الاعداد الحقيقية ₪ المزودة بالعملية التجميعية * والمعرفة كمايلي

 $\forall x, y \in \mathbb{R} , \quad x * y = \sqrt[3]{x^3 + y^3}$

 \mathbb{R} بين ان $(\mathbb{R},*)$ زمرة تبدلية في

$$\forall x, y \in \mathbb{R}, \quad x * y = \sqrt[3]{x^3 + y^3} = \sqrt[3]{y^3 + x^3} = y * x$$

 \mathbb{R} ومنه ان * تبدیلیة فی

العنصر الحيادي

 $\forall x \in \mathbb{R}, \exists e \in \mathbb{R} \ x * e = x$

$$x * e = x \Leftrightarrow \sqrt[3]{x^3 + e^3} = x \Leftrightarrow x^3 + e^3 = x^3$$
$$\Leftrightarrow e = 0$$

 \mathbb{R} ومنه ان 0 هو العنصر الحيادي للعملية * في

العنصر النضير

$$\forall x, x' \in \mathbb{R} \quad x * x' = 0$$

$$x * x' = 0 \iff \sqrt[3]{x^3 + {x'}^3} = x \iff x^3 + {x'}^3 = 0$$

$$\iff x' = -x$$

ومنه ان كل عنصر يقبل عنصر نضير للعملية st في eal

ومنه ان $(\mathbb{R},*)$ زمرة تبديلية

التمرين الثالث:

لتكن مجموعة الاعداد الحقيقية ₪ المزودة بالعملية * والمعرفة كمايلي

$$\forall x, y \in \mathbb{R}$$
, $x * y = ln(e^x + e^y)$

- (1) بين ان العملية * داخلية
- (2) ادرس خصائص هذه العملية

الحل

$$\forall x,y \in \mathbb{R}$$
 $ln(e^x + e^y) \in \mathbb{R} \Rightarrow \forall x,y \in \mathbb{R}$, $x * y \in \mathbb{R}$ (1)
$$\mathbb{R}$$
 ومنه ان $*$ داخلیة فی

(2)

$$\forall x,y \in \mathbb{R} \ x*y = ln(e^x + e^y) = ln(e^y + e^x) = y*x$$
ومنه ان $*$ تبدیلیة فی \mathbb{R}

$$\forall x, y, z \in \mathbb{R}, (x * y) * z = ln(e^x + e^y) * z = ln(e^{ln(e^x + e^y)} + e^z)$$

= $ln(e^x + e^y + e^z)$ (a)

$$\forall x, y, z \in \mathbb{R}, \ x * (y * z) = x * (ln(e^{x} + e^{y})) = (ln(e^{x} + e^{(ln(e^{y} + e^{z}))})$$
$$= ln(e^{x} + e^{y} + e^{z})$$
 (b)

 \mathbb{R} ومنه ان * تجميعية في a=b

العنصر الحيادي

$$\forall x \in \mathbb{R}, \exists e \in \mathbb{R} \ x * e = x$$

$$x * e = x \Leftrightarrow ln(e^x + e^y) = x \Leftrightarrow e^x + e^e = e^x$$

$$\Leftrightarrow e^e = 0$$

وهذا مستحيل ومنه العملية * لا تقبل عنصر حيادي في $\mathbb R$ وان كل عنصر من $\mathbb R$ ليس له نضير بالنسبة للعملية *

التمرين الرابع:

لتكن المجموعة
$$E=\mathbb{R}\setminus\{2\}$$
 المزودة بالعملية $*$ والمعرفة ب

$$\forall x, y \in E \quad , \qquad x * y = xy - 2x - 2y + 6$$

$$xy-2x-2y+6\neq 2$$
 فان $x\neq 2$ و $y\neq 2$ فان $y\neq 2$ اثبت انه اذا كان (1)

ماذا تستنتخ ?

بين ان (E,*) زمرة تبدلية (2)

الحل

$$xy - 2x - 2y + 6 = 2$$
 نستعمل البرهان بعكس النقيض اي نبرهن انه اذا كان $xy - 2x - 2y + 6 = 2$ فان $y = 2$ و $y = 2$

$$xy - 2x - 2y + 6 = 2 \implies xy - 2x - 2y + 4 = 0$$

 $\implies (x - 2)(y - 2) = 0$

$$\Rightarrow x-2=0 \ \forall y-2=0$$

$$\Rightarrow x=2 \ \forall y=2$$
 $E=\mathbb{R}\setminus\{2\}$ ومنه نستنتج ان * عملية داخلية في $\mathbb{R}\setminus\{2\}$ $\mathbb{R}\setminus\{2\}$ $\mathbb{R}\setminus\{2\}$ $\mathbb{R}\setminus\{2\}$ ومنه العنلية * $\mathbb{R}\setminus\{2\}$ في $\mathbb{R}\setminus\{2\}$ ومنه العنلية * تبدلية في $\mathbb{R}\setminus\{2\}$ $\mathbb{R}\setminus\{2\}$ $\mathbb{R}\setminus\{2\}$ * $\mathbb{R}\setminus\{2\}$

$$\forall x, y, z \in \mathbb{R} \setminus \{2\}, \quad (x * y) * z = (xy - 2x - 2y + 6) * z$$

$$= (xy - 2x - 2y + 6)z - 2(xy - 2x - 2y + 6) - 2z + 6$$

$$= xyz - 2xz - 2yz + 6z - 2xy + 4x + 4y - 12 - 2z + 6$$

$$= xyz - 2xz - 2yz - 2xy + 4x + 4y + 4z - 6 \qquad (a)$$

$$\forall x, y, z \in \mathbb{R} \setminus \{2\}, \ x * (y * z) = x * (yz - 2y - 2z + 6)$$

$$= x(yz - 2y - 2z + 6) - 2x - 2(yz - 2y - 2z + 6) + 6$$

$$= xyz - 2xz - 2yz - 2xy + 4x + 4y + 4z - 6$$
 (b)

 $\mathbb{R}\setminus\{2\}$ ومنه ان * ل تجميعية في a=b

العنصر الحيادي

العنصر النضير

$$\forall x \in \mathbb{R} \setminus \{2\}, \exists e \in \mathbb{R} \setminus \{2\} \ x * e = x$$
 $x * e = x \Leftrightarrow xe - 2x - 2e + 6 = x \Leftrightarrow xe - 3x - 2e + 6 = 0$
 $\Leftrightarrow e(x - 2) = 3(x - 2)$
 $\Leftrightarrow e = 3, \quad x \neq 2$
ومنه العملية * تقبل عنصر حيادي $e = 3$ في $e = 3$

$$\forall x, x' \in \mathbb{R} \setminus \{2\} : x * x' = 0$$
$$x * x' = 3 \Leftrightarrow xx' - 2x - 2x' + 6 = 3 \Leftrightarrow x'(x - 2) = 2x - 3$$

$$\iff x' = \frac{2x - 3}{x - 2}$$

 $\mathbb{R}\setminus\{2\}$ ومنه ان كل عنصر يقبل عنصر نضير للعملية * في

ومنه ان $(*,\{2\},*)$ زمرة تبديلية

التمرين الخامس:

نعرف على $\{-1\}$ $\mathbb{R}\setminus\{-1\}$ العملية الداخلية * كمايلي

$$\forall x, y \in \mathbb{R} \setminus \{-1\}: x * y = \frac{1}{2}(xy + x + y - 1)$$

المعادلات التالية $\mathbb{R}\setminus\{-1\}$ المعادلات التالية

$$x * 5 = 2$$
, $(-2) * x = 0$, $x * x = 2$

$$\mathbb{R}\setminus\{-1\}$$
 تحقق ان $*$ تبدلیة و تجمیعیة في (2)

$$\mathbb{R}\setminus\{-1\}$$
 وخد العنصر الحيادي للعتلية $*$ في (3)

$$\mathbb{R}\setminus\{-1\}$$
 هل كل عنصرمن \mathbb{R} يقبل نضير بالنسبة للعملية $*$ في (4)

 Ω عين Ω مجموعة العناصرمن Ω التي تقبل نضير بالنسبة للعملية Ω الحل

$$x * 5 = 2 \Leftrightarrow \frac{1}{2}(5x + x + 5 - 1) = 2$$

$$\Leftrightarrow 5x + x + 4 = 4$$

$$\Leftrightarrow 4x = 0$$

$$\Leftrightarrow x = 0$$

$$(-2) * x = 0 \Leftrightarrow \frac{1}{2}(-2x + x - 2 - 1) = 0$$

$$\Leftrightarrow -x - 3 = 0$$

$$\Leftrightarrow x = -3$$

$$x * x = 2 \Leftrightarrow \frac{1}{2}(x^2 + x + x - 1) = 2$$

$$\Leftrightarrow x^2 + 2x - 5 = 0$$

$$\Leftrightarrow x = -1 + \sqrt{6} \lor x = -1 - \sqrt{6}$$

$$\mathbb{R} \setminus \{-1\} \text{ is in expansion } x \text{ in the expansion } x \text{ in } x$$

 $\mathbb{R}\setminus\{-1\}$ ومنه ان * تبدلیة فی

$$\forall x, y, z \in \mathbb{R} \setminus \{-1\}, \quad (x * y) * z = \frac{1}{2} ((x * y)z + (x * y) + z - 1)$$

$$= \frac{1}{2} (\frac{1}{2} (xy + x + y - 1)z + \frac{1}{2} (xy + x + y - 1) + z - 1)$$

$$= \frac{1}{2} (\frac{1}{2} (xyz + xz + yz + z + xy + x + y - 1) - 1) \quad (a)$$

$$\forall x, y, z \in \mathbb{R} \setminus \{-1\}, \ x * (y * z) = \frac{1}{2}(x(y * z) + x + (y * z) - 1)$$

$$= \frac{1}{2} \left(x \frac{1}{2}(yz + y + z - 1) + x + \frac{1}{2}(yz + y + z - 1) - 1 \right)$$

$$= \frac{1}{2} \left(\frac{1}{2}(xyz + xz + yz + z + xy + x + y - 1) - 1 \right)$$
 (b)

 $\mathbb{R}\setminus\{-1\}$ ومنه ان * ل تجميعية في a=b

العنصر الحيادي

$$\forall x \in \mathbb{R} \setminus \{-1\}, \exists e \in \mathbb{R} \setminus \{-1\} \ x * e = x$$

$$x * e = x \Leftrightarrow \frac{1}{2}(xe + x + e - 1) = x \Leftrightarrow \frac{1}{2}(xe - x + e - 1) = 0$$

$$\Leftrightarrow (x + 1)(e - 1) = 0$$

$$\Leftrightarrow e = 1, \quad x \neq -1$$

 $\mathbb{R}\setminus\{-1\}$ في e=1 ومنه العملية * تقبل عنصر حيادي العنصر

$$\forall x, x' \in \mathbb{R} \setminus \{-1\} : x * x' = 1$$

$$x * x' = 1 \Leftrightarrow \frac{1}{2}(xx' + x + x' - 1) = 1 \Leftrightarrow xx' + x + x' - 3 = 0$$

$$\Leftrightarrow x'(x+1) = 3 - x$$

$$\Leftrightarrow x' = \frac{3 - x}{x + 1}$$

 $\mathbb{R}\setminus\{-1\}$ ومنه ان كل عنصر يقبل عنصر نضير للعملية * في

ومنه ان $(*,\{-\},*)$ زمرة تبديلية

(2) الفضاء الشعاعي

التمرين الأول:

$$\mathbb{R}^3$$
 تولد $w=(2,-1,1)$ $v=(1,2,3)$ $u=(1,1,1)$ تولد البت ان الأشعة الحل

$$\forall (x, y, z) \in \mathbb{R}^{3} \ \exists \alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R} : (x, y, z) = \alpha_{1}u + \alpha_{2}v + \alpha_{3}w$$

$$(x, y, z) = \alpha_{1}(1, 1, 1) + \alpha_{2}(1, 2, 3) + \alpha_{3}(2, -1, 1)$$

$$= (\alpha_{1} + \alpha_{2} + 2\alpha_{3}, \alpha_{1} + 2\alpha_{2} - \alpha_{3}, \alpha_{1} + 3\alpha_{2} + \alpha_{3})$$

$$\begin{cases} \alpha_{1} + \alpha_{2} + 2\alpha_{3} = x \\ \alpha_{1} + 2\alpha_{2} - \alpha_{3} = y \\ \alpha_{1} + 3\alpha_{2} + \alpha_{3} = z \end{cases} \begin{cases} \alpha_{1} + \alpha_{2} + 2\alpha_{3} = x \\ -\alpha_{2} + 3\alpha_{3} = x - y \\ -2\alpha_{2} + \alpha_{3} = x - z \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha_{1} + \alpha_{2} + 2\alpha_{3} = x \\ -\alpha_{2} + 3\alpha_{3} = x - y \\ -5\alpha_{2} = -x + 2y - z \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha_1 = x + y - z \\ \alpha_2 = \frac{1}{5}(-2x - y + 3z) \\ \alpha_3 = \frac{1}{5}(x - 2y + z) \end{cases}$$

 \mathbb{R}^3 بمان $dim\mathbb{R}^3=3$ فان الاشعة u,v,w تشكل اساسا ل $dim\mathbb{R}^3=3$

التمرين الثاني:

 \mathbb{R}^3 من $w=(1,-1,0)\ v=(-1,0,1)\ u=(0,-1,1)$ من

(1) اثبت ان هذه الاشعة مستقلة خطيا مثنى مثنى

(2) هل $\{\uparrow u,v,w\}$ مستقلة خطيا ? ماهو بعد الفضاء الشعاعي الجزئي الذي تولده هذه الاشعة الحل

اثبات ان الشعاعين
$$v=(-1,0,1)$$
 $u=(0,-1,1)$ مستقلين خطيا
$$\alpha_1 u+\alpha_2 v=0 \Leftrightarrow \alpha_1(0,-1,1)+\alpha_2(-1,0,1)=0$$

$$\Leftrightarrow (-\alpha_2,-\alpha_1,\alpha_1+\alpha_2)=(0,0,0)$$

 $\Longleftrightarrow \alpha_1 = \alpha_2 = 0$

ومنه ان الشعاعين v=(-1,0,1) u=(0,-1,1) مستقلين خطيا

بنفس الطريقة نثبت ان u و w مستقلين خطيا وكذلك v و w مستقلين خطيا

ليست مستقلة خطيا $\{\uparrow u,v,w\}$ نلاحظ ان v+u+w=0 نلاحظ ان

$$S = \{ a \in \mathbb{R}^3 : a = \alpha_1 u + \alpha_2 v + \alpha_3 w \}$$

$$= \{ a \in \mathbb{R}^3 : a = \alpha_1 u + \alpha_2 v + \alpha_3 (-u - v) \}$$

$$= \{ a \in \mathbb{R}^3 : a = (\alpha_1 - \alpha_3) u (\alpha_2 - \alpha_3) v \}$$

 $\dim S=2$ مولدان ل S و مستقلان خطیا اذا $\{u,v\}$ اساس ل S و علیه u,v التمرین الثالث:

: اثبت ان التوابع f, g, h المعرفة ب

$$f(x) = x, g(x) = sinx, h(x) = cosx$$

 $\mathcal{F}(\mathbb{R},\mathbb{R})$ مستقلة خطيا في

الحل

$$\alpha_1 f + \alpha_2 g + \alpha_3 h = 0$$

$$\alpha_1 x + \alpha_2 sin x + \alpha_3 cos x = 0$$

$$x=0, x=\pi, x=\frac{\pi}{2}$$
 من اجل

$$\alpha_1 0 + \alpha_2 sin 0 + \alpha_3 cos 0 = 0$$

$$\alpha_1 \pi + \alpha_2 \sin \pi + \alpha_3 \cos \pi = 0$$

$$\alpha_1 \frac{\pi}{2} + \alpha_2 \sin \frac{\pi}{2} + \alpha_3 \cos \frac{\pi}{0} = 0$$

$$\Leftrightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0$$

ومنه ان التوابع $\{f,g,h\}$ مستقلة خطيا

التمرين الرابع:

ليكن E الفضاء الشعاعي الجوئي من \mathbb{R}^3 والمولد بالاشعة التالية

$$c = (-1,1,-3,0)b = (1,2,0,1)a = (2,1,3,1)$$

E عين اساسا لE وكذا بعد

$$\alpha_1 a + \alpha_2 b + \alpha_3 c = 0 \Leftrightarrow \alpha_1(2,1,3,1) + \alpha_2(1,2,0,1) + \alpha_3(-1,1,-3,0) = 0$$

$$\Leftrightarrow (2\alpha_1 + \alpha_2 - \alpha_3, \alpha_1 + 2\alpha_2 + \alpha_3, 3\alpha_1 - 3\alpha_3, \alpha_1 + \alpha_2) = (0,0,0,0)$$

$$\Leftrightarrow \begin{cases} 2\alpha_1 + \alpha_2 - \alpha_3 = 0\\ \alpha_1 + 2\alpha_2 + \alpha_3 = 0\\ 3\alpha_1 - 3\alpha_3 = 0\\ \alpha_1 + \alpha_2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2\alpha_1 + \alpha_2 - \alpha_3 = 0 \\ \alpha_1 + 2\alpha_2 + \alpha_3 = 0 \\ \alpha_3 = \alpha_1 \\ , \alpha_2 = -\alpha_1 \end{cases}$$

$$\Leftrightarrow \alpha_1(a-b+c)=0$$
, $\alpha_1\neq 0$

$$\Leftrightarrow$$
 $(a - b + c) = 0$

$$\Leftrightarrow b = a + c$$

dimE < 3 مرتبطة خطيا وعليه فان a,b,c

$$E = \{v \in E^4: v = \alpha_1 a + \alpha_2 b + \alpha_3 c\}$$

$$= \{ v \in E^4 : v = \alpha_1 a + \alpha_2 (a + c) + \alpha_3 c \}$$
$$= \{ v \in E^4 : v = (\alpha_1 + \alpha_2) a + (\alpha_3 + \alpha_2) c \}$$

Eومنه $\{a,b\}$ مولدة ل

$$\begin{aligned} \alpha_1(2,1,3,1) + \alpha_2(1,2,0,1) &= 0 & \Longleftrightarrow (2\alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, 3\alpha_1, \alpha_1 + \alpha_2) \\ & \Leftrightarrow \alpha_1 = \alpha_2 = 0 \end{aligned}$$

 $\dim E = 2$ ومنه $\{a,b\}$ مستقلین خطیا و علیه و اساس ل $\{a,b\}$

(3) التطبيقات الخطية

التمرين الأول:

ليكن التطبيق الخطى f معرف كمايلى

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y,z) \to f((x,y,z)) = (x,x-y,y-z)$$

بین ان f تطبیق خطی (1)

(2) عين Kerf و Kerf

الحل

تطبیق خطی f اثبات ان f تطبیق خطی

$$\forall (x,y,z)(x',y',z') \in \mathbb{R}^3 \,, \forall \lambda,\mu, \in \mathbb{R}$$

$$f(\lambda(x, y, z) + \mu(x', y', z')) = f(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$$

$$= (\lambda x + \mu x', \lambda x + \mu x' - \lambda y - \mu y', \lambda y + \mu y' - \lambda z - \mu z')$$

$$= \lambda(x, x - y, y - z) + \mu(x', x' - y', y' - z')$$

$$= \lambda f((x, y, z)) + \mu f((x', y', z'))$$

ومنه f تطبیق خطي

$$Kerf = \{(x, y, z) \in \mathbb{R}^3, f((x, y, z)) = 0_F = (0,0,0)\}$$
$$= \{(x, y, z) \in \mathbb{R}^3, (x, x - y, y - z) = (0,0,0)\}$$

$$= \{(x,y) \in \mathbb{R}^2, x = y = z = 0\}$$

$$= \{(0,0,0)\}$$

$$Imf = \{f((x,y,z))/(x,y,z) \in \mathbb{R}^3\}$$

$$\{(x,x-y,y-z)/(x,y,z) \in \mathbb{R}^3\}$$

$$= \{(x,x,0) + (0,-y,y) + (0,0,-z) + /(x,y,z) \in \mathbb{R}^3\}$$

$$= \{x(1,1,0) + y(0,-1,1) + z(0,0,-1)/(x,y,z) \in \mathbb{R}^3\}$$

$$= \langle (1,1,0), (0,-1,1), (0,0,-1)\rangle$$

dim(Imf) = 3 ومنه

التمرين الثاني:

ليكن التطبيق الخطي f معرف كمايلي

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 $(x,y,z) \to fig((x,y,z)ig) = (-x+y+z,x-y+z)$ و التطبيق الخطي g المعرف كمايلي

$$g: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x,y) \to g((x,y)) = (y,x,x+y)$$

- بین ان التطبیقین f و g خطبین (1)
- rg(g) و Img و Img و Kerg و Kerf و Kerf
 - fog gof عين (3)

الحل

 \mathbb{R}^2 في \mathbb{R}^3 في خطي من f اثبات ان f

$$\forall (x,y,z)(x',y',z') \in \mathbb{R}^3 \;, \forall \lambda,\mu, \in \mathbb{R}$$

$$f(\lambda(x, y, z) + \mu(x', y', z')) = f(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$$
$$= (-\lambda x - \mu x' + \lambda y + \mu y' \lambda z + \mu z', \lambda x + \mu x' - \lambda y - \mu y' + \lambda z + \mu z')$$

$$\lambda = \lambda(-x+y+z) + \mu(x'-y'+z')$$
 $= \lambda f((x,y,z)) + \mu f((x',y',z'))$
 $= \lambda g(x,y,z)$ هی \mathbb{R}^2 فی \mathbb{R}^3 نطبیق خطی من \mathbb{R}^3 فی

 \mathbb{R}^3 فی \mathbb{R}^2 من خطی من g تطبیق خطی اثبات ان

$$\forall (x,y)(x',y') \in \mathbb{R}^2, \forall \lambda, \mu, \in \mathbb{R}$$

$$g(\lambda(x,y) + \mu(x',y')) = g(\lambda x + \mu x', \lambda y + \mu y')$$

$$= (\lambda y + \mu y', \lambda x + \mu x', \lambda x + \mu x' + \lambda y + \mu y')$$

$$= \lambda(y,x,x+y) + \mu(x',y',x'+y')$$

$$= \lambda g((x,y)) + \mu g((x',y'))$$

ومنه g تطبیق خطی

$$Kerf = \{(x, y, z) \in \mathbb{R}^3, f((x, y, z)) = 0_F = (0,0)\}$$

$$= \{(x, y, z) \in \mathbb{R}^3, (-x + y + z, x - y + z) = (0,0)\}$$

$$\Leftrightarrow \begin{cases} -x + y + z = 0 \\ x - y + z = 0 \end{cases}$$

$$\Leftrightarrow x = y, z = 0$$

 $Kerf = \{(x, x, 0), x \in \mathbb{R}\} = \{x(1,1,0), x \in \mathbb{R}\}$

dimkerf=1 فضاء شعاعي جزئي من \mathbb{R}^3 مولد بالشعاع Kerf اذن Kerf

$$Imf = \{f((x,y,z))/(x,y,z) \in \mathbb{R}^3 \}$$

$$\{(-x+y+z,x-y+z)/(x,y,z) \in \mathbb{R}^3 \}$$

$$= \{(-x+y+z,-(-x+y)+z)/(x,y,z) \in \mathbb{R}^3 \}$$

$$= \{((-x+y)(1,-1)+z(1,1))/(x,y,z) \in \mathbb{R}^3 \}$$

Imf اساس ل المستقلين خطيا وبالتالي اساس ل Imf يمكن التاكد بسهولة ان الشعاعين Imf المولد بالشعاعين Imf هو الفضاء الشعاعي الجزئي من \mathbb{R}^2 المولد بالشعاعين Imf اذن

$$dim(Imf) = 2$$

Img يمكن التاكد بسهولة ان الشعاعين (0,1,1) (1,0,1) مستقلين خطيا وبالتالي اساس ل (0,1,1) الناكد بسهولة ان (0,1,1) الشعاعي الجزئي من \mathbb{R}^2 المولد بالشعاعين (0,1,1) اذن (0,1,1) هو الفضاء الشعاعي الجزئي (0,1,1) المولد بالشعاعين (0,1,1) المولد بالشعاعين (0,1,1) اذن (0,1,1)

fog gof تعين (3)

$$(gof)(x,y,z) = g(f(x,y,z)) = g(-x+y+z,x-y+z)$$
$$= (x-y+z,-x+y+z,2z)$$

ومنه

$$gof: \mathbb{R}^3 \to \mathbb{R}^3$$
 $(x,y,z) \to (x-y+z,-x+y+z,2z)$
 $(fog)(x,y,z) = f(g(x,y,z)) = f(y,x,x+y)$
 $= (-y+x+x+y,y-x+x+y)$
 $= (2x,2y)$
 $fog: \mathbb{R}^2 \to \mathbb{R}^2$
 $(x,y) \to (2x,2y)$

التمرين الثالث:

ليكن $\{e_{1,}e_{2},e_{3}\}$ الاساس القانوني للفضاء الشعاعي \mathbb{R}^3 و نعتبر الاشعة $\{e_{1,}e_{2},e_{3}\}$ من الكن

$$e'_3 = 2e_2 + 3e_3$$
 , $e'_2 = e_1 + 2e_2$, $e'_1 = e_1$

$$\mathbb{R}^3$$
 اساس ل $\{e'_1,e'_2,e'_3\}$ اساس (1)

ليكن f التطبيق الخطى من \mathbb{R}^3 في الذي يحقق f

$$f(e_3) = e'_3$$
 , $f(e_2) = e'_2 f = (e_1) = e'_1$

هل f تقابلی ? علل ثم عین عبارته f

الحل

 \mathbb{R}^3 اساس $\{e'_1, e'_2, e'_3\}$ ان اثبات ان (1)

$$\forall \alpha, \beta, \delta \in \mathbb{R} : \alpha e'_1 + \beta e'_2 + \delta e'_3 = 0$$

$$\alpha e'_1 + \beta e'_2 + \delta e'_3 = 0 \Leftrightarrow \alpha e_1 + \beta (e_1 + 2e_2) + \delta (2e_2 + 3e_3) = 0$$

$$\Leftrightarrow (\alpha + \beta)e_1 + (\beta + 2\delta)e_2 + 3\delta e_3 = 0$$

$$\Leftrightarrow \begin{cases} \alpha + \beta = 0 \\ \beta + 2\delta = 0 \\ 3\delta = 0 \end{cases}$$

$$\Leftrightarrow \alpha = \beta = \delta = 0$$

ومنه الاشعة من e'_1, e'_2, e'_3 همستقلة خطيا

$$\forall (x, y, z) \in \mathbb{R}^3 : (x, y, z) = \alpha e'_1 + \beta e'_2 + \delta e'_3$$

$$= (\alpha + \beta)e_1 + (\beta + 2\delta)e_2 + 3\delta e_3$$

$$= (\alpha + \beta, \beta + 2\delta, 3\delta)$$

$$\Leftrightarrow \begin{cases} \alpha + \beta = x \\ \beta + 2\delta = y \\ 3\delta = z \end{cases}$$

 \mathbb{R}^3 وعليه فهي تشكل اساس ل e'_1, e'_2, e'_3 وعليه فهي تشكل اساس ل

$$\begin{cases} \alpha = x - y + 2\frac{z}{3} \\ \beta = y - 2\frac{z}{3} \\ \delta = \frac{z}{3} \end{cases}$$