Cours 2

Méthodes directes de résolution des systèmes linéaires

Problème. On considère le système linéaire suivant:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n &= b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n &= b_2 \\ \vdots & & \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n &= b_n \end{cases}$$

où les $(a_{i,j})_{1 \leq i,j \leq n}$ et $(b_i)_{1 \leq i \leq n}$ sont donnés dans \mathbb{R} et les $x_1, x_2, ..., x_n$ sont inconnues. Le système ci-dessus peut s'écrire sous forme matricielle comme suit:

$$AX = B$$
,

où A est une matrice carrée inversible $(n \times n)$, X et B sont des vecteurs colonnes à n composantes, tels que

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n,1} & \dots & \dots & a_{n,n} \end{pmatrix}, B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \text{ et } X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

En effet, la méthode de Cramer donne la solution suivante:

$$\forall i = 1, ..., n, \ x_i = \frac{\det(A_i)}{\det(A)},$$

où A_i est la matrice obtenue en remplaçant dans A la $i^{i\hat{e}me}$ colonne par la colonne B.

Remarque: Le nombre d'opérations nécessaires pour résoudre ce système à l'aide de la méthode de Cramer est très grand lorsque $n \geq 10$, alors il est très difficile d'utiliser Cramer pour résoudre des grands systèmes.

Pour éviter le problème resulte de Cramer, on fait appel à des méthodes ayant des temps du calcul raisonnable, ces méthodes sont directes ou indirectes (itératives).

2.1 Méthodes directes pour résoudre les systèmes linéaires

Définition 2.1. Une méthode est dite directe, si elle donne la solution exacte d'après un nombre fini d'opérations.

En général, on utilise ces méthodes lorsque $(n \le 100)$. Dans ce cours, on va introduire deux méthodes: Méthode de Gauss et méthode de décomposition de A en LU.

2.1.1 Méthode de Gauss

Soit le système AX = B. A est inversible.

Cas simples:

1. Matrices diagonales

$$\begin{pmatrix} a_{1,1} & 0 \\ & \ddots & \\ 0 & a_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix},$$

$$\forall i = 1, ..., n, \ x_i = \frac{b_i}{a_{i,i}}.$$

2. Matrices triangulaires

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & a_{2,n} \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 0 & a_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix},$$

$$x_n = \frac{b_n}{a_{n,n}}$$

$$x_{n-1} = \frac{\frac{b_n}{a_{n-1} - a_{n-1,n} x_n}}{\frac{a_{n-1,n-1}}{a_{n-1,n-1}}}$$

$$x_k = \frac{\frac{b_k - \sum\limits_{i=k+1}^{n} a_{k,i} x_i}{a_{k,k}}}{\frac{b_k - \sum\limits_{i=k+1}^{n} a_{k,i} x_i}{a_{k,k}}}, \ \forall k = 1, \dots, n-1$$

Principe: Transformation du système AX = B au système A'X = B', où A' est une matrice triangulaire supérieure dont la solution exacte est la meme.

Etapes: On pose $A = A^{(1)}$ et $B = B^{(1)}$.

 $1^{i\grave{e}re}$ étape: Si le pivot $a_{1,1}^{(1)}\neq 0$, on fait la procédure suivante

- La ligne L_1 reste inchangée, $L_1^{(2)} = L_1^{(1)}$
- Pour $i = 2, ..., n, L_i^{(2)} = L_i^{(1)} \frac{a_{i,1}^{(1)}}{a_i^{(1)}} L_1^{(1)}$

où
$$\forall i=1,...,n,\ b_i^{(1)}$$
 est rejoint à la $i^{i\grave{e}me}$ ligne de A
$$\begin{cases} a_{1,j}^{(2)} = a_{1,j}^{(1)},\ \forall j=1,...,n \\ a_{i,j}^{(2)} = a_{i,j}^{(1)} - \frac{a_{i,1}^{(1)}}{a_{1,1}^{(1)}} a_{1,j}^{(1)},\ \forall i=2,...,n,\ \forall j=1,...,n \end{cases}, \begin{cases} b_1^{(2)} = b_1^{(1)} \\ b_i^{(2)} = b_i^{(1)} - \frac{a_{i,1}^{(1)}}{a_{1,1}^{(1)}} b_1^{(1)},\ \forall i=2,...,n \end{cases}$$
 Si $a_{1,1}^{(1)} = 0$, on cherche d'une ligne $L_p^{(1)}$ $(2 \leq p \leq n)$ dont $a_{p,1}^{(1)} \neq 0$, puis on permute la ligne

 $L_1^{(1)}$ par $L_p^{(1)}$ et vice versa. $\underline{k^{i\grave{e}me}}$ étape: Si $a_{k,k}^{(k)}=0$, on permute les lignes $L_k^{(k)}$ et $L_p^{(k)}$ avec $k+1\leq p\leq n$ et $a_{p,k}^{(k)}\neq 0$,

$$\frac{\text{donc}}{k_{i}^{(k+1)}} = L_{k}^{(k)}
\begin{cases}
L_{i}^{(k+1)} = L_{i}^{(k)} - \frac{a_{i,k}^{(k)}}{a_{k,k}^{(k)}} L_{k}^{(k)}, & \forall i = k+1, ..., n \\
\text{Exemple: Résoudre le système suivant par la}
\end{cases}$$

Exemple: Résoudre le système suivant par la méthode de Gauss

$$\begin{cases} 2x_1 + x_2 + 3x_3 &= 3\\ 4x_1 + 2x_2 + 5x_3 &= 5\\ 3x_1 + 7x_2 + 3x_3 &= 2 \end{cases},$$

c'est équivalent à

$$\begin{pmatrix} 2 & 1 & 3 \\ 4 & 2 & 5 \\ 3 & 7 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$$

det(A) = 11, donc A est inversible.

 $1^{i\grave{e}re}$ étape: le pivot $2 \neq 0$,

$$\begin{pmatrix} 2 & 1 & 3 & 3 \\ 4 & 2 & 5 & 5 \\ 3 & 7 & 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 3 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & \frac{11}{2} & \frac{-3}{2} & \frac{-5}{2} \end{pmatrix},$$

 $2^{i\grave{e}me}$ étape: on permute la ligne 2 par la ligne 3, on obtient

$$\begin{pmatrix} 2 & 1 & 3 & 3 \\ 0 & \frac{11}{2} & \frac{-3}{2} & \frac{-5}{2} \\ 0 & 0 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 3 & 3 \\ 0 & \frac{11}{2} & \frac{-3}{2} & \frac{-5}{2} \\ 0 & 0 & -1 & -1 \end{pmatrix},$$

alors, on trouve le système

$$\begin{cases} 2x_1 + x_2 + 3x_3 &= 3\\ \frac{11}{2}x_2 + \frac{-3}{2}x_3 &= \frac{-5}{2}\\ -x_3 &= -1 \end{cases},$$

$$x_3 = 1, x_2 = \frac{-2}{11}, x_1 = \frac{1}{11}.$$

2.1.2 Méthode de décomposition de A en LU

Principe: le but ici est de décomposer A sous la forme A = LU, où L est une matrice triangulaire inférieure formée de 1 sur la diagonale et U est une matrice triangulaire supérieure.

$$AX = B \Leftrightarrow LUX = B \Leftrightarrow \left\{ \begin{array}{lcl} LY & = & B \\ UX & = & Y \end{array} \right.,$$

la matrice U c'est A' obtenue d'après la méthode de Gauss et L est donnée par:

$$L = \begin{pmatrix} 1 & 0 & \dots & 0 \\ l_{2,1} & 1 & \dots & 0 \\ l_{3,1} & l_{3,2} & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ l_{n,1} & l_{n,2} & \dots & \dots & l_{n,n-1} & 1 \end{pmatrix}, \ l_{i,k} = \frac{a_{i,k}^{(k)}}{a_{k,k}^{(k)}}$$

Donc, la résolution du système AX = B revient à résoudre les deux systèmes LY = B et UX = Y. La résolution de ces derniers est immédiate, car L et U sont triangulaires.

Remarque:

- Contrairement à l'élimination de Gauss, cette décomposition ne modifie pas le membre de la droite.
- Cette décomposition ne dépendant plus du membre de droite, on peut utiliser la décomposition pour plusieurs membres de droite.