جامعة الشهيد حمة لخضر الوادي -كلّية العلوم الدقيقة قسم الرياضيّات

السلسلة رقم 2

التمرين 1

E على على التكن E مجموعة غير خالية. بر هن أنّ المسلّمات التّالية في كلتا الحالتين، كافية لتعريف مسافة E على على

$$d(x,y) = 0 \Leftrightarrow x = y$$
. أ تحقق $d: E \times E \to IR$. 2 $d(y,z) \le d(x,y) + d(x,z)$.

التمرين 2 لتكن $\phi:[0,+\infty[\to IR] \to E$ على مجموعة غير خالية $g:[0,+\infty[\to IR] \to E$ دالّة متزايدة وتحقّق:

$$\begin{cases} \varphi(t) = 0 \Leftrightarrow t = 0 \\ \forall t, s \ge 0 : \varphi(t+s) \le \varphi(t) + \varphi(s) \end{cases}$$

- $A=\varphi\circ\delta$ التّطبيق المركّب المركّب مسافة على .1
- . E هي مسافة على .2 استنتج أنّ d المعرفة ب $d(x,y) = \frac{\delta(x,y)}{1+\delta(x,y)}$.2

التمرين 3

Eليكن (E,d) فضاء مترى و A,B,C أجزاء من

برهن أنه إذا كان $x \in A$ فإنّ d(x,A) = 0 فإنّ $x \in A$ عن أنه إذا كان A

طئة. $d(A,B) \le d(A,C) + d(C,B)$ خاطئة.

التمرين 4

ليكن (E,d) فضاء متريّ ولتكن $A \subset E$. برهن على صحّة التّكافؤات التّالية:

. x توجد متتالیة $\{a_n\}_{n\geq 1}\subset A$ متقاربة نحو $x\in \overline{A}$. 1

ي نقطة معزولة في $A \Leftrightarrow \Delta$ كلّ منتالية في A ومنقاربة نحو x هي منتالية مستقرّة.

التمرين 5

ليكن (E,d) فضاء متريّ ولتكن $A \subset E$. برهن ما يلي:

A مغلق $A \Leftrightarrow Fr(A) \subset A$ کلّ متتالیة فی A ومتقاربة فإنّ نهایتها فی A . 1

مغلق و مفتوح. $A \Leftrightarrow Fr(A) = \{ \}$.2

التمرين 6

dنزوّد المجموعة $d(m,n) = \left| \frac{1}{m} - \frac{1}{n} \right|$ بالمسافة: $d(m,n) = \left| \frac{1}{m} - \frac{1}{n} \right|$ نزوّد المجموعة

.1 تحقّق أنّ المنتالية $\{n\}_{n\geq 1}$ هي منتالية كوشى.

 (IN^*,d) عند المتتالية غير متقاربة في IN^* ماذا تستنتج فيما يخص $(2^*,d)$