```
%g=[2 x1 x2 y1 y2 D_gauche D_droite];
```

```
mm=1e-3;
a=5 *mm;
b}=10*mm
c=5*mm;
d=5*mm;
l=60*mm;
```

$g=[] ;$
\%conducteur 1
$\mathrm{x} 1=-\mathrm{a}-\mathrm{b} / 2 ; \mathrm{x} 2=-\mathrm{b} / 2 ; \mathrm{y} 1=0 ; \mathrm{y}^{2}=0$;
$\mathrm{g} 0=\left[\begin{array}{ll}2 & \mathrm{x} 1 \\ \mathrm{x} 2 & \mathrm{y} 1 \\ \mathrm{y} 2 & 2 \\ 1\end{array}\right]^{\prime} ; \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$\mathrm{x} 1=-\mathrm{b} / 2 ; \mathrm{x} 2=-\mathrm{b} / 2 ; \mathrm{y} 1=0 ; \mathrm{y}^{2}=\mathrm{a}$;
$g 0=[2 \mathrm{x} 1 \mathrm{x} 2 \mathrm{y} 1 \mathrm{y} 2 \quad 2 \mathrm{1}]^{\prime} ; \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$x 1=-b / 2 ; x 2=-b / 2-a ; y 1=a ; y 2=a ;$
$\mathrm{g} 0=\left[\begin{array}{ll}2 & \mathrm{x} 1 \\ \mathrm{x} 2 & \mathrm{y} 1 \\ \mathrm{y} 2 & 2 \\ 1\end{array}\right] \cdot \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$\mathrm{x} 1=-\mathrm{b} / 2-\mathrm{a} ; \mathrm{x} 2=-\mathrm{b} / 2-\mathrm{a} ; \mathrm{y} 1=\mathrm{a} ; \mathrm{y} 2=0$;
$\left.g 0=\left[\begin{array}{ll}2 & \mathrm{x} 1 \\ \mathrm{x} 2 & \mathrm{y} 1 \\ \mathrm{y} 2 & 2\end{array}\right]\right]^{\prime} ; \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
\%conducteur 2
$\mathrm{x} 1=\mathrm{b} / 2 ; \mathrm{x} 2=\mathrm{b} / 2+\mathrm{a} ; \mathrm{y} 1=0 ; \mathrm{y}^{2}=0$;
$\mathrm{g} 0=\left[\begin{array}{ll}2 & \mathrm{x} 1 \\ \mathrm{x} 2 & \mathrm{y} 1 \\ \mathrm{y} & 2 \\ 3 & 1\end{array}\right]^{\prime} ; \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$\mathrm{x} 1=\mathrm{b} / 2+\mathrm{a} ; \mathrm{x} 2=\mathrm{b} / 2+\mathrm{a} ; \mathrm{y} 1=0 ; \mathrm{y}^{2}=\mathrm{a}$;
$g 0=\left[\begin{array}{llllll}2 & \mathrm{x} 1 & \mathrm{x} 2 & \mathrm{y} 1 & \mathrm{y} 2 & 3\end{array}\right] \cdot \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$\mathrm{x} 1=\mathrm{b} / 2+\mathrm{a} ; \mathrm{x} 2=\mathrm{b} / 2 ; \mathrm{y} 1=\mathrm{a} ; \mathrm{y}^{2}=\mathrm{a}$;
$g 0=[2 \mathrm{x} 1 \mathrm{x} 2 \mathrm{y} 1 \mathrm{y} 2 \quad 3 \mathrm{1}]^{\prime} ; \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$\mathrm{x} 1=\mathrm{b} / 2 ; \mathrm{x} 2=\mathrm{b} / 2 ; \mathrm{y} 1=\mathrm{a} ; \mathrm{y} 2=0$;
$g 0=[2 \mathrm{x} 1 \mathrm{x} 2 \mathrm{y} 1 \mathrm{y} 2 \mathrm{3} 1]^{\prime} ; \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
\% la plaque
$x 1=-1 / 2 ; x 2=1 / 2 ; y 1=a+d ; y 2=a+d ;$
g0=[2 x1 x2 y1 y2 4 1]'; $g=[g$ g0];
$x 1=1 / 2 ; x 2=1 / 2 ; y 1=a+d ; y 2=a+d+c$;
$\mathrm{g} 0=\left[\begin{array}{lll}2 & \mathrm{x} 1 & \mathrm{x} 2 \\ \mathrm{y} 1 & \mathrm{y} 2 & 4 \\ 1\end{array}\right]$ '; $g=[\mathrm{g}$ g0];
$x 1=1 / 2 ; x 2=-1 / 2 ; y 1=a+d+c ; y^{2}=a+d+c ;$
$g 0=\left[\begin{array}{llllll}2 & \mathrm{x} 1 & \mathrm{x} 2 & \mathrm{y} 1 & \mathrm{y} 2 & 4\end{array}\right] \cdot \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$x 1=-1 / 2 ; x 2=-1 / 2 ; y 1=a+d+c ; y 2=a+d$;
$g 0=\left[\begin{array}{ll}2 & \mathrm{x} 1 \\ \mathrm{x} 2 & \mathrm{y} 1 \\ \mathrm{y} 2 & 4 \\ 1\end{array}\right] \cdot \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
웅
\% ITALIC TEXT
\%domaine externe
$12=2 * 1 ; 13=1 ; 14=1$;
$x 1=-12 / 2 ; x 2=12 / 2 ; y 1=-13 ; y^{2}=-13$;
$g 0=\left[\begin{array}{llllll}2 & \mathrm{x} 1 & \mathrm{x} 2 & \mathrm{y} 1 & \mathrm{y} 2 & 1\end{array}\right]^{\prime} ; g=[\mathrm{g} \mathrm{g} 0]$;
$x 1=12 / 2 ; x 2=12 / 2 ; y 1=-13 ; y 2=14$;
$g 0=\left[\begin{array}{llllll}2 & \mathrm{x} 1 & \mathrm{x} 2 & \mathrm{y} 1 & \mathrm{y} 2 & 1 \\ 0\end{array}\right]^{\prime} \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$x 1=12 / 2 ; x 2=-12 / 2 ; y 1=14 ; y^{2}=14$;
$\mathrm{g} 0=\left[\begin{array}{ll}2 & \mathrm{x} 1 \\ \mathrm{x} 2 & \mathrm{y} 1 \\ \mathrm{y} 2 & 1 \\ 0\end{array}\right]^{\prime} ; \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;
$x 1=-12 / 2 ; x 2=-12 / 2 ; y 1=14 ; y^{2}=-13$;
$g 0=\left[\begin{array}{ll}2 & \mathrm{x} 1 \\ \mathrm{x} 2 & \mathrm{y} 1 \\ \mathrm{y} 2 & 1 \\ 0\end{array}\right] ; \mathrm{g}=[\mathrm{g} \mathrm{g} 0]$;

```
pdegplot(g);axis equal;
[p,e,t]=initmesh (g);
[p,e,t]=refinemesh (g, p,e,t);
%p les corrdonées de points (noeuds) du maillage p(1,:)->x, p(:,2)-> y
% t indices de triangle t(1,:) t(2,:) t(3,:), t(4,:) indice du domaine
% e : edges, les arretes
pdemesh (p,e,t);
nn=size(p,2);
nt=size(t,2);
aire=pdetrg(p,t);% surface de tous les triangles
pm(1,:)=(p(1,t(1,:))+p(1,t(2,:))+p(1,t(3,:)))/3;
pm(2,:)=(p(2,t(1,:))+p(2,t(2,:))+p(2,t(3,:)))/3;
%
% hold on;
% for i=1:nn
% }\textrm{x}0=\textrm{p}(1,i);\mp@subsup{\textrm{y}}{0}{0}=\textrm{p}(2,i)
% text (x0,Y0,num2str(i))
% end
%
%
% for i=1:nt
% x0=pm(1,i);y0=pm(2,i);
% text (x0,y0, num2str(i))
% end
```

\% introduction des constantes physiques sigma mu Js
sig=zeros (1, nt);
$n u=\operatorname{zeros}(1, n t) ;$
js=zeros (1,nt);
$\mathrm{muO}=\mathrm{pi} * 4 e-7$;
$\mathrm{nuo}=1 / \mathrm{muO}$;
sigma=58e6;
fr=variable;
omega $=2 \star \mathrm{pi} * f r$;
$J 0=2 e 6$;
$\mathrm{nu}(:)=n u 0$;
\%domaine de la plaque
id4 $4=\mathrm{find}(\mathrm{t}(4,:)==4)$;
sig(id4)=1i*omega*sigma;
\%domaine conducteur 1
id2=find (t (4, :) = = 2) ;
js (id2) $=$ J0;
\%domaine conducteur 2
id3=find $(t(4,:)==3)$;

```
js(id3)=-J0;
[K,M,F]=assema(p,t,nu,sig,js);
K=K+M;
% condition au limite
ix=find( e(6,:)==0 | e(7,:)==0 );
N1=e(1,ix);
N2=e(2,ix);
id_0=[N1 N2];
size diric A=length(id 0);
K(id_0,:)=zeros(size(id 0,2),size(K,2));
K(:,id 0)=zeros(size(K,2),size(id 0,2));
for l=1:size(id 0,2)
K(id 0(l),id O(l))=1;
F(id O(l))=0;
end
% resolution de K.A=F
A=K\F;% resolution du sytem K*A=F
% exploitation
figure;pdegplot(g);axis equal;hold on;pdecont(p,t,real(A));
% calcul de la force J/\B
% le A est au noeuds
% le A au centre des triangles
Am=(A(t(1,:))+A(t(2,:))+A(t(3,:)))/3;
Jind=-sig.*Am.';
[dAx,dAy]=pdegrad(p,t,A);
Bx=dAy; By=-dAx;
hold on; quiver(pm(1,:),pm(2,:),real(Bx),real(By))
Fx=-sum(By.*conj(Jind).*aire)
Fy=sum(Bx.*conj (Jind).*aire)
```

