الجمهورية الجزائرية الديمقراطية الشعبية

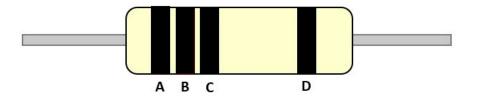
السنة الأولى ST

جامعة الشهيد حمة لخضر بالوادى

السداسي الثاني (2021/2020)

كلية التكنولوجيا

المقياس: أعمال تطبيقية فيزيائية 2


التجربة العملية الأولى (قياس المقاومات)

طرق تحديد المقاومات:

1- طريقة الألوان:

الترميز الأكثر استعمالا هو عبارة عن 4 حلقات ملونة ، ترسم على المقاومة بداية من أحد طرفيها حيث يشير:

- اللون الاول A إلى العدد الأول في القيمة R .
- اللون الثاني B إلى العدد الثاني في القيمة R .
- اللون الثالث C إلى عدد الأصفار التي يجب إضافتها خلف الرقمين السابقين .
 - اللون الرابع D إلى النسبة المئوية للارتياب على القيمة .

 $D=\frac{\Delta R}{R}$ و تكتب قيمة المقاومة R على النحو التالي : $R=AB.10^{C}$

تعطي في الجدول التالي الألوان المستعملة و الأرقام الموافقة لها .

		الدقة			القيمــة										
بدون لون	فضي	ذهبي	احمر	بني	ابیض	رمادي	بنفسجي	ازرق	اخضر	اصفر	برتقالي	احمر	بني	الاسود	اللون
20%	10%	5%	2%	1%	9	8	7	6	5	4	3	2	1	0	الرقم

انطلاقا من الجدول أعلاه يمكن أن نقوم بتحديد قيم كل المقاومات ونكتبها على الشكل:

$\mathbf{R} = \mathbf{R} \pm \Delta \mathbf{R}$

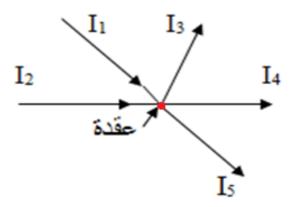
2- طريقة القياس غير المباشر:

نعتمد في هذه الحالة على قانون أوم المطبق على مقاومة R مدمجة في دارة ، حيث يعبر ها تيار شدته V و تخضع لتوتر V .

 $\mathbf{R} = \frac{\mathbf{V}}{\mathbf{I}}$ فانون أوم : $\mathbf{V} = \mathbf{R} \ \mathbf{I}$ أي

الارتياب في القياس:

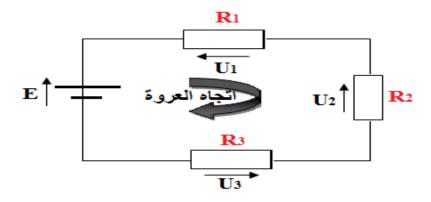
$$R = \frac{V}{I}$$
 / $\frac{\Delta R}{R} = \frac{\Delta V}{V} + \frac{\Delta I}{I}$


التجربة العملية الثانية (قانونا كيرشوف Kirchoff)

قانونا كيرشوف:

القانون الأول (قانون العقد):

مجموع شدات التيارات الكهربائية الداخلة الى عقدة تساوي مجموع شدات التيارات الكهربائية الخارجة منها و بصيغة ثانية نقول أن المجموع الجبري لشدات التيارات الكهربائية الداخلة الى عقدة و الخارجة منها معدوم و في هذه الحالة نعتبر أن التيارات الداخلة الى العقدة موجبة و الخارجة منها سالبة و منه نستطيع أن نكتب ما يلى $\Sigma_{I=1}^{nI}$ I = 0:


$$I_1+I_2-(I_3+I_4+I_5)=0$$
 أو $I_1+I_2=I_3+I_4+I_5$: مثال

القانون الثاني (قانون العروات):

المجموع الجبري لتوترات الفروع المكونة لعروة يكون معدوما ، نعتبر أن التوتر موجبا اذا كان في اتجاه العروة $\sum_{i=1}^n U=0$ المختار (اتجاه العروة المختار يكون كيفيا) و سالبا اذا كان عكسه و منه نستطيع أن نكتب ما يلي U=0

$$E - (U_1 + U_2 + U_3) = 0$$
 أو $E = U_1 + U_2 + U_3$:

