
 

Chapter 2 

Title General Introduction 

Subject Principals and Approaches Of  Artificial Intelligence 

Author Chourouk Guettas 

Grade level Master 1 

Objective Learn the basics and the approaches of  AI 

Materials Book; Artificial Intelligence: A modern Approach 

Activities and procedures Presentations and exercises 

Lecture’s Plan Chapter 2 Intelligent Agents 

1- Introduction 

2- The concept of  Rationality 

3- Task environment (PEAS) 

4- Environment proprieties 

5- Agent structure 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 

In which we discuss the nature of agents, perfect or otherwise, the diversity of environments, and the 

resulting menagerie of agent types. 

 

 

 

 

 

2.1 Introduction 

1. Definition of  an Agent 

An agent is anything that can be viewed as perceiving its environment through sensors and acting 

upon that environment through actuators. This simple idea is illustrated in Figure 2.1.  

- Examples:  

 A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract, and so on for 

actuators.  

 A robotic agent might have cameras and infrared range finders for sensors and various motors for 

actuators. 

 A software agent receives keystrokes, file contents, and network packets as sensory inputs and 

acts on the environment by displaying on the screen, writing files, and sending network packets. 

The final element is the connection between knowledge and action, which is vital to AI. Intelligence 

requires actions as well as reasoning and only by understanding how actions are justified can we 

understand how to build an agent whose actions are justifiable (or rational).  

- Perception: is used to refer to the agent’s perceptual inputs at any given instant. An agent’s percept 

sequence is the complete history of  everything the agent has ever perceived. In general, an agent’s 

choice of  action at any given instant can depend on the entire percept sequence observed to date, but 

not on anything it hasn’t perceived.  

- Action: By specifying the agent’s choice of  action for every possible percept sequence, an agent is 

defined. Mathematically speaking, we say that an agent’s behavior is described by the agent function 

that maps any given percept sequence to an action.  

Internally, the agent function for an artificial agent will be implemented by an agent program. It is 

important to keep these two ideas distinct. The agent function is an abstract mathematical description; 

while the agent program is a concrete implementation, running within some physical system. 



 

3 

2. Vacuum Cleaner Example 

The vacuum-cleaner world shown in Figure 2.2. This world is so simple that we can describe 

everything that happens; it’s also a made-up world, so we can invent many variations. This particular 

world has just two locations: squares A and B. The vacuum agent perceives which square it is in and 

whether there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do 

nothing. One very simple agent function is the following: if  the current square is dirty, then suck; 

otherwise, move to the other square. A partial tabulation of  this agent function is shown in Figure 

2.3 and an agent program that implements it appears later in Figure 2.8. 



 

4 

Looking at Figure 2.3, the obvious question, then, is this: What is the right way to fill out the table? 

In other words, what makes an agent good or bad, intelligent or stupid? We answer these questions in 

the next section. 

 

2.1 The Concept of  Rationality 

What is rational at any given time depends on four things: 

• The performance measure that defines the criterion of  success. 

• The agent’s prior knowledge of  the environment. 

• The actions that the agent can perform. 

• The agent’s percept sequence to date. 
 

This leads to a definition of  a rational agent: 

1. Rational agent 

For each possible percept sequence, a rational agent should select an action that is expected to maximize its 

performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the 

agent has. 

Example: 

Consider the simple vacuum-cleaner agent that cleans a square if  it is dirty and moves to the other square if  

not; this is the agent function tabulated in Figure 2.3. Is this a rational agent? That depends! First, we need to 



 

5 

say what the performance measure is, what is known about the environment, and what sensors and actuators the 

agent has. Let us assume the following: 

• The performance measure awards one point for each clean square at each time step, over a “lifetime” 

of  1000 time steps. 

• The “geography” of  the environment is known a priori (Figure 2.2) but the dirt distribution and the 

initial location of  the agent are not. Clean squares stay clean and sucking cleans the current square. 

The Left and Right actions move the agent left and right except when this would take the agent outside 

the environment, in which case the agent remains where it is. 

• The only available actions are Left, Right, and Suck. 

• The agent correctly perceives its location and whether that location contains dirt. 

We claim that under these circumstances the agent is indeed rational; its expected performance is at least as 

high as any other agent’s. 

You can see easily that the same agent would be irrational under different circumstances. For example, once 

all the dirt is cleaned up, the agent will oscillate needlessly back and forth; if  the performance measure includes 

a penalty of  one point for each movement left or right, the agent will fare poorly. A better agent for this case 

would do nothing once it is sure that all the squares are clean. If  clean squares can become dirty again, the 

agent should occasionally check and re-clean them if  needed. If  the geography of  the environment is unknown, 

the agent will need to explore it rather than stick to squares A and B. 

2. Omniscience, learning, and autonomy 

- There is a difference between rationality and omniscience. An omniscient agent knows the actual outcome 

of  its actions and can act accordingly; but omniscience is impossible in reality. Rationality maximizes expected 

performance, while perfection maximizes actual performance; if  we expect an agent to do what turns out to be 

the best action after the fact, it will be impossible to design an agent to fulfil this specification. Lastly, rationality 

does not require omniscience, because the rational choice depends only on the percept sequence to date. 

- A rational agent needs to learn as much as possible from what it perceives. The agent’s initial configuration 

could reflect some prior knowledge of  the environment, but as the agent gains experience this may be modified 

and augmented. There are extreme cases in which the environment is completely known a priori. In such cases, 

the agent need not perceive or learn; it simply acts correctly. 

- When an agent relies on the prior knowledge of  its designer rather than on its own percepts, we say that the 

agent lacks autonomy. A rational agent should be autonomous—it should learn what it can to compensate for 

partial or incorrect prior knowledge. An artificial rational intelligent agent must be provided with some initial 

knowledge as well as an ability to learn. After sufficient experience of  its environment, its behaviour can become 

effectively independent of  its prior knowledge. 

 

 

 



 

6 

2.2 Task environment (PEAS) 

In designing an agent, the first step must always be to specify the task environment as fully as possible; through 

identifying the performance measure, the environment, and the agent’s actuators and sensors. All these are 

grouped under the heading of  the task environment and referred acronymically by PEAS (Performance, 

Environment, Actuators, and Sensors) description. 

Example (Automated Taxi Driver): 

Taking into consideration that A fully automated taxi is currently somewhat beyond the capabilities of  existing 

technology. Figure 2.4 summarizes the PEAS description for the taxi’s task environment. Each element is 

discussed in more detail in the following paragraphs. 

 Performance measure: desirable qualities for an automated driver that we aspire for, more likely, 

would be: getting to the correct destination; minimizing fuel consumption; minimizing the trip time or 

cost; minimizing violations of  traffic laws and disturbances to other drivers; maximizing safety and 

passenger comfort; maximizing profits. Obviously, some of  these goals conflict, so trade-offs will be 

required. 

 Environment: Any taxi driver must deal with a variety of  roads, ranging from rural lanes and urban 

alleys to 12-lane freeways. The roads contain other traffic, pedestrians, stray animals, road works, police 

cars, puddles, and potholes. The taxi must also interact with potential and actual passengers. There are 

also some optional choices. The taxi might need to operate in a snowy area or it could be driving on 

the right or on the left depending on the country. Obviously, the more restricted the environment, the 

easier the design problem. 

 Actuators: include those available to a human driver: control over the engine through the accelerator 

and control over steering and braking. In addition, it will need output to a display screen or voice 

synthesizer to talk back to the passengers, and perhaps some way to communicate with other vehicles. 

 Sensors: for the taxi will include one or more controllable video cameras so that it can see the road; it 

might augment these with infrared or sonar sensors to detect distances to other cars and obstacles. To 

avoid speeding tickets, the taxi should have a speedometer, and to control the vehicle properly, 

especially on curves, it should have an accelerometer. To determine the mechanical state of  the vehicle, 



 

7 

it will need the usual array of  engine, fuel, and electrical system sensors. Like many human drivers, it 

needs a global positioning system (GPS). Finally, it will need a keyboard or microphone for the 

passenger to request a destination. 

What matters is not the distinction between “real” and “artificial” environments, but the complexity of  the 

relationship among the behaviour of  the agent, the percept sequence generated by the environment, and the 

performance measure. Some “real” environments are actually quite simple while some artificial environment 

are so complicated, for example: an inspector robot of  an industrial conveyor belt vs. a softbot Web site 

operator to scan Internet news sources. 

2.3 Proprieties of  task environments 

The range of  task environments that might arise in AI is obviously vast. We can, however, identify a fairly small 

number of  dimensions along which task environments can be categorized. These dimensions determine, to a 

large extent, the appropriate agent design and the applicability of  each of  the principal families of  techniques 

for agent implementation. First, we list the dimensions, then we analyse several task environments to illustrate 

the ideas. In Figure 2.5, the basic PEAS elements for a number of  additional agent types are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 

 

 Fully observable vs. partially observable: If  an agent’s sensors give it access to the complete 

state of  the environment at each point in time, then we say that the task environment is fully 

observable. A task environment is effectively fully observable if  the sensors detect all aspects that 

are relevant to the choice of  action; relevance, in turn, depends on the performance measure. Fully 

observable environments are convenient because the agent need not maintain any internal state to 

keep track of  the world. An environment might be partially observable because of  noisy and 

inaccurate sensors or because parts of  the state are simply missing from the sensor data—for 

example, a vacuum agent with only a local dirt sensor cannot tell whether there is dirt in other 

squares, and an automated taxi cannot see what other drivers are thinking. If  the agent has no 

sensors at all then the environment is unobservable. 

 Single agent vs. multiagent: The distinction between single-agent and multiagent environments 

may seem simple enough. For example, an agent solving a crossword puzzle by itself  is clearly in 

a single-agent environment, whereas an agent playing chess is in a two-agent environment. 

However, we can distinguish different types for of  behaviours in multiagent environments. For 

example: chess is a competitive multiagent environment. In the taxi-driving environment, on the 

other hand, avoiding collisions maximizes the performance measure of  all agents, so it is a partially 

cooperative multiagent environment. It is also partially competitive considering the parking case. 

The agent-design problems in multiagent environments are often quite different from those in 

single-agent environments; for example, communication often emerges as a rational behaviour 

in multiagent environments; in some competitive environments, randomized behaviour is 

rational because it avoids the pitfalls of  predictability. 

 Deterministic vs. stochastic: If  the next state of  the environment is completely determined by 

the current state and the action executed by the agent, then we say the environment is deterministic; 

otherwise, it is stochastic. Most real situations are so complex that it is impossible to keep track of  

all the unobserved aspects; for practical purposes, they must be treated as stochastic. Taxi driving 

is clearly stochastic in this sense, because one can never predict the behaviour of  traffic exactly; 

moreover, one’s tires blow out and one’s engine seizes up without warning. The vacuum world as 

we described it is deterministic, but variations can include stochastic elements such as randomly 

appearing dirt and an unreliable suction mechanism. 

 Episodic vs. sequential: In an episodic task environment, the agent’s experience is divided into 

atomic episodes. In each episode the agent receives a percept and then performs a single action. 

Crucially, the next episode does not depend on the actions taken in previous episodes. For example, 

an agent that has to spot defective parts on an assembly line bases each decision on the current 

part, regardless of  previous decisions; moreover, the current decision doesn’t affect whether the 

next part is defective. In sequential environments, on the other hand, the current decision could 

affect all future decisions. Chess and taxi driving are sequential: in both cases, short-term actions 

can have long-term consequences. Episodic environments are much simpler than sequential 

environments because the agent does not need to think ahead. 



 

9 

 Static vs. dynamic: If  the environment can change while an agent is deliberating, then we say the 

environment is dynamic for that agent; otherwise, it is static. Static environments are easy to deal 

with because the agent need not keep looking at the world while it is deciding on an action, nor 

need it worry about the passage of  time. Dynamic environments, on the other hand, are 

continuously asking the agent what it wants to do; if  it hasn’t decided yet, that counts as deciding 

to do nothing. If  the environment itself  does not change with the passage of  time but the agent’s 

performance score does, then we say the environment is semidynamic. Taxi driving is clearly 

dynamic: the other cars and the taxi itself  keep moving while the driving algorithm dithers about 

what to do next. Chess, when played with a clock, is semidynamic. Crossword puzzles are static. 

 Discrete vs. continuous: The discrete/continuous distinction applies to the state of  the 

environment, to the way time is handled, and to the percepts and actions of  the agent. For example, 

the chess environment has a finite number of  distinct states (excluding the clock). Chess also has 

a discrete set of  percepts and actions. Taxi driving is a continuous-state and continuous-time 

problem: the speed and location of  the taxi and of  the other vehicles sweep through a range of  

continuous values and do so smoothly over time. Taxi-driving actions are also continuous (steering 

angles, etc.). Input from digital cameras is discrete, strictly speaking, but is typically treated as 

representing continuously varying intensities and locations. 

 Known vs. unknown: Strictly speaking, this distinction refers not to the environment itself  but 

to the agent’s (or designer’s) state of  knowledge about the “laws of  physics” of  the environment. 

In a known environment, the outcomes (or outcome probabilities if  the environment is stochastic) 

for all actions are given. Obviously, if  the environment is unknown, the agent will have to learn 

how it works in order to make good decisions. Note that the distinction between known and 

unknown environments is not the same as the one between fully and partially observable 

environments. It is quite possible for a known environment to be partially observable—for example, 

in solitaire card games, I know the rules but am still unable to see the cards that have not yet been 

turned over. Conversely, an unknown environment can be fully observable—in a new video game, 

the screen may show the entire game state but I still don’t know what the buttons do until I try 

them. 

Note that the hardest case is partially observable, multiagent, stochastic sequential, dynamic, continuous, and unknown. Taxi 

driving is hard in all these senses, except that for the most part the driver’s environment is known. Driving a 

rented car in a new country with unfamiliar geography and traffic laws is a lot more exciting. 

Figure 2.6 lists the properties of  a number of  familiar environments. Note that the answers are not always cut 

and dried. For example, we describe the part-picking robot as episodic, because it normally considers each part 

in isolation. But if  one day there is a large batch of  defective parts, the robot should learn from several 

observations that the distribution of  defects has changed, and should modify its behavior for subsequent parts. 

“known/unknown” column is not included because, as explained earlier, this is not strictly a property of  the 

environment. For some environments, such as chess and poker, it is quite easy to supply the agent with full 

knowledge of  the rules, but it is nonetheless interesting to consider how an agent might learn to play these 

games without such knowledge. 



 

10 

 

The characteristics depend on how the task environment is defined. We have listed the medical-diagnosis task 

as single-agent because the disease process in a patient is not profitably modeled as an agent; but a medical-

diagnosis system might also have to deal with recalcitrant patients and skeptical staff, so the environment could 

have a multiagent aspect. Furthermore, medical diagnosis is episodic if  one conceives of  the task as selecting a 

diagnosis given a list of  symptoms; the problem is sequential if  the task can include proposing a series of  tests, 

evaluating progress over the course of  treatment, and so on. Also, many environments are episodic at higher 

levels than the agent’s individual actions. For example, a chess tournament consists of  a sequence of  games; 

each game is an episode because (by and large) the contribution of  the moves in one game to the agent’s overall 

performance is not affected by the moves in its previous game. On the other hand, decision making within a 

single game is certainly sequential. You can refer to (https://github.com/aimacode) for the implementations 

of  a number of  environments with a general-purpose environment simulator that places one or more agents 

in a simulated environment.  

2.4 The structure of  Agents  

The job of  AI is to design an agent program that implements the agent function— the mapping from percepts 

to actions. Assuming that the program will run on some sort of  computing device with physical sensors and 

actuators—we call this the architecture: 

agent = architecture + program  

Obviously, the chosen program has to be one that is appropriate for the architecture. If  the program is going 

to recommend actions like Walk, the architecture had better have legs. The architecture might be just an ordinary 

PC, or it might be a robotic car with several on-board computers, cameras, and other sensors. In general, the 

architecture makes the percepts from the sensors available to the program, runs the program, and feeds the 

program’s action choices to the actuators as they are generated. 

https://github.com/aimacode


 

11 

 

1. Agent programs 

The agent programs will take the current percept as input from the sensors and return an action to the actuators. 

There is a difference between the agent program, which takes the current percept as input, and the agent function, 

which takes the entire percept history. The agent program takes just the current percept as input because 

nothing more is available from the environment; if  the agent’s actions need to depend on the entire percept 

sequence, the agent will have to remember the percepts. 

Figure 2.7 shows a rather trivial agent program that keeps track of  the percept sequence and then uses it to 

index into a table of  actions to decide what to do. The table—an example of  which is given for the vacuum 

world in Figure 2.3—represents explicitly the agent function that the agent program embodies. To build a 

rational agent in this way, we as designers must construct a table that contains the appropriate action for every 

possible percept sequence. 

 

 

 

 

 

 

 

 

It is instructive to consider why the table-driven approach to agent construction is doomed to failure. Let P be 

the set of  possible percepts and let T be the lifetime of  the agent (the total number of  percepts it will receive). 

The lookup table will contain ∑ |𝑷|𝒕𝑻
𝒕=𝟏  entries. Consider the automated taxi: the visual input from a single 

camera comes in at the rate of  roughly 27 megabytes per second (30 frames per second, 640×480 pixels with 

24 bits of  color information). This gives a lookup table with over 10250,000,000,000 entries for an hour’s 

driving. Even the lookup table for chess—a tiny, well-behaved fragment of  the real world—would have at least 

10150 entries. The daunting size of  these tables means that: 

 No physical agent in this universe will have the space to store the table,  

 The designer would not have time to create the table, 

 No agent could ever learn all the right table entries from its experience, and 

 Even if  the environment is simple enough to yield a feasible table size, the designer still has no 

guidance about how to fill in the table entries. 



 

12 

The key challenge for AI is to find out how to write programs that, to the extent possible, produce rational 

behavior from a smallish program rather than from a vast table. 

There are four basic kinds of  agent programs that embody the principles underlying almost all intelligent 

systems: 

• Simple reflex agents; 

• Model-based reflex agents; 

• Goal-based agents; and 

• Utility-based agents. 

Each kind of  agent program combines particular components in particular ways to generate actions. The next 

section explains how to convert all these agents into learning agents that can improve the performance of  their 

components so as to generate better actions.  

2. Simple reflex agents 

The simplest kind of  agent is the simple reflex agent. These agents select actions on the basis of  the current 

percept, ignoring the rest of  the percept history. For example, the vacuum agent whose agent function is 

tabulated in Figure 2.3 is a simple reflex agent, because its decision is based only on the current location and 

on whether that location contains dirt. An agent program for this agent is shown in Figure 2.8. 

 

Notice that the vacuum agent program is very small compared to the corresponding table. The most obvious 

reduction comes from ignoring the percept history, which cuts down the number of  possibilities from 4T to 

just 4. A further, small reduction comes from the fact that when the current square is dirty, the action does not 

depend on the location. 

Simple reflex behaviors occur even in more complex environments. Imagine yourself  as the driver of  the 

automated taxi. If  the car in front brakes and its brake lights come on, then you should notice this and initiate 

braking. In other words, some processing is done on the visual input to establish the condition we call “The car 

in front is braking.” Then, this triggers some established connection in the agent program to the action “initiate 

braking.” We call such a connection a condition–action rule, written as 

if  car-in-front-is-braking then initiate-braking. 

The program in Figure 2.8 is specific to one particular vacuum environment. A more general and flexible 

approach is first to build a general-purpose interpreter for condition– action rules and then to create rule sets 



 

13 

for specific task environments. Figure 2.9 gives the structure of  this general program in schematic form, 

showing how the condition–action rules allow the agent to make the connection from percept to action. 

We use rectangles to denote the current internal state of  the agent’s decision process, and ovals to represent 

the background information used in the process. The agent program, which is also very simple, is shown in 

Figure 2.10. The INTERPRET-INPUT function generates an abstracted description of  the current state from 

the percept, and the RULE-MATCH function returns the first rule in the set of  rules that matches the given 

state description.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simple reflex agents have the admirable property of  being simple, but they turn out to be of  limited 

intelligence. The agent in Figure 2.10 will work only if  the correct decision can be made on the basis of  only the current 

percept—that is, only if  the environment is fully observable. Even a little bit of  unobservability can cause serious trouble. 

• Example:  

Suppose that a simple reflex vacuum agent is deprived of  its location sensor and has only a dirt sensor. Such 

an agent has just two possible percepts: [Dirty] and [Clean]. It can Suck in response to [Dirty]; what should it 

do in response to [Clean]? Moving Left fails (forever) if  it happens to start in square A, and moving Right fails 

(forever) if  it happens to start in square B. Infinite loops are often unavoidable for simple reflex agents operating 

in partially observable environments. 

 



 

14 

• Randomization: 

Escape from infinite loops is possible if  the agent can randomize its actions. For example, if  the vacuum agent 

perceives [Clean], it might flip a coin to choose between Left and Right. Eventually, the agent will be able to 

reach the other square. Then, if  that square is dirty, the agent will clean it and the task will be complete. Hence, 

a randomized simple reflex agent might outperform a deterministic simple reflex agent. 

3. Model-based reflex agents 

The most effective way to handle partial observability is for the agent to keep track of  the part of  the world it 

can’t see now. That is, the agent should maintain some sort of  internal state that depends on the percept 

history and thereby reflects at least some of  the unobserved aspects of  the current state. 

Updating this internal state information as time goes by requires two kinds of  knowledge to be encoded in the 

agent program: 

 First, we need some information about how the world evolves independently of  the agent—for 

example, that an overtaking car generally will be closer behind than it was a moment ago. 

 Second, we need some information about how the agent’s own actions affect the world—for example, 

that when the agent turns the steering wheel clockwise, the car turns to the right. 

This knowledge about “how the world works”—whether implemented in simple Boolean circuits or in complete 

scientific theories—is called a model of  the world. An agent that uses such a model is called a model-based 

agent. 

Figure 2.11 gives the structure of  the model-based reflex agent with internal state, showing how the current 

percept is combined with the old internal state to generate the updated description of  the current state, based 

on the agent’s model of  how the world works. The agent program is shown in Figure 2.12. The interesting 

part is the function UPDATE-STATE, which is responsible for creating the new internal state description. The 

details of  how models and states are represented vary widely depending on the type of  environment and the 

particular technology used in the agent design. 

Regardless of  the kind of  representation used, it is seldom possible for the agent to determine the current state 

of  a partially observable environment exactly. Instead, the box labelled “what the world is like now” (Figure 

2.11) represents the agent’s “best guess”. Uncertainty about the current state may be unavoidable, but the agent 

still has to make a decision. 

 



 

15 

 

 

4. Goal-based agents 

Knowing something about the current state of  the environment is not always enough to decide what to do. For 

example, at a road junction, the taxi can turn left, turn right, or go straight on. The correct decision depends 

on where the taxi is trying to get to. In other words, as well as a current state description, the agent needs some 

sort of  goal information that describes situations that are desirable. The agent program can combine this with 

the model to choose actions that achieve the goal. Figure 2.13 shows the goal-based agent’s structure. 

Sometimes goal-based action selection is straightforward—for example, when goal satisfaction results 

immediately from a single action. Sometimes it will be trickier—for example, when the agent has to consider 

long sequences of  twists and turns in order to find a way to achieve the goal. 

Notice that decision making of  this kind is fundamentally different from the condition– action rules described 

earlier, in that it involves consideration of  the future—both “What will happen if  I do such-and-such?” and 

“Will that make me happy?”. 



 

16 

 

Although the goal-based agent appears less efficient, it is more flexible because the knowledge that supports 

its decisions is represented explicitly and can be modified. If  it starts to rain, the agent can update its knowledge 

of  how effectively its brakes will operate; this will automatically cause all of  the relevant behaviors to be altered 

to suit the new conditions. For the reflex agent, on the other hand, we would have to rewrite many condition–

action rules. The goal-based agent’s behavior can easily be changed to go to a different destination, simply by 

specifying that destination as the goal. The reflex agent’s rules for when to turn and when to go straight will 

work only for a single destination; they must all be replaced to go somewhere new. 

5. Utility-based agents 

Goals alone are not enough to generate high-quality behavior in most environments. For example, many action 

sequences will get the taxi to its destination (thereby achieving the goal) but some are quicker, safer, more 

reliable, or cheaper than others. Goals just provide a crude binary distinction between “happy” and “unhappy” 

states. The term utility instead is used as a general performance measure that allows a comparison of  different 

world states according to exactly how happy they would make the agent.  

The performance measure assigns a score to any given sequence of  environment states, so it can easily 

distinguish between more and less desirable ways of  getting to the taxi’s destination. An agent’s utility function 

is essentially an internalization of  the performance measure. If  the internal utility function and the external 

performance measure are in agreement, then an agent that chooses actions to maximize its utility will be rational 

according to the external performance measure. 

Like goal-based agents, a utility-based agent has many advantages in terms of  flexibility and learning. 

Furthermore, in two kinds of  cases, goals are inadequate but a utility-based agent can still make rational 

decisions. First, when there are conflicting goals, only some of  which can be achieved (for example, speed 

and safety), the utility function specifies the appropriate tradeoff. Second, when there are several goals that the 



 

17 

agent can aim for, none of  which can be achieved with certainty, utility provides a way in which the likelihood 

of  success can be weighed against the importance of  the goals. 

Partial observability and stochasticity are ubiquitous in the real world, and so, therefore, is decision making 

under uncertainty. Technically speaking, a rational utility-based agent chooses the action that maximizes the 

expected utility of  the action outcomes—that is, the utility the agent expects to derive, on average, given the 

probabilities and utilities of  each outcome. The utility-based agent structure is shown in Figure 2.14. 

 

6. Learning agents 

A learning agent can be divided into four conceptual components, as shown in Figure 2.15. 

 Learning element: which is responsible for making improvements. 

 Performance element: which is responsible for selecting external actions. 

 Critic: tells the learning element how well the agent is doing with respect to a fixed performance 

standard. 

 Problem generator: It is responsible for suggesting actions that will lead to new and informative 

experiences. 

To make the overall design more concrete, let us return to the automated taxi example. The performance element 

consists of  whatever collection of  knowledge and procedures the taxi has for selecting its driving actions. The 

taxi goes out on the road and drives, using this performance element. The critic observes the world and passes 

information along to the learning element. For example, after the taxi makes a quick left turn across three lanes 

of  traffic, the critic observes the shocking language used by other drivers. From this experience, the learning 

element is able to formulate a rule saying this was a bad action, and the performance element is modified by 



 

18 

installation of  the new rule. The problem generator might identify certain areas of  behavior in need of  

improvement and suggest experiments, such as trying out the brakes on different road surfaces under different 

conditions. 

 

To sum up, the performance element is what we have previously considered to be the entire agent: it takes in 

percepts and decides on actions. The learning element uses feedback from the critic on how the agent is 

doing and determines how the performance element should be modified to do better in the future. Whereas, 

the problem generator’s job is to suggest new exploratory actions with the aim of  discovering much better 

actions for the long run.  

In summary, agents have a variety of  components, and those components can be represented in many ways 

within the agent program, so there appears to be great variety among learning methods. There is, however, a 

single unifying theme. Learning in intelligent agents can be summarized as a process of  modification of  each 

component of  the agent to bring the components into closer agreement with the available feedback information, 

thereby improving the overall performance of  the agent. 

7. How the components of  agent programs work 

Agent programs were described (in very high-level terms) as consisting of  various components, whose function 

it is to answer questions such as: “What is the world like now?” “What action should I do now?” “What do my 

actions do?” But roughly speaking, we can place these components’ representations along an axis of  increasing 

complexity and expressive power—atomic, factored, and structured. Figure 2.16 provides schematic 

depictions of  how those transitions might be represented. 



 

19 

 

- Atomic representation: each state of  the world is indivisible—it has no internal structure. Consider the 

problem of  finding a driving route from one end of  a country to the other via some sequence of  cities. 

For the purposes of  solving this problem, it may suffice to reduce the state of  world to just the name of  

the city we are in—a single atom of  knowledge; a “black box” whose only discernible property is that of  

being identical to or different from another black box. The algorithms underlying search and game-

playing, Hidden Markov models, and Markov decision processes all work with atomic 

representations—or, at least, they treat representations as if  they were atomic. 

- Factored representation: splits up each state into a fixed set of  variables or attributes, each of  which can 

have a value. Now we can consider a higher-fidelity description for the same problem, where we need to 

be concerned with more than just atomic location in one city or another; we might need to pay attention 

to how much gas is in the tank, our current GPS coordinates, whether or not the oil warning light is working, 

and so on. With factored representations, we can also represent uncertainty—for example, ignorance about 

the amount of  gas in the tank can be represented by leaving that attribute blank. Many important areas of  

AI are based on factored representations, including constraint satisfaction algorithms, propositional 

logic, planning, Bayesian networks, and the machine learning algorithms. 

- Structured representation: For many purposes, we need to understand the world as having things in it 

that are related to each other, not just variables with values. For example, we might notice that a large truck 

ahead of  us is reversing into the driveway of  a dairy farm but a cow has got loose and is blocking the 

truck’s path. A factored representation is unlikely to be pre-equipped with the attribute 

TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow with value true or false. However, a structured 

representation, in which objects such as cows and trucks and their various and varying relationships can 

be described explicitly. Structured representations underlie relational databases and first-order logic, 

first-order probability models, knowledge-based learning and much of  natural language 

understanding. In fact, almost everything that humans express in natural language concerns objects and 

their relationships. 


