
Introduction to Computer Science and Programming
in Fortran 90/95

TP1: Euler�s Algorithm-Radioactive Decay

December 25, 2020
University of Eloued
Physic�s department : Master

1 Introduction

Computer simulations are nowadays an integral part of contemporary basic and applied research
in the sciences. Computation is becoming as important as theory and experiment. In physics,
computational physics, theoretical physics and experimental physics are all equally important in
our daily research and studies of physical systems. Physics is the unity of theory, experiment and
computation. Moreover, the ability "to compute" forms part of the essential repertoire of research
scientists. Several new �elds within computational science have emerged and strengthened their
positions in the last years, such as computational materials science, bioinformatics, computational
mathematics and mechanics, computational chemistry and physics and so forth, just to mention a
few.
Simulations are suited for nonlinear problems which can not generally solved by analytical

methods. The starting point of a simulation is an idealized model of a physical system of interest.
We want to check whether or not the behaviour of this model is consistent with observation. We
specify an algorithm for the implementation of the model on a computer. The execution of this
implementation is a simulation. Simulations are therefore virtual experiments.

2 About Software

2.1 Compiler
A crucial tool in computational physics is programming languages. In order to run a code written
in any programming language, we must �rst translate it into machine language, i.e. a language that
the computer can understand. The translation is done by an interpreter or by a compiler: the
former translates and immediately executes each instruction, the latter takes the �le, produces the
so-called object code that together with other object codes and with libraries is �nally assembled
into an executable �le. Python, Java, Matlab, Mathematica are examples of "interpreted" language.
Fortran, C, C++ are high-level "compiled" languages.
Our codes are written in Fortran 90/95. This is a sophisticated and complex language ofering

dynamical memory management, arrays operations (e.g. matrix-vector products), modular and
object-based structure. Fortran 90 however can be as e¤cient as Fortran 77 and maintains a wide
compatibility with existing Fortran 77 codes.
In all cases, we need a Fortran 90 compiler. In PCs running Linux, the gcc compiler is basically

part of the operating system and is always present. Recent versions of gcc include a Fortran

1

compiler, called gfortran. If this is absent, or it is not easy to install it, one can download the free
and rather reliable compiler, g95. It is possible to install on Windows either gcc with gfortran or
g95.

2.2 Visualization
Visualization of data produced by the codes has a central role in the analysis and understanding of
the results. Code gnuplot can be used to make two-dimensional or three-dimensional plots of data
or of analytical expressions. Gnuplot is open-source software, available for all operating systems and
usually found pre-installed on Linux PCs. An introduction to gnuplot, with many links to more
resources, can be found here: http://www.gnuplot.info/help.html. Another software that can
be used is Origin7.5. This is an executable Windows program and has a graphical user interface
and thus it is easier to use than gnuplot. One can also exploites Matlab or Octave graphics
capabiltities.

3 The Physics-Radioactive Decay

In a spontaneous radioactive decay a particle with no external in�uence will decay into other
particles. A typical example is the nuclear isotope uranium 235. The exact moment of decay of any
one particle is random. This means that the number �dN(t) = N(t) � N(t + dt) of nuclei which
will decay during a time inetrval dt must be proportional to dt and to the number N(t) of particles
present at time t. In other words the probability of decay per unit time given by (�dN(t)=N(t))=dt
is a constant which we denote 1=� . (The minus sign is due to the fact that dN is negative since the
number of particles decreases with time). We write

dN(t)

dt
= �N(t)

�
: (1)

The solution of this �rst order di¤erential equation is

N(t) = N0 exp(�t=�): (2)

The number N0 is the number of particles at time t = 0. The time � is called the mean lifetime. It
is the average time for decay. For the uranium 235 the mean lifetime is around 109 years.

4 Numerical Analysis-Euler�s Algorithm

Because many types of systems can be modeled by di¤erential equations such as (1), it is important
to know how to solve such equations. In general, analytical solutions of di¤erential equations, that
is, solutions in terms of well-known functions, do not exist. We are therefore motivated to �nd
numerical solutions of di¤erential equations. However, analytical solutions are very important and
often exist in special or limiting cases. We often use them to test our numerical solutions.
The standard technique for numerically solving a di¤erential equation is to convert the di¤er-

ential equation to a �nite di¤erence equation. Let us consider a �rst-order di¤erential equation of
the form

dy

dx
= f(x; y) (3)

and analyze its meaning. Suppose that at x = x0, y has the value y0. Because (3) tells us how y
changes at (x0; y0), we can �nd the approximate value of y at the neighboring point x1 = x0 +�x,

2

if �x is small. The simplest approximation is to assume that f(x; y), the rate of change of y with
respect to x, is constant over the interval x0 to x1. Then the approximate value of y at x1 = x0+�x
is given by

y1 = y(x0) + �y � y(x0) + f(x0; y0)�x:
We can repeat this procedure to �nd the value of y at the point x2 = x1 +�x:

y2 = y(x1 +�x) � y(x1) + f(x1; y1)�x:

This procedure can be generalized to calculate the approximate value of y at any point xn+1 =
xn +�x by the iterative formula

yn+1 = yn + f(xn; yn)�x: (Euler algorithm) (4)

Equivalently we can consider that we have approximated the derivative in (3) with a forward
di¤erence using a truncated Taylor�s expansion

dy

dx

����
n

� yn+1 � yn
�x

which leads to the �nite di¤erence equation 4. Another way to derive the Euler Algoritm is by
integrating the equation (3) over a small interval �x = xn+1 � xn

y(xn +�x) = y(xn) +

Z xn+1

xn

f(x0; y)dx0

The approximation come with writing the integral asZ xn+1

xn

f(x0; y)dx0 � f(xn; yn)�x

to obtain
yn+1 = yn + f(xn; yn)�x:

The Euler algorithm sometimes is called the constant slope algorithm. We expect that (4) will yield
a good approximation to the exact value of y if �x is su¢ ciently small. From this later derivation
it is clear that the Euler algorithm assumes the rate of change of y to be constant over the interval
xn to xn+1, and that the rate of change can be evaluated at the beginning of the interval.

5 Order of Accuracy

The major factors to be considered in evaluating/comparing di¤erent numerical methods are the
accuracy of the numerical solution and its computation time. It is important to note that the eval-
uation/comparison of numerical methods is not so simple because their performances may depend
on the characteristic of the problem at hand. It should also be noted that there are other factors to
be considered, such as stability, versatility, proof against run-time error, and so on. In this section,
we will deal only with the accuracy of numerical solution. How accurate is the Euler method? To
quantify this we use a Taylor expansion of y(xn +�x) around xn and substitute it into (4)

y(xn+�x) = y(xn)+�x
dy

dx

����
n

+
1

2
(�x)2

d2y

dx2

����
n

+ ::: � y(xn)+f(xn; yn)�x = y(xn)+�x
dy

dx

����
n

(5)

3

where we have used (3) to obtain the �nal form. Hence, we see that the term in �x in the expansion
has been correctly reproduced by the approximation, but that the higher order terms are wrong.
We therefore describe the Euler method as 1st order accurate.
In general, an approximation to a quantity is nth order accurate if the term in (�x)n in the

Taylor expansion of the quantity is correctly reproduced. The order of accuracy of a method is the
order of accuracy with which the unknown is approximated.

6 Error

There are two types of errors: truncation (algorithm) and roundo¤ . Truncation error is the error
of truncating the Taylor�s series after the nth term. Thus in (5) the truncation error is the term in
(�x)2. Roundo¤ error occurs because of the limited precision of computer arithmetic operations.
The truncation error exists independently from any roundo¤ errors.
While it is possible these two kinds of error could cancel each other, given our pessimistic

worldview, we usually assume they are additive. We also expect some tradeo¤ between these two
errors as �x varies. As �x is made smaller, the truncation error presumably decreases, while the
roundo¤ error increases. This results in an optimal �x-value for a given method. Unfortunately,
the optimal �x-value will usually depend on the given di¤erential equation and the approximation
method. In general it is impossible to predict the optimal �x if the di¤erential equation solution
is unknown.
Both kinds of error can accumulate, since numerical algorithms usually involve many steps. The

sum of the errors in each step is the local error. Errors in each step will accumulate to produce a
global error for the calculation. If the calculation has m steps:

� local errors with random signs usually results in a global error �
p
m � average local error.

� local errors with mostly the same sign can result in a larger global error m � average local
error.

7 First example: Radioactive Decay

We �rst use the Euler algorithm to compute the numerical solution of the di¤erential equation (1)
with the initial condition N(0) = N0 at t = 0. With this new variables of the problem we �nd
N � y , t � x and �N=� � f(x; y). In this case the Euler algoritm reads

N(tn +�t) = N(tn)��t
N(tn)

�
: (6)

We will start from the number of particles at time t = 0 given by N(0) = N0 � N(1). We substitute
t = 0 in (6) to obtain N(�t) � N(2) as a function of N(1). Next the value N(2) can be used in
equation (6) to get N(2�t) � N(3), etc. By choosing a number of steps m such that the total time
interval is T = m�t, we are led to the time discretization

t � t(i) = (i� 1)�t ; i = 1; :::;m+ 1: (7)

and the numerical solution (6) can be rewritten as

N(i) = N(i� 1)��tN(i� 1)
�

; i = 2; :::;m+ 1: (8)

4

here t(i) and N(i) represents two arrays in which we store the values of time t and the number of
nuclei N(t) at each step.
The local truncation error estimate from Taylor series is

(�t)2
d2N(t)

dt2
= (�t)2

N(t)

� 2

and hence the global error estimate reads

m� (�t)2N(t)
� 2

, where m =
t

�t
number of steps

We divide the global error by N(t) to get relative error estimates.

8 Another Example-Air Resistance

We consider an athlete riding a bicycle moving on a �at terrain. The goal is to determine the
velocity. Newton�s second law is given by

m
dv

dt
= F:

F is the force exerted by the athlete on the bicycle. It is clearly very di¢ cult to write down a
precise expression for F . Formulating the problem in terms of the power generated by the athlete
will avoid the use of an explicit formula for F . Multiplying the above equation by v we obtain

dE

dt
= P:

E is the kinetic energy E = 1
2
mv2 and P is the power P = Fv. Experimentaly we �nd that the

output of well trained athletes is around P = 400 watts over periods of 1h. The above equation
can also be rewritten as

dv2

dt
=
2P

m
:

For P constant we get the solution

v2 =
2P

m
t+ v20:

We remark the unphysical e¤ect that v �!1 as t �!1. This is due to the absence of the e¤ect
of friction and in particular air resistance.
The most important form of friction is air resistance. The force due to air resistance (the drag

force) is

Fdrag = �B1v �B2v2: (9)

At small velocities the �rst term dominates whereas at large velocities it is the second term that
dominates. For very small velocities the dependence on v given by Fdrag = �B1v is known as
Stockes� law. For reasonable velocities the drag force is dominated by the second term, i.e it is
given by Fdrag = �B2v2 for most objects. The coe¢ cient B2 can be calculated as follows. As
the bicycle-rider combination moves with velocity v it pushes in a time dt a mass of air given by
dmair = �Avdt where � is the air density andA is the frontal cross section. The corresponding kinetic

5

energy is dEair = dmairv
2=2. This is equal to the work done by the drag force,i.e �Fdragvdt = dEair.

From this we get

B2 = C�A: (10)

The drag coe¢ cient is C = 1
2
. The drag force becomes

Fdrag = �C�Av2: (11)

Taking into account the force due to air resistance we �nd that Newton�s law becomes

m
dv

dt
= F + Fdrag: (12)

Equivalently

dv

dt
=
P

mv
� C�Av

2

m
: (13)

9 Fortran Code

In order to appreciate what a program is and how to design a program in FORTRAN 90/95
programming language we will consider a simply physical problem: Radioactive Decay problem
which we are going to solve using a computer. Clearly, the analytical solution in (2) is so simple
that we do not need to write a program at all. But we have to start somewhere, so let us discuss how
we might write a program to compute the nuclie number present at a particular time. A program
is just a set of instructions to the computer to perform a series of operations. Those operations
will often be mathematical calculations, decisions based on equalities and inequalities, or special
instructions to say write output to the screen or to a given data �le.
The program consists of �source code� which is �stored� in a text �le. This code contains

the instructions in a highly structured form �a �Programming Language�. Each programming
language has a di¤erent set of rules (or syntax) for specifying these operations, although the logical
operations we ask the computer to do are independent of the language.

9.1 The Overall Program
A Fortran program generally consists of a main program (or driver) and possibly several sub-
programs (or procedures). For now we will assume all the statements are in the main program;
subprograms will be treated later. Any main program may begin with a program statement (not
mandatory) and must conclude with a corresponding end program statement. The program state-
ment allows us to give a name to the program. The end statement may be preceded by a return or
stop statement. This looks like

program radioactivity

! my first program

!

write(�; �) �start of the radioactivity program �
return

end program radioactivity (14)

6

This is a an overall structure of a complete Fortran 95 program. We have chosen the name �ra-
dioactivity�for our program. The program executes line by line from the �rst line to the last. The
lines beginning with a �!� are not instructions to the computer but comments for us so that we can
document what we are doing, and can be included anywhere in the program. Everything after the
exclamation mark will be ignored by the compiler. The asterisks (*,*) following the write statement
is a command telling the computer to output something to the screen, in this case the text �Start of
the radioactivity Program�. This write(�; �) statement may be replaced by the print*, statement
which has the same role, note the comma after the *. Because F95 dose not distinguishes between
upper and lowercase characters, write and WRITE for example are identical within the source code.

9.2 Variables, Declaration and Types:
We need some way of storing the current values of quantities such as time t and nuclei number N in
our example and of performing mathematical operations on them. Computers can store information
only as binary numbers, that is, sequences of ones and zeros. Every one or zero is called a bit and a
group of 8 bits is referred to as a Byte. For example, the integer 362 is stored as 0000000101101011
using two Bytes of memory. It would be di¢ cult to write a program if we had to write numbers such
as the speed of light in binary format. High-level computer languages allow us to reference stored
numbers using identi�ers or variable names. A valid identi�ers is a series of characters consisting
of letters, digits, and underscores that does not begin with a digit nor contain any spaces. Variables
may be of di¤erent types, the most important being integer, real (holding �oating point variables),
character and complex. In our example we shall only need real and integer. The general form for
declaring variables is: type name_of_variable.
In Fortran 90/95, a declaration of an integer is interger(kind=m). If one choose m = 2, the

programmer reserves 2 bytes (16 bits) of memory to store the integer variable wheras m = 4 reserves
4 bytes (32 bits). Although it may be compiler dependent, just declaring a variable as interger ,
reserves 4 bytes in memory as default. Note that the (kind=2) can be written as (2). Normally
however, we will for Fortran programs just use the 4 bytes default assignment integer. Here are
some examples of program declarations

integer(kind=2) :: i , m ! i and m are declared as two integer variables
real(kind=8) :: N, dt ! N and dt are declared as two real variables

In Fortran real variables are declared as real(kind=8) or real(kind=4) for double or single
precision, respectively. In general we discourage the use of single precision in scienti�c computing,
the achieved precision is in general not good enough. A constant is simply a number occuring
directly in the program. The type of a constant is integer, unless it contains a decimal point or an
exponent, when it is real. Real numbers are written as 2.0, 2.E0, 1.3D12 meaning 2:0, 2:0� 100,
1:3� 1012. Using a D rather than an E for the exponent causes the constant to be double precision.
The next program performs a single step of our calculation using our problem variables N , t, � ,

7

and �t with some new featurs.

program radioactivity

implicit none

! Define variables used to hold time and nuclei number

real (kind = 8) :: N , dt, t, tao

! Set initial values for time t and nuclei number N

t=0.D0 ; N=100.D0
! Choose the time step and the mean lifetime

dt=0.1D0 ; tao=5.D0

t=t + dt

N=N - (dt * N)/tao

write(�; �) t , N
end program radioactivity

Our program now has two types of statements. The line near the top beginning real is called a
declaration statement and is used to de�ne the variables in our program. The remaining lines are
called executable statements and are instructions to the computer to perform certain operations, in
this case a few simple calculations and assignments. A program may have many lines of declarations
and all of them must precede the executable statements. There are few new important things to
note:

� a single line may contain two or more statements and must be separated by semicolons �;�.

� all variables must be initialized (have a value) before we can use them.

� the line t=0.D0 ; N=100.D0 assigne the initial value 0.D0 and 100.D0 to the variable t and
N respectively.

� a line such as: t=t + dt appears to be mathematical nonsense, but the operator �=�should be
interpreted as meaning assignment not equality. Thus the line calculates t + dt, and stores
the answer back into the original memory location that t occupied. The old value of t is
overwritten (updated).

� The asterisk �*�and the slash �/�are simple arithmetic operators for Multiplication and Divi-
sion respectively.

8

� the statement implicit none says that we require all variables we use to be declared, and
therefore detect possible errors already while compiling. Without implicit none;simply ref-
erencing a variable causes it to be declared automatically, this is Fortran�s implicit declaration
rule: integer if the �rst letter of the variable is in the range i-n, real otherwise. In many For-
tran 77 one can see statements like implicit real*8 (a-h,o-z), meaning that all variables
beginning with any of the above letters are by deafult �oating numbers. However, such a
usage makes it hard to spot eventual errors due to misspelling of variable names.

� the write(*,*)statement accepts a comma-separated list of things to print out.

9.3 Repetition: loops
For the radioactivity problem, we see from equation (8) that the same operation in calculating N
will be repeated each time, but at di¤erent values. Therefore, the next step in our program is to
get it to repeat the calculation many times. We do this using a loop. Loops are one of the key ideas
in programming enabling us to repeat operations many times.
The statement to implement a loop is called do and is terminated by end do. The statements

between these two are repeated for a speci�ed number of times. Here is a loop which will execute
twenty times:

do i=1,20
write(*,*) i, i*i
end do

An integer variable, i, called loop variable is used to keep count of how many times we have
gone round the loop. It is assigned an initial value of 1 and the loop continues until i exceeds 20.
The full syntax of a do statement is do i=start,end,step, where the �,step�is optional. If given,
it speci�es how much to add to i between each iteration of the loop. The �nal iteration will be
the last one which does not cause i to exceed end. Note that the do-loop variable must never be
changed by other statements within the loop! This will cause great confusion. Fortran also provides
other loops construct such as do while loop and in�nite do loop:

do while (condition) do
statments

statments if (condition) exit
statments

end do end do

The statements in the body will be repeated as long as the condition in the while statement is
true. The exit statement provides a way to leave a do or do while loop before all the iterations of
that loop are �nished. When the condition in the if statement is true, the exit causes the program
to jump to the statement following the current loop, whether the loop is in�nite or �nite. Here is
an example that calculates and prints all the powers of two that are less than or equal to 100:

9

i=1 i=1
do while(i<=100) do
i=2*i i=2*i
write(*,*) i write(*,*) i

if (i<=100) exit
end do end do

Now let�s modify our program:

program radioactivity

implicit none

! Define variables used to hold time and nuclei number

real (kind = 8) :: N , dt, t, tao
integer :: i
! Set initial values for time t and nuclei number N

t=0.D0 ; N=100.D0
! Choose the time step and the mean lifetime

dt=0.1D0 ; tao=5.D0
! loop updating the t ; N; and outputting the values
do i=1,200
t=t + dt
N=N - (dt * N)/tao
write(�; �) t , N
write(�; �)

end do
end program radioactivity

We note here:

� how all the declarations must come at the top of the program.

� we put the output statement, i.e. the write inside the loop to keep track of the answer.

� we have indented the lines between do and end do. This is good practice but not essential,
however it provides a clear visual clue that these statements are within the �do loop�and will
be repeated a number of times (200 in this case).

� the write(*,*) with no text following it is valid and produces a blank line.

9.4 Arrays:
Simple scalar variables do not cover every need in Physics. F95 provides us with the concept of
an array: variables containing multiple scalars. The arrays provide a very natural way of de�ning

10

vectors and matrices. A one dimensional array (vector) A is an ordered list of m variables of a given
data type called the elements of the array and denoted A(1), A(2),...,A(m). A(i) is an element of
the array, and i is the array index or subscript.The following statements show how array variables
are declared:

real(kind=8):: v(3),r(3) ! define two vectors v and r each of 3 elements
real(kind=8),dimension(1:3):: v , r ! the same as above
real(kind=8),dimension(3) :: v , r ! the same as above
real(kind=8):: mat(3,4) ! define a matrix of 3-by-4 elements(two dimensional array)
real(kind=8),dimension(1:3,1:4):: mat ! the same as above
real :: x(-200:200) ! define a vector x of 401 elements
real, dimension(-1:3,2,0:5) :: b! define a three dimensional array

The Indices of an arrays must be integers or integer expressions: mat(2*i,j+7) is quite valid.
In Fortran the default lower limit (bound) of the range of an array is 1 and not 0. The bounds
of the array mat in the last example are (1-3,1-4) and any indices must lie within this range.
Exceeding the bounds of an array is a common error, and is often referred to as �falling o¤ the end�
of the array. A reference to mat(101,100) would be such a mistake. Let�s see how our program
looks using two array variables t and N :

program radioactivity

implicit none

! Define variables used to hold time and nuclei number
real (kind = 8) :: N(1:200) , dt, t(1:200), tao
integer :: i

! Set initial values for time t and nuclei number N
t=0.D0 ; N=0.D0 ! here we initialize all the array elements by zero
t(1)=0.D0 ; N(1)=100.D0

! Choose the time step and the mean lifetime
dt=0.1D0 ; tao=5.D0

! loop calculating t(i) ; N(i); and outputting their values
do i=2,200
t(i)=t(i-1) + dt
N(i)=N(i-1) - (dt * N(i-1))/tao
write(�; �) t(i) , N(i)

end do
end program radioactivity

It is clear that our problem does not require to use arrays, but we just have explained how to
use them. We note here some new points:

� with the statement t=0.D0 ; N=0.D0 , we hold the constant 0.D0 in eash element of the
arrays t and N. There is nothing intrinsic in this operation, it is just an assignment via an

11

implicit loop: one way of storing a value to an array elements or copying array to another
would be:

do i=1,m
a(i)=b(i)
t(i)=0.D0
c(i)=a(i)*b(i)
end do

an abbreviated syntax for this provided by Fortran 90/95 is : a=b ; t=0.D0.; c=a*b. This
syntax requires c, a and b to be the same length, or for a and/or b to be simple scalar variables
or constants (e.g. a=2*a doubles all the elements of a).

� the loop variable i is assigned an initial value of 2 rather than 1, to avoid exceeding the arrays
limits. With an initial value of 1, it would be an error: the array index i, while evaluating
the expressions inside the loop, falls at 0 which does not corresponds to the declared arrays�
lower limts.

9.5 The parameter statement:
Occasionally it is useful to de�ne a variable in such a way that it cannot be changed when the
program runs. Such a variable is called a parameter, and everything about it can be determined
when the program is compiled. This stops us from making possible mistakes in the rest of the
program. For example we may change our program declarations as follows:

integer, parameter :: m=200 ! the upper limit of the arrays
real (kind = 8) , parameter :: tao=5.0D
real (kind = 8) :: N(1:m) , dt, t(1:m)
integer :: i

Here tao can be used like any other variable, except that any attempt to change its value will result
in an error. Since the size of our arrays will not change throughout the program, so that their upper
limits must be declared with a parameter statement.

9.6 The write and format statements:
The output of the above program does not fall into the neat columns that one might hope for. This
can be improved by using a format statement to tell the write statement precisely what to do. The
second asterisk in write(*,*) is a placeholder for a format code, and implies a free format. We can
specify the format of the data by using a proper format code instead of the asterisk; this allows to
specify for example, the number of signi�cant digits, ect. By replacing the line write(*,*) t(i)
, N(i) in our program by

write(�;�(f11:5; E17:7)�) t(i) ; N(i)
then this statement says: prints to the screen in the same line t(i) as simple decimal (�oating)
number, padded to a width of at most 11 characters, with precisely 5 characters after the decimal
point, and N(i) as real number in scienti�c notation (exponential format) padded to a width of at
most 17 characters, with precisely 7 characters after the decimal point. If the number does not �ll
up the entire speci�ed width, blank spaces will be automatically padded on the left. Note that the
default asterisk format usually specify a width of 14 characters for real numbers.

12

Instead of giving the format code directly in the write statement, one can specify the format
code in a separate labled line anywhere within the program via the format statement. So the above
variables could be output in the same format with the following:

write(�; 23) t(i) ; N(i)

23 format(f11:5; E17:7)

here the format code of the write statement has beeen replaced by a 23. This tells the compiler to
look for a format statement somewhere in the program and labelled by a 23. The format statement
may occur before or after the write. Many writes may refer to the same format statement. The
format statement is completely ignored at the point when it would be due for execution. The label
can be any integer of �ve or fewer digits.
The complete list of options for format is large, some of them for reference are;

ix integer, at most x characters
ix:y integer, at most x characters and at least y (padded with leading zeros)
fx:y �oating point, at most x characters and precisely y characters after the decimal point
ex:y exponential, at most x characters and precisely y characters after the decimal point
dx:y ditto, but use �D� not �E� to represent exponent
a ASCII string
ax ASCII string, at most x characters
gx:y general �treated as fx:y for numbers close to one, as ex:y otherwise,

and as ix if used on an integer
�any text� literal text
x horizontal skip (space)
= vertical skip (newline)

Any of the above descriptors can be preceded by a repeat count, integer indicating how many
sequential variables should be processed with the following edit descriptor:

write(*,500) w, x, y, z
500 format(4e15.3)

This repeat count can be combined with parentheses to obtain more complicated results:

write(11,200) i, x, j, y, k, z
200 format(3(i5,e15.3))

this produces the proper pairs alternating between integer and exponential format.
For horizontal spacing, the nx code is often used. This means n horizontal spaces. If n is

omitted, n=1 is assumed. This produces spacing in a line not accounted for in extra length of a
variable descriptor. For vertical spacing (newlines), use the code /. Each slash corresponds to one
newline and may be preceded by a repeat count n/. Note that each write statement by default ends
with a newline. As example:

write(�; 23) t(i) ; N(i)
23 format(5x; f11:5; 10x; E17:7)

13

means precedes the variable t(i) with 5 blank spaces in the line and follows it with 10 spaces before
printing N(i).
Sometimes text strings are given in the format statements:

write(*,2050) x, dx
2050 format(f10.4,�+/-�,f10.4)

As an advanced example, say we have a n by m two-dimensional array of integers and want to
print it. Here is how:

do i=1,n
write(*,3000) (mat(i,j), j=1,m)

3000 format(i6)

here we have an explicit do loop over the rows and an implicit loop over the column index j .
It is also possible to allow repetition without explicitly stating how many times the format

should be repeated. Suppose you have a vector where we want to print the �rst 50 elements, with
ten elements on each line. Here is one way:

write(*,3020) (vec(i), i=1,50)
3020 format(10i6)

Writing directly to a �le is convenient when the output is too much to �t on the screen. This
can be achieved by specifying an Input/Output unit number of a �le, in the �rst argument of the
write statement. The role of this unit is to tell the computer where our information would be sent.
The �rst asterisk in the write statements shown so far, indicates now the default unit (usually the
secreen). An integer value would indicate a number of a �le that we had opened earlier with the
open statement (will be seen later). By default, without open, the statement

write(10;�(f11:5; E17:7)�) t(i) ; N(i)

with an integer value of 10 for example by itself creates a �le called �fort.10�.

9.7 Subprograms: function and subroutine
A subprogram is a self-contained program segment that carries out some speci�c, well-de�ned task.
In a large program, one often has to do the same sepeci�c task with many di¤erent data. Instead
of replicating code, these tasks should be done by subprograms . Fortran 90/95 provides us with
two di¤erent types of subprograms (procedures): called functions and subroutines, which returns
the results of speci�c calculations given some parameters. Programmers are allowed to de�ne their
own subprograms, but F95 also provides some built-in or intrinsic functions and subroutine, for
example trigonometric functions, square roots etc. The use of programmer de�ned subprograms
permits a large complicated program to be broken down into a number of smaller, self-contained
units. In other words, a main program can be modularized via the sensible use of programmer-
de�ned subprograms.The use of subprograms alows other people to grasp the logical structure of a
program with far greater ease than would otherwise be the case.
Subprograms of type function are invoked just like a mathematical function: both of them take

a set of input arguments (parameters) and return a value of some type. In general, a function

14

always has a data type. The general syntax of a Fortran 90/95 function is :

type function name (list-of-variables) function name (list-of-variables)
.
name= . . . type name

name= . . .
return return
end function name end function name

We see that the structure of a function closely resembles that of the main program. The main
di¤erences are:

� Functions have a type. This type must also be declared in the calling program.

� The return value should be stored in a variable with the same name as the function.

� Functions are terminated by the return statement instead of stop.

The function has to be declared with the correct type in the calling program unit. The function
is then called by simply using the function name and listing the parameters in parenthesis.
A Fortran function can essentially only return one value. Often we want to return two or more

values (or sometimes none!). For this purpose we use the subroutine construct. The syntax is as
follows:

subroutine name (list-of-variables)
. . .
return

end subroutine name

Subroutines have no type and consequently should not (cannot) be declared in the calling program
unit, and are invoked using a call statement. Subprograms are said to be Internal procedures
(internal functions or internal subroutines) if are placed just before the end statement for a main
program, or subprogram, and preceded by a special statement, contains. If they are placed just
after the end statement or in a separate �le, are said to be external procedures. Internal procedures
have knowledge of variables within the unit in which they are contained, and only that program unit
can reference them. However, they also have the power to hide variables from the calling program.
Any variable declared by a type statement within the internal procedure is local to that procedure.
Note that if a program contains multiple subprograms then their de�nitions may appear in any
order. Once the subprogram has carried out its intended action, control is returned to the point
from which the function was accessed. Note here, that many details about using subprograms have
been intentionally omitted. In our next program we will only use subprogram of type function in
one of its simple forms.

9.8 The �nal program
By putting now all thing together we get

15

program radioactivity

implicit none

! Define variables used to hold time and nuclei number
real (kind = 8) :: N , dt, t, tao=5.D0 ,N0,ti ,tf
integer :: i,m
write(�;�(a$)�) �Give the initial nuclei number; N0 =�
read(*,*) N0
write(*,�(a$)�) �Give the integration interval,ti and tf: �
read(*,*) ti,tf
do while (tf<ti)
write(*,�(a$)�) �tf should not be less then ti, please give again,ti and tf: �
read(*,*) ti,tf

enddo
! read the step number
write(*,�(a$)�) �Give the number of steps, m= �
read(*,*) m
! Set initial values for time t and nuclei number N
t=ti ; N=N0
! Calculate the time step
dt=(tf-ti)/m
! open file for results
open(10; file =�output:dat�)
! loop calculating t(i) ; N(i); and outputting their values
do i=1,m+1
write(10;�(f11:5; E17:7)�) t , N
t=t + dt
N=N +dt�f(t; N)

end do
! close file
close(10)
contains
! this function provides the value of dNbydt at (t,N)
real (kind = 8) function f(x; y)
real (kind = 8); intent(in) :: x; y !x and y are local variables
f = �y/tao ! tao is a global variable

end function f

end program radioactivity

There are lots of things to note here:

� a one line may contain a declaration and assignments of many variables.

� the read(*,*) statement reads a list of values from the keyboard and assign the values to
the variables in the variable list, in this case one variable. The values read can be separated

16

by spaces or be on separate lines, but not separated by commas. The read statement also
accepts a format code and a unit number as the write statement.

� The open statement creates a �le called �output.dat�and associates it with I/O unit number
10. This statement must come before the �rst use of that unit number in a write statement.
Not all unit numbers are allowed in the open statement. Unit numbers 5 and 6 should not
be used: 5 often corresponds to reading from the terminal (read(*,*)), 6 to writing to it
(write(*,*)). Units 10 through 99 seem to work well with disk �les.

� The close statement (close the �le after we have written everything to it) is good practice,
and should follow the last use of that I/O unit. This statement disconnects the external �le
from the I/O unit number of value 10.

� Note the way of calling a function, this is very similar to obvious mathematical notation. A
function typically returns a one value.

� The function receives a dummy arguments x and y. intent(in) means that the dummy
argument cannot be changed within the subprogram. intent(out) means that the dummy
argument cannot be used within the subprogram until it is given a value with the intent
of passing a value back to the calling program. The statement intent(inout) means that
the dummy argument has an initial value which is changed and passed back to the calling
program. We recommend using these options when calling subprograms. This allows better
control when transfering variables from one function to another.

� You should match arguments one for one in count and type between the reference to the
function and the function itself.

� Names used for argument need not match between the function argument list and the calling
sequence.

� A variable not in the argument list, but with the same name used in another subprogram
(or the main program) list does not refer to the same address in memory as its namesake
elsewhere, unless you take special action (common blocks and modules). Subprograms are
completely separate entities with very limited means of communicating information. You
don�t worry about con�icts in variable names or label values from a program to a subprogram
or between subprograms.

� Values of arguments can be changed within the function, providing a means for a function to
generate more information for use elsewhere in the program.

� Note the way in which the value of the variable tao is known in the function without passing
it through the function argument.

10 Lab Work 1

1-Editing Fortran Program: Under Windows operating system, we open Compaq Visual For-
tran by double clicking its icone in the desktop.Then Fortran editor appears for you. Following the
above steps write a code for the radioactive decay problem. In PCs running Linux or In PCs run-
ning Windows with MinGW/Cygwin shell, you need an editor, like Emacs, Programer�s Notepad

17

or Notepad++. In all cases after writing the code, save the �le with a .f90 extension, e.g. some-
thing like decay.f90. MinGW a contraction of "Minimalist GNU for Windows", is a minimalist
development environment for native Microsoft Windows applications, and Cygwin is a collection of
tools which provide a Linux look and feel environment for Windows.

2-Compilation and Execution: With Compaq Visual Fortran, we compile our �le program by
clicking the push button compile. If there is no errors we run the program by clicking the push
button Go or by clicking the button Execute decay.exe in the Build menu. Under Linux we open a
terminal or under Windows we open MinGW/Cygwin shell. Then we will use the gfortran or g95
compiler by typing the command for this and hitting return:

gfortran -o decay decay.f90

The option -o (for output) tells the compiler to place the result of his work in an executable program
called decay. We run the program by typing and then hitting return:

./decay or decay.exe

We obtain the output �le output.dat (assuming that you have written the output to a �le named
�output.dat�). We can open it using Matlab, Origine or the cat command in the shell.

3-Visualization: We start gnuplot by typing gnuplot in the shell, you will then see the following
prompt

gnuplot >

then you may need type help for a list of various commands and help options. Our data �le
output.dat contains two columns of data points, where the �rst column refers to the argument t
while the second one refers to the computed number of nuclei N(t). If we wish to plot these sets of
points with gnuplot we just need to type and then hit return

gnuplot > plot `output:dat` using 1 : 2 w l
or

gnuplot > plot `output:dat` w l

since gnuplot assigns as default the �rst column as the x-axis. The abbreviations w l stand for
�with lines�. If you prefer to plot the data points only, type

gnuplot > plot `output:dat` w p

This will typically produce the graph on the screen. If we wish to save this graph as a PostScript
or Jpeg �le, we can proceed as follows

gnuplot > set terminal postscript
gnuplot > set output �filename:ps�
gnuplot > plot `output:dat` w l

the �rst line of sequence changes the terminal type to PostScript. By typing this, we will be the
owner of a postscript �le called �lename.ps, which can be displayed with ghostview through the call

gv filename:ps

18

After we have �nished plotting to a �le, we set the terminal type back to �windows�or to �X11�:

set terminal win

We may need to �t our data by choosing a function f(x). The function f(x) will depend on a some
set of parameters a, b,.... To �t this function to the data we type in gnuplot window and hit return

gnuplot > f(x) = a+ b � x � x
gnuplot > fit f(x) `output:dat` via a; b; :::

To plot the �t f(x) together with the data we plot the data then use the command replot to
plot the function f(x) on the top of it.
We can also use Matlab/Octave. We run Matlab by double clicking its icone and typing in its

command window and then hitting return

load output:dat; plot(output(:; 1); output(:; 2))
or with Octave

octave > load output:dat; plot(output(:; 1); output(:; 2))

10.1 Home work:
Write a fortran program for the Air Resistance problem. We comment on the diference between
the cases with and without air resistance. We also discuss the limit �t ! 0. We write down the
obtained �ts with the corresponding errors. We write a report with conclusions.

19

