Année universitaire 2020/2021

Matière: Méthodes Numériques Appliquées

Spécialité : 1ère Master MER + MEN

TD 1 (Equations différentielles du premier ordre)

Exercice 01:

Utilisez la méthode des séries de Taylor du second ordre sur (2, 3) pour le problème à valeur initiale

$$\frac{dy}{dx} = -xy^2$$
, $y(2) = 1$. Prendre h = 0.1.

Comparez les résultats obtenus avec la solution exacte de $y = \frac{2}{x^2-2}$.

Exercice 02:

Utilisez la méthode d'Euler pour résoudre l'équation différentielle suivante

$$\frac{dy}{dx} = -xy^2$$
, $y(2) = 1$ et $2 < x < 3$ avec $h = 0.1$

Comparez les résultats avec la solution exacte de $y = \frac{2}{x^2-2}$.

Exercice 03:

Utilisez la méthode d'Euler modifiée pour résoudre l'équation différentielle $\frac{dy}{dx} = x + y^2$ avec y (0) = 1. Utilisez un pas de h = 0.1.

Exercice 04:

Utilisez la méthode Runge-Kutta du second ordre avec h = 0.1

Trouvez
$$y_1$$
 et y_2 pour $\frac{dy}{dx} = -xy^2$, $y(2) = 1$.

Exercice 05:

Utilisez la méthode Runge-Kutta d'ordre quatre avec h = 0.1 pour obtenir une approximation de y (1.5) pour la solution $\frac{dy}{dx} = 2 x y$, y(1) = 1. La solution exacte est donnée par $y = e^{x^2 - 1}$.

Déterminez l'erreur relative et le pourcentage erreur relative.