
Mathematical English



Arithmetic

Integers

0 zero 10 ten 20 twenty

1 one 11 eleven 30 thirty

2 two 12 twelve 40 forty

3 three 13 thirteen 50 fifty

4 four 14 fourteen 60 sixty

5 five 15 fifteen 70 seventy

6 six 16 sixteen 80 eighty

7 seven 17 seventeen 90 ninety

8 eight 18 eighteen 100 one hundred

9 nine 19 nineteen 1000 one thousand

−245 minus two hundred and forty-five

22731 twenty-two thousand seven hundred and thirty-one

1000000 one million

56000000 fifty-six million

1000000000 one billion [US usage, now universal]

7000000000 seven billion [US usage, now universal]

1000000000000 one trillion [US usage, now universal]

3000000000000 three trillion [US usage, now universal]

Fractions [= Rational Numbers]

1
2

one half 3
8

three eighths
1
3

one third 26
9

twenty-six ninths
1
4

one quarter [= one fourth ] − 5
34

minus five thirty-fourths
1
5

one fifth 23
7

two and three sevenths

− 1
17

minus one seventeenth
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Real Numbers

−0.067 minus nought point zero six seven

81.59 eighty-one point five nine

−2.3 · 106 minus two point three times ten to the six

[= −2300000 minus two million three hundred thousand]

4 · 10−3 four times ten to the minus three

[= 0.004 = 4 /1000 four thousandths]

π [= 3.14159 . . .] pi [pronounced as ’pie’]

e [= 2.71828 . . .] e [base of the natural logarithm]

Complex Numbers

i i

3 + 4i three plus four i

1− 2i one minus two i

1− 2i = 1 + 2i the complex conjugate of one minus two i equals one plus two i

The real part and the imaginary part of 3 + 4i are equal, respectively, to 3 and 4.

Basic arithmetic operations

Addition : 3 + 5 = 8 three plus five equals [= is equal to ] eight

Subtraction : 3− 5 = −2 three minus five equals [= . . .] minus two

Multiplication : 3 · 5 = 15 three times five equals [= . . .] fifteen

Division : 3/5 = 0.6 three divided by five equals [= . . .] zero point six

(2− 3) · 6 + 1 = −5 two minus three in brackets times six plus one equals minus five
1− 3

2 + 4
= −1/3 one minus three over two plus four equals minus one third

4![= 1 · 2 · 3 · 4] four factorial

Exponentiation, Roots

52 [= 5 · 5 = 25] five squared

53 [= 5 · 5 · 5 = 125] five cubed

54 [= 5 · 5 · 5 · 5 = 625] five to the (power of) four

5−1 [= 1/5 = 0.2] five to the minus one

5−2 [= 1/52 = 0.04] five to the minus two
√

3 [= 1.73205 . . .] the square root of three
3
√

64 [= 4] the cube root of sixty four
5
√

32 [= 2] the fifth root of thirty two
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In the complex domain the notation n
√
a is ambiguous, since any non-zero complex number has

n different n -th roots. For example, 4
√
−4 has four possible values : ±1 ± i (with all possible

combinations of signs).
(1 + 2)2+2 one plus two, all to the power of two plus two

eπi = −1 e to the (power of) pi i equals minus one

Divisibility

The multiples of a positive integer a are the numbers a, 2a, 3a, 4a, . . . If b is a multiple of a, we

also say that a divides b, or that a is a divisor of b (notation : a | b). This is equivalent to b
a
being

an integer.

Division with remainder

If a, b are arbitrary positive integers, we can divide b by a, in general, only with a remainder. For

example, 7 lies between the following two consecutive multiples of 3 :

2 · 3 = 6 < 7 < 3 · 3 = 9, 7 = 2 · 3 + 1

(
⇐⇒ 7

3
= 2 +

1

3

)
In general, if qa is the largest multiple of a which is less than or equal to b, then

b = qa+ r, r = 0, 1, . . . , a− 1

The integer q (resp., r ) is the quotient (resp., the remainder) of the division of b by a.

Euclid’s algorithm

This algorithm computes the greatest common divisor (notation : (a, b) = gcd(a, b)) of two positive

integers a, b.

It proceeds by replacing the pair a, b (say, with a ≤ b ) by r, a, where r is the remainder of the

division of b by a. This procedure, which preserves the gcd, is repeated until we arrive at r = 0.

Example. Compute gcd(12, 44).

44 = 3 · 12 + 8

12 = 1 · 8 + 4 gcd(12, 44) = gcd(8, 12) = gcd(4, 8) = gcd(0, 4) = 4.

8 = 2 · 4 + 0

This calculation allows us to write the fraction 44
12

in its lowest terms, and also as a continued

fraction :
44

12
=

44/4

12/4
=

11

3
= 3 +

1

1 + 1
2

If gcd(a, b) = 1, we say that a and b are relatively prime.
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add additionner

algorithm algorithme

Euclid’s algorithm algorithme de division euclidienne

bracket parenthèse

left bracket parenthèse à gauche

right bracket parenthèse à droite

curly bracket accolade

denominator denominateur

difference différence

divide diviser

divisibility divisibilité

divisor diviseur

exponent exposant

factorial factoriel

fraction fraction

continued fraction fraction continue

gcd [= greatest common divisor] pgcd [= plus grand commun diviseur]

lcm [= least common multiple] ppcm [= plus petit commun multiple]

infinity l’infini

iterate itérer

iteration itération

multiple multiple

multiply multiplier

number nombre

even number nombre pair

odd number nombre impair

numerator numerateur

pair couple

pairwise deux à deux

power puissance

product produit

quotient quotient

ratio rapport ; raison

rational rationnel(le)

irrational irrationnel(le)
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relatively prime premiers entre eux

remainder reste

root racine

sum somme

subtract soustraire

Algebra

Algebraic Expressions

A = a2 capital a equals small a squared

a = x+ y a equals x plus y

b = x− y b equals x minus y

c = x · y · z c equals x times y times z

c = xyz c equals x y z

(x+ y)z + xy x plus y in brackets times z plus x y

x2 + y3 + z5 x squared plus y cubed plus z to the (power of) five

xn + yn = zn x to the n plus y to the n equals z to the n

(x− y)3m x minus y in brackets to the (power of) three m

x minus y, all to the (power of) three m

2x3y two to the x times three to the y

ax2 + bx+ c a x squared plus b x plus c
√
x+ 3
√
y the square root of x plus the cube root of y

n
√
x+ y the n-th root of x plus y

a+ b

c− d
a plus b over c minus d(

n

m

)
(the binomial coefficient) n over m
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Indices

x0 x zero ; x nought

x1 + yi x one plus y i

Rij (capital) R (subscript) i j ; (capital) R lower i j

Mk
ij (capital) M upper k lower i j ;

(capital) M superscript k subscript i j∑n
i=0 aix

i sum of a i x to the i for i from nought [= zero] to n ;

sum over i (ranging) from zero to n of a i (times) x to the i∏∞
m=1 bm product of b m for m from one to infinity ;

product over m (ranging) from one to infinity of b m∑n
j=1 aijbjk sum of a i j times b j k for j from one to n ;

sum over j (ranging) from one to n of a i j times b j k∑n
i=0

 n

i

xiyn−i sum of n over i x to the i y to the n minus i for i

from nought [= zero] to n

Matrices

column colonne

column vector vecteur colonne

determinant déterminant

index (pl. indices) indice

matrix matrice

matrix entry (pl. entries) coefficient d’une matrice

m× n matrix [m by n matrix] matrice à m lignes et n colonnes

multi-index multiindice

row ligne

row vector vecteur ligne

square carré

square matrix matrice carrée

Inequalities

x > y x is greater than y

x ≥ y x is greater (than) or equal to y

x < y x is smaller than y

x ≤ y x is smaller (than) or equal to y
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x > 0 x is positive

x ≥ 0 x is positive or zero ; x is non-negative

x < 0 x is negative

x ≤ 0 x is negative or zero

The French terminology is different !

x > y x est strictement plus grand que y

x ≥ y x est supérieur ou égal à y

x < y x est strictement plus petit que y

x ≤ y x est inférieur ou égal à y

x > 0 x est strictement positif

x ≥ 0 x est positif ou nul

x < 0 x est strictement négatif

x ≤ 0 x est négatif ou nul

Polynomial equations

A polynomial equation of degree n ≥ 1 with complex coefficients

f(x) = a0x
n + a1x

n−1 + · · ·+ an = 0 (a0 6= 0)

has n complex solutions (= roots ), provided that they are counted with multiplicities. For example,

a quadratic equation

ax2 + bx+ c = 0 (a 6= 0)

can be solved by completing the square, i.e., by rewriting the L.H.S. as a(x+ constant )2+ another

constant. This leads to an equivalent equation

a

(
x+

b

2a

)2

=
b2 − 4ac

4a

whose solutions are

x1,2 =
−b±

√
∆

2a

where ∆ = b2 − 4ac
(
= a2 (x1 − x2)2

)
is the discriminant of the original equation. More precisely,

ax2 + bx+ c = a (x− x1) (x− x2)

If all coefficients a, b, c are real, then the sign of ∆ plays a crucial rôle :

if ∆ = 0, then x1 = x2(= −b/2a) is a double root ;

if ∆ > 0, then x1 6= x2 are both real ;
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if ∆ < 0, then x1 = x2 are complex conjugates of each other (and non-real).

coefficient coefficient

degree degré

discriminant discriminant

equation équation

L.H.S. [= left hand side] terme de gauche

R.H.S. [= right hand side] terme de droite

polynomial adj. polynomial(e)

polynomial n. polynôme

provided that à condition que

root racine

simple root racine simple

double root racine double

triple root racine triple

multiple root racine multiple

root of multiplicity m racine de multiplicité m

solution solution

solve résoudre

Congruences

Two integers a, b are congruent modulo a positive integer m if they have the same remainder when

divided by m (equivalently, if their difference a− b is a multiple of m ).

a ≡ b(modm) a is congruent to b modulo m

a ≡ b(m)

Some people use the following, slightly horrible, notation : a = b[m].

Fermat’s Little Theorem. If p is a prime number and a is an integer, then ap ≡ a(modp). In

other words, ap − a is always divisible by p.

Chinese Remainder Theorem. If m1, . . . ,mk are pairwise relatively prime integers, then the

system of congruences

x ≡ a1 (modm1) · · · x ≡ ak (modmk)

has a unique solution modulo m1 · · ·mk, for any integers a1, . . . , ak.

The definite article (and its absence)
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measure theory théorie de la mesure

number theory théorie des nombres

Chapter one le chapitre un

Equation (7) l’équation (7)

Harnack’s inequality l’inégalité de Harnack

the Harnack inequality

the Riemann hypothesis l’hypothèse de Riemann

the Poincare conjecture la conjecture de Poincaré

Minkowski’s theorem le théorème de Minkowski

the Minkowski theorem

the Dirac delta function la fonction delta de Dirac

Dirac’s delta function

the delta function la fonction delta

Geometry

Let E be the intersection of the diagonals of the rectangle ABCD. The lines (AB) and (CD)

are parallel to each other (and similarly for (BC) and (DA) ). We can see on this picture several

acute angles : ∠EAD,∠EAB,∠EBA,∠AED,∠BEC . . . ; right angles : ∠ABC, ∠CDA,∠DAB

and obtuse angles : ∠AEB,∠CED
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Let P and Q be two points lying on an ellipse e. Denote by R the intersection point of the

respective tangent lines to e at P and Q. The line r passing through P and Q is called the polar

of the point R w.r.t. the ellipse e.

Here we see three concentric circles with respective radii equal to 1, 2 and 3.

If we draw a line through each vertex of a given triangle and the midpoint of the opposite side,

we obtain three lines which intersect at the barycentre (= the centre of gravity) of the triangle.

Above, three circles have a common tangent at their (unique) intersection point.

Euler’s Formula

Let P be a convex polyhedron. Euler’s formula asserts that

V − E + F = 2

V = the number of vertices of P

E = the number of edges of P

F = thenumberoffacesofP
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angle angle

acute angle angle aigu

obtuse angle angle obtus

right angle angle droit

area aire

axis (pl. axes) axe

coordinate axis axe de coordonnées

horizontal axis axe horisontal

vertical axis axe vertical

centre [US : center] centre

circle cercle

colinear (points) (points) alignés

conic (section) (section) conique

cone cône

convex convexe

cube cube

curve courbe

dimension dimension

distance distance

dodecahedron dodecaèdre

edge arête

ellipse ellipse

ellipsoid ellipsoïde

face face

hexagon hexagone

hyperbola hyperbole

hyperboloid hyperboloïde

one-sheet (two-sheet) hyperboloid hyperbole
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icosahedron icosaèdre

intersect intersecter

intersection intersection

lattice réseau

lettuce laitue

length longeur

line droite

midpoint of milieu de

octahedron octaèdre

orthogonal ; perpendicular orthogonal(e) ; perpendiculaire

parabola parabole

parallel parallèl(e)

parallelogram parallélogramme

pass through passer par

pentagon pentagone

plane plan

point point

(regular) polygon polygone (régulier)

(regular) polyhedron (pl. polyhedra) polyèdre (régulier)

projection projection

central projection projection conique ; projection centrale

orthogonal projection projection orthogonale

parallel projection projection parallèle

quadrilateral quadrilatère

radius (pl. radii) rayon

rectangle rectangle

rectangular rectangulaire

rotation rotation

side côté

slope pente

sphere sphère

square carré

square lattice réseau carré

surface surface

tangent to tangent(e) à

tangent line droite tangente
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tangent hyper(plane) (hyper)plan tangent

tetrahedron tetraèdre

triangle triangle

equilateral triangle triangle équilatéral

isosceles triangle triangle isocèle

right-angled triangle triangle rectangle

vertex sommet

Linear Algebra

basis (pl. bases) base

change of basis changement de base

bilinear form forme bilinéaire

coordinate coordonnée

(non-)degenerate (non) dégénéré(e)

dimension dimension

codimension codimension

finite dimension dimension finie

infinite dimension dimension infinie

dual space espace dual

eigenvalue valeur propre

eigenvector vecteur propre

(hyper)plane (hyper)plan

image image

isometry isométrie

kernel noyau

linear linéaire

linear form forme linéaire

linear map application linéaire

linearly dependent liés ; linéairement dépendants

linearly independent libres ; linéairement indépendants

multi-linear form forme multilinéaire

origin origine

orthogonal ; perpendicular orthogonal(e) ; perpendiculaire

orthogonal complement supplémentaire orthogonal

orthogonal matrix matrice orthogonale

13



(orthogonal) projection projection (orthogonale)

quadratic form forme quadratique

reflection réflexion

represent représenter

rotation rotation

scalar scalaire

scalar product produit scalaire

subspace sous-espace

(direct) sum somme (directe)

skew-symmetric anti-symétrique

symmetric symétrique

trilinear form forme trilinéaire

vector vecteur

vector space espace vectoriel

vector subspace sous-espace vectoriel

ctor space of dimension n ve espace vectoriel de dimension n

14



Mathematical arguments

Set theory

x ∈ A x is an element of A; x lies in A ;

x belongs to A ; x is in A

x /∈ A x is not an element of A; x does not lie in A ;

x does not belong to A; x is not in A

x, y ∈ A (both) x and y are elements of A; . . . lie in A ;

. . . belong to A ; ... are in A

x, y /∈ A (neither) x nor y is an element of A; . . . lies in A ;

. . . belongs to A ; ...is in A

∅ the empty set (= set with no elements)

A = ∅ A is an empty set

A 6= ∅ A is non-empty

A ∪B the union of (the sets) A and B ; A union B

A ∩B the intersection of (the sets) A and B ; A intersection B

A×B the product of (the sets) A and B ; A times B

A ∩B = ∅ A is disjoint from B ; the intersection of A and B is empty

{x | . . .} the set of all x such that ...

C the set of all complex numbers

Q the set of all rational numbers

R the set of all real numbers

A ∪B contains those elements that belong to A or to B (or to both).

A ∩B contains those elements that belong to both A and B.

A×B contains the ordered pairs (a, b), where a( resp. , b) belongs to A (resp., to B)

An = A× · · · × A︸ ︷︷ ︸
n times

contains all ordered n -tuples of elements of A.

belong to appartenir à

disjoint from disjoint de

element élément

empty vide

non-empty non vide

intersection intersection

inverse l’inverse

the inverse map to f l’application réciproque de f
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the inverse of f l’inverse de f

map application

bijective map application bijective

injective map application injective

surjective map application surjective

pair couple

ordered pair couple ordonné

triple triplet

quadruple quadruplet

n-tuple n-uplet

relation relation

equivalence relation relation d’équivalence

set ensemble

finite set ensemble fini

infinite set ensemble infini

union réunion

Logic

S ∨ T S or T

S ∧ T S and T

S =⇒ T S implies T ; if S then T

S ⇐⇒ T S is equivalent to T ; S iff T

¬S not S

∀x ∈ A . . . for each [= for every] x in A ...

∃x ∈ A . . . there exists [= there is] an x in A (such that) . . .

∃!x ∈ A . . . there exists [= there is] a unique x in A (such that) . . .

@x ∈ A . . . there is no x in A (such that)...
x > 0 ∧ y > 0 =⇒ x+ y > 0 if both x and y are positive, so is x+ y

@x ∈ Q x2 = 2 no rational number has a square equal to two

∀x ∈ R∃y ∈ Q |x − y| < 2/3 for every real number x there exists a rational number y such

that the absolute value of x minus y is smaller than two thirds

Exercise. Read out the following statements.

x ∈ A ∩B ⇐⇒ (x ∈ A ∧ x ∈ B), x ∈ A ∪B ⇐⇒ (x ∈ A ∨ x ∈ B),

∀x ∈ R x2 ≥ 0, ¬∃x ∈ R x2 < 0, ∀y ∈ C∃z ∈ C y = z2
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Basic arguments

It follows from . . . that . . .

We deduce from . . . that . . .

Conversely, ... implies that ...

Equality (1) holds, by Proposition 2.

By definition, ...

The following statements are equivalent.

Thanks to . . . , the properties . . . and . . . of . . . are equivalent to each other.

. . . has the following properties.

Theorem 1 holds unconditionally.

This result is conditional on Axiom A.

. . . is an immediate consequence of Theorem 3.

Note that . . . is well-defined, since . . .

As . . . satisfies . . . , formula (1) can be simplified as follows.

We conclude (the argument) by combining inequalities (2) and (3).

(Let us) denote by X the set of all . . .

Let X be the set of all . . .

Recall that . . . , by assumption.

It is enough to show that . . .

We are reduced to proving that . . .

The main idea is as follows.

We argue by contradiction. Assume that . . . exists.

The formal argument proceeds in several steps.

Consider first the special case when . . .

The assumptions . . . and . . . are independent (of each other), since . . .

. . . , which proves the required claim.

We use induction on n to show that . . .

On the other hand, . . .

. . . , which means that . . .

In other words, . . .

argument argument

assume supposer

assumption hypothèse

axiom axiome
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case cas

special case cas particulier

claim v. affirmer

(the following) claim l’affirmation suivante ; l’assertion suivante

concept notion

conclude conclure

conclusion conclusion

condition condition

a necessary and sufficient condition une condition necessaire et suffisante

conjecture conjecture

consequence conséquence

consider considérer

contradict contredire

contradiction contradiction

conversely réciproquement

corollary corollaire

deduce déduire

define définir

well-defined bien défini(e)

definition définition

equivalent équivalent(e)

establish établir

example exemple

exercise exercice

explain expliquer

explanation explication

false faux, fausse

formal formel

hand main

on one hand d’une part

on the other hand d’autre part

iff [= if and only if ] si et seulement si

imply impliquer, entraîner

induction on récurrence sur

lemma lemme
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proof preuve ; démonstration

property propriété

satisfy property P satisfaire à la propriété P ; verifier la propriété P

proposition proposition

reasoning raisonnement

reduce to se ramener à

remark remarque(r)

required réquis(e)

result résultat

s.t. = such that

statement énoncé

t.f.a.e. = the following are equivalent

theorem théorème

true vrai

truth vérité

wlog = without loss of generality

word mot

in other words autrement dit

19



Functions

Formulas/Formulae

f(x) f of x

g(x, y) g of x (comma) y

h(2x, 3y) h of two x (comma) three y

sin(x) sine x

cos(x) cosine x

tan(x) tan x

arcsin(x) arc sine x

arccos(x) arc cosine x

arctan(x) arc tan x

sinh(x) hyperbolic sine x

cosh(x) hyperbolic cosine x

tanh(x) hyperbolic tan x

sin (x2) sine of x squared

sin(x)2 sine squared of x ; sine x, all squared
x+1

tan(y4)
x plus one, all over over tan of y to the four

3x−cos(2x) three to the (power of) x minus cosine of two x

exp (x3 + y3) exponential of x cubed plus y cubed

Intervals

(a, b) open interval a b

[a, b] closed interval a b

(a, b] half open interval a b (open on the left, closed on the right)

[a, b) half open interval a b (open on the right, closed on the left)

The French notation is different !

]a, b[ intervalle ouvert a b

[a, b] intervalle fermé a b

]a, b] intervalle demi ouvert a b (ouvert à gauche, fermé à droite)

[a, b[ intervalle demi ouvert a b (ouvert à droite, ferme à gauche)

Exercise. Which of the two notations do you prefer, and why ?
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Derivatives

f ′ f dash ; f prime ; the first derivative of f

f ′′ f double dash ; f double prime ; the second derivative of f

f (3) the third derivative of f

f (n) the n-th derivative of f
dy
dx

dy by dx ; the derivative of y by x
d2y
dx2

the second derivative of y by x ; d squared y by d x squared
∂f
∂x

the partial derivative of f by x (with respect to x ) ; partial df by dx

∂2f
∂x2

the second partial derivative of f by x (with respect to x )

partial d squared f by d x squared

∇f nabla f ; the gradient of f

∆f deltaf

Example. The (total) differential of a function f(x, y, z) in three real variables is equal to

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

The gradient of f is the vector whose components are the partial derivatives of f with respect to

the three variables :

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
The Laplace operator ∆ acts on f by taking the sum of the second partial derivatives with respect

to the three variables :

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

The Jacobian matrix of a pair of functions g(x, y), h(x, y) in two real variables is the 2× 2 matrix

whose entries are the partial derivatives of g and h, respectively, with respect to the two variables : ∂g
∂x

∂g
∂y

∂h
∂x

∂h
∂y


Integrals∫

f(x)dx integral of f of xdx∫ b
a
t2dt integral from a to b of t squared dt∫∫
S
h(x, y)dxdy double integral over S of h of xydxdy

Differential equations
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An ordinary (resp., a partial) differential equation, abbreviated as ODE (resp., PDE), is an equa-

tion involving an unknown function f of one (resp., more than one) variable together with its

derivatives (resp., partial derivatives). Its order is the maximal order of derivatives that appear

in the equation. The equation is linear if f and its derivatives appear linearly ; otherwise it is

non-linear.

f ′ + xf = 0 first order linear ODE

f ′′ + sin(f) = 0 second order non-linear ODE

(x2 + y) ∂f
∂x
− (x+ y2) ∂f

∂y
+ 1 = 0 first order linear PDE

The classical linear PDEs arising from physics involve the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

∆f = 0 the Laplace equation

∆f = λf the Helmholtz equation

∆g = ∂g
∂t

the heat equation

∆g = ∂2g
∂t2

the wave equation

Above, x, y, z are the standard coordinates on a suitable domain U in R3, t is the time variable,

f = f(x, y, z) and g = g(x, y, z, t). In addition, the function f( resp. , g) is required to satisfy sui-

table boundary conditions (resp., initial conditions) on the boundary of U( resp., for t = 0 ).

act v. agir

action action

bound borne

bounded borné(e)

bounded above borné(e) supérieurement

bounded below borné(e) inférieurement

unbounded non borné(e)

comma virgule

concave function fonction concave

condition condition

boundary condition condition au bord

initial condition condition initiale

constant n. constante

constant adj. constant(e)

constant function fonction constant(e)

22



non-constant adj. non constant(e)

non-constant function fonction non constante

continuous continu(e)

continuous function fonction continue

convex function fonction convexe

decrease n. diminution

decrease v. décroître

decreasing function fonction décroissante

strictly decreasing function fonction strictement décroissante

derivative dérivée

second derivative dérivée seconde

n-th derivative dérivée n-ième

partial derivative dérivée partielle

differential n. différentielle

differential form forme différentielle

differentiable function fonction dérivable

twice differentiable function fonction deux fois dérivable

n-times continuously differentiable function fonction n fois continument dérivable

domain domaine

equation équation

the heat equation l’équation de la chaleur

the wave equation l’équation des ondes

function fonction

graph graphe

increase n. croissance

increase v. croître

increasing function fonction croissante

strictly increasing function fonction strictement croissante

integral intégrale

interval intervalle

closed interval intervalle fermé

open interval intervalle ouvert

half-open interval intervalle demi ouvert

Jacobian matrix matrice jacobienne

Jacobian le jacobien [= le déterminant de la matrice jacobienne]
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linear linéaire

non-linear non linéaire

maximum maximum

global maximum maximum global

local maximum maximum local

minimum minimum

global minimum minimum global

local minimum minimum local

monotone function fonction monotone

strictly monotone function fonction strictement monotone

operator opérateur

the Laplace operator opérateur de Laplace

ordinary ordinaire

order ordre

otherwise autrement

partial partiel(le)

PDE [= partial differential equation] EDP

sign signe

value valeur

complex-valued function fonction à valeurs complexes

real-valued function fonction à valeurs réelles

variable variable

complex variable variable complexe

real variable variable réelle

function in three variables fonction en trois variables

with respect to [= w.r.t.] par rapport ‘

This is all Greek to me

Small Greek letters used in mathematics

α alpha β beta γ gamma δ delta

ε, ε epsilon ζ zeta η eta θ, ϑ theta

ι iota κ kappa λ lambda µ mu

ν nu ξ xi o omicron π,$ pi

ρ, % rho σ sigma τ tau v upsilon

φ, ϕ phi χ chi ψ psi ω omega
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Capital Greek letters used in mathematics

B Beta Γ Gamma ∆ Delta Θ Theta

Λ Lambda Ξ Xi Π Pi Σ Sigma

Υ Upsilon Φ Phi Ψ Psi Ω Omega

Sequences, Series

Convergence criteria

By definition, an infinite series of complex numbers
∑∞

n=1 an converges (to a complex number s) if

the sequence of partial sums sn = a1 + · · ·+an has a finite limit (equal to s) ; otherwise it diverges.

The simplest convergence criteria are based on the following two facts.

Fact 1. If
∑∞

n=1 |an| is convergent, so is
∑∞

n=1 an (in this case we say that the series
∑∞

n=1 an is

absolutely convergent).

Fact 2 . If 0 ≤ an ≤ bn for all sufficiently large n and if
∑∞

n=1 bn converges, so does
∑∞

n=1 an

Taking bn = rn and using the fact that the geometric series
∑∞

n=1 r
n of ratio r is convergent iff

|r| < 1, we deduce from Fact 2 the following statements.

The ratio test (d’Alembert). If there exists 0 < r < 1 such that, for all sufficiently large

n, |an+1| ≤ r |an| , then
∑∞

n=1 an is (absolutely) convergent.

The root test (Cauchy). If there exists 0 < r < 1 such that, for all sufficiently large n,
n
√
|an| ≤ r, then

∑∞
n=1 an is (absolutely) convergent.

What is the sum 1 + 2 + 3 + · · · equal to ?

At first glance, the answer is easy and not particularly interesting : as the partial sums

1, 1 + 2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10, . . .

tend towards plus infinity, we have

1 + 2 + 3 + · · · = +∞

It turns out that something much more interesting is going on behind the scenes. In fact, there

are several ways of "regularising" this divergent series and they all lead to the following surprising

answer : (the regularised value of ) 1 + 2 + 3 + · · · = − 1
12

How is this possible ? Let us pretend

that the infinite sums
a = 1 + 2 + 3 + 4 + · · ·

b = 1− 2 + 3− 4 + · · ·

c = 1− 1 + 1− 1 + · · ·
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all make sense. What can we say about their values ? Firstly, adding c to itself yields

c = 1− 1 + 1− 1 + · · ·

c = 1− 1 + 1− · · ·

c+ c = 1 + 0 + 0 + 0 + · · · = 1

⇒ c =
1

2

Secondly, computing c2 = c(1− 1 + 1− 1 + · · · ) = c− c+ c− c+ · · · by adding the infinitely many

rows in the following table
c = 1 −1 + 1− 1 + · · ·

−c = −1 + 1− 1 + · · ·

c = 1− 1 + · · ·

−c = −1 + · · ·
... . . .

we obtain b = c2 = 1
4
. Alternatively, adding b to itself gives

b = 1− 2 + 3− 4 + · · ·

b = 1− 2 + 3− · · ·

b+ b = 1− 1 + 1− 1 + · · · = c

 =⇒ b =
c

2
=

1

4

Finally, we can relate a to b, by adding up the following two rows :

a = 1 + 2 + 3 + 4 + · · ·

−4a = −4 − 8− · · ·

⇒ −3a = b =
1

4
⇒ a = − 1

12

Exercise. Using the same method, "compute" the sum

12 + 22 + 32 + 42 + · · ·

lim
x→1

f(x) = 2

the limit of f of x as x tends to one is equal to two
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approach approcher

close proche

arbitrarily close to arbitrairement proche de

compare comparer

comparison comparaison

converge converger

convergence convergence

criterion (pl. criteria) critère

diverge diverger

divergence divergence

infinite infini(e)

infinity l’infini

minus infinity moins l’infini

plus infinity plus l’infini

large grand

large enough assez grand

sufficiently large suffisamment grand

limit limite

tend to a limit admettre une limite

tends to
√

2 tends vers
√

2

neighbo(u)rhood voisinage

sequence suite

bounded sequence suite bornée

convergent sequence suite convergente

divergent sequence suite divergente

unbounded sequence suite non bornée

series série

absolutely convergent series série absolument convergente

geometric series série géométrique

sum somme

partial sum somme partielle

Prime Numbers

An integer n > 1 is a prime (number) if it cannot be written as a product of two integers a, b > 1.

If, on the contrary, n = ab for integers a, b > 1, we say that n is a composite number. The list of
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primes begins as follows :

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 . . .

Note the presence of several "twin primes" (pairs of primes of the form p, p+ 2 ) in this sequence :

11, 13 17, 19 29, 31 41, 43 59, 61

Two fundamental properties of primes - with proofs - were already contained in Euclid’s Elements :

Proposition 1. There are infinitely many primes. Proposition 2. Every integer n ≥ 1 can be written

in a unique way (up to reordering of the factors) as a product of primes.

Recall the proof of Proposition 1 : given any finite set of primes p1, . . . , pj, we must show that

there is a prime p different from each pi. Set M = p1 · · · pj; the integer N = M + 1 ≥ 2 is divisible

by at least one prime p (namely, the smallest divisor of N greater than 1). If p was equal to pi for

some i = 1, . . . , j, then it would divide both N and M = pi (M/pi) , hence also N −M = 1, which

is impossible. This contradiction implies that p 6= p1, . . . , pj, concluding the proof.

any single prime, since the proof works even for j = 0 : in this case N = 2 (as the empty product

M is equal to 1, by definition ) and p = 2.

It is easy to adapt this proof in order to show that there are infinitely many primes of the form

4n + 3 (resp., 6n + 5). It is slightly more difficult, but still elementary, to do the same for the

primes of the form 4n+ 1 (resp., 6n+ 1).

Questions About Prime Numbers

Q1. Given a large integer n (say, with several hundred decimal digits), is it possible to decide

whether or not n is a prime ?

Yes, there are algorithms for "primality testing" which are reasonably fast both in theory (the

Agrawal-Kayal-Saxena test) and in practice (the Miller-Rabin test).

Q2. Is it possible to find concrete large primes ?

Searching for huge prime numbers usually involves numbers of special form, such as the Mersenne

numbers Mn = 2n − 1 (if Mn is a prime, n is necessarily also a prime). The point is that there is

a simple test (the Lucas-Lehmer criterion) for deciding whether Mn is a prime or not.

In practice, if we wish to generate a prime with several hundred decimal digits, it is computatio-

nally feasible to pick a number randomly and then apply a primality testing algorithm to numbers

in its vicinity (having first eliminated those which are divisible by small primes).

Q3. Given a large integer n, is it possible to make explicit the factorisation of n into a product of

primes ? [For example, 999999 = 33 · 7 · 11 · 13 · 37.]
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At present, no (unless n has special form). It is an open question whether a fast "prime factorisa-

tion" algorithm exists (such an algorithm is known for a hypothetical quantum computer).

Q4. Are there infinitely many primes of special form ?

According to Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely many

primes of the form an + b, for fixed integers a, b ≥ 1 without a common factor. It is unknown

whether there are infinitely many primes of the form n2 + 1 (or, more generally, of the form f(n),

where f(n) is a polynomial of degree deg(f) > 1 ).

Similarly, it is unknown whether there are infinitely many primes of the form 2n−1 (the Mersenne

primes) or 2n + 1 (the Fermat primes).

Q5. Is there anything interesting about primes that one can actually prove ?

Green and Tao have recently shown that there are arbitrarily long arithmetic progressions consis-

ting entirely of primes.

digit chiffre

prime number nombre premier

twin primes nombres premiers jumeaux

progression progression

arithmetic progression progression arithmétique

geometric progression progression géométrique

‘
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