Mathematical English

Arithmetic

Integers

0	zero	10	ten	20	twenty
1	one	11	eleven	30	thirty
2	two	12	twelve	40	forty
3	three	13	thirteen	50	fifty
4	four	14	fourteen	60	sixty
5	five	15	fifteen	70	seventy
6	six	16	sixteen	80	eighty
7	seven	17	seventeen	90	ninety
8	eight	18	eighteen	100	one hundred
9	nine	19	nineteen	1000	one thousand

-245 minus two hundred and forty-five
22731 twenty-two thousand seven hundred and thirty-one
1000000 one million
$56000000 \quad$ fifty-six million
1000000000 one billion [US usage, now universal]
7000000000 seven billion [US usage, now universal]
1000000000000 one trillion [US usage, now universal]
3000000000000 three trillion [US usage, now universal]

Fractions [= Rational Numbers]

$\frac{1}{2}$	one half	$\frac{3}{8}$	three eighths
$\frac{1}{3}$	one third	$\frac{26}{9}$	twenty-six ninths
$\frac{1}{4}$	one quarter [= one fourth]	$-\frac{5}{34}$	minus five thirty-fourths
$\frac{1}{5}$	one fifth	$2 \frac{3}{7}$	two and three sevenths
$-\frac{1}{17}$	minus one seventeenth		

Real Numbers

-0.067	minus nought point zero six seven
81.59	eighty-one point five nine
$-2.3 \cdot 10^{6}$	minus two point three times ten to the six
$[=-2300000$	minus two million three hundred thousand]
$4 \cdot 10^{-3}$ four times ten to the minus three $[=0.004=4 / 1000$ four thousandths] $\pi[=3.14159 \ldots]$ pi [pronounced as 'pie'] $e[=2.71828 \ldots]$ e [base of the natural logarithm] i i Complex Numbers $3+4 i$ three plus four i $1-2 i$ one minus two i	

$\overline{1-2 i}=1+2 i \quad$ the complex conjugate of one minus two i equals one plus two i
The real part and the imaginary part of $3+4 i$ are equal, respectively, to 3 and 4 .

Basic arithmetic operations

Addition :	$3+5=8$	three plus five equals [$=$ is equal to $]$ eight
Subtraction :	$3-5=-2$	three minus five equals $[=\ldots]$ minus two
Multiplication :	$3 \cdot 5=15$	three times five equals [$=\ldots]$ fifteen
Division :	$3 / 5=0.6$	three divided by five equals [$=\ldots]$ zero point six

$(2-3) \cdot 6+1=-5$	two minus three in brackets times six plus one equals minus five
$\frac{1-3}{2+4}=-1 / 3$	one minus three over two plus four equals minus one third
$4![=1 \cdot 2 \cdot 3 \cdot 4]$	four factorial

Exponentiation, Roots

5^{2}	$[=5 \cdot 5=25]$	five squared
5^{3}	$[=5 \cdot 5 \cdot 5=125]$	five cubed
5^{4}	$[=5 \cdot 5 \cdot 5 \cdot 5=625]$	five to the (power of) four
5^{-1}	$[=1 / 5=0.2]$	five to the minus one
5^{-2}	$\left[=1 / 5^{2}=0.04\right]$	five to the minus two
$\sqrt{3}$	$[=1.73205 \ldots]$	the square root of three
$\sqrt[3]{64}$	$[=4]$	the cube root of sixty four
$\sqrt[5]{32}$	$[=2]$	the fifth root of thirty two

In the complex domain the notation $\sqrt[n]{a}$ is ambiguous, since any non-zero complex number has n different n-th roots. For example, $\sqrt[4]{-4}$ has four possible values : $\pm 1 \pm i$ (with all possible combinations of signs).

$$
\begin{array}{ll}
(1+2)^{2+2} & \text { one plus two, all to the power of two plus two } \\
e^{\pi i}=-1 & \text { e to the (power of) pi i equals minus one }
\end{array}
$$

Divisibility

The multiples of a positive integer a are the numbers $a, 2 a, 3 a, 4 a, \ldots$ If b is a multiple of a, we also say that a divides b, or that a is a divisor of b (notation : $a \mid b$). This is equivalent to $\frac{b}{a}$ being an integer.

Division with remainder

If a, b are arbitrary positive integers, we can divide b by a, in general, only with a remainder. For example, 7 lies between the following two consecutive multiples of 3 :

$$
2 \cdot 3=6<7<3 \cdot 3=9, \quad 7=2 \cdot 3+1 \quad\left(\Longleftrightarrow \frac{7}{3}=2+\frac{1}{3}\right)
$$

In general, if $q a$ is the largest multiple of a which is less than or equal to b, then

$$
b=q a+r, \quad r=0,1, \ldots, a-1
$$

The integer q (resp., r) is the quotient (resp., the remainder) of the division of b by a.

Euclid's algorithm

This algorithm computes the greatest common divisor (notation : $(a, b)=\operatorname{gcd}(a, b))$ of two positive integers a, b.

It proceeds by replacing the pair a, b (say, with $a \leq b$) by r, a, where r is the remainder of the division of b by a. This procedure, which preserves the gcd, is repeated until we arrive at $r=0$. Example. Compute gcd $(12,44)$.

$$
\begin{aligned}
44 & =3 \cdot 12+8 \\
12 & =1 \cdot 8+4 \quad \operatorname{gcd}(12,44)=\operatorname{gcd}(8,12)=\operatorname{gcd}(4,8)=\operatorname{gcd}(0,4)=4 \\
8 & =2 \cdot 4+0
\end{aligned}
$$

This calculation allows us to write the fraction $\frac{44}{12}$ in its lowest terms, and also as a continued fraction :

$$
\frac{44}{12}=\frac{44 / 4}{12 / 4}=\frac{11}{3}=3+\frac{1}{1+\frac{1}{2}}
$$

If $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime.
add
algorithm
Euclid's algorithm
bracket
left bracket
right bracket
curly bracket
denominator
difference
divide
divisibility
divisor
exponent
factorial
fraction
continued fraction
gcd [= greatest common divisor]
lcm [= least common multiple]
infinity
iterate
iteration
multiple
multiply
number
even number
odd number
numerator
pair
pairwise
power
product
quotient
ratio
rational
irrational
additionner
algorithme
algorithme de division euclidienne
parenthèse
parenthèse à gauche
parenthèse à droite
accolade
denominateur
différence
diviser
divisibilité
diviseur
exposant
factoriel
fraction
fraction continue
pgcd [$=$ plus grand commun diviseur]
ppcm [= plus petit commun multiple]
l'infini
itérer
itération
multiple
multiplier
nombre
nombre pair
nombre impair
numerateur
couple
deux à deux
puissance
produit
quotient
rapport ; raison
rationnel(le)
irrationnel(le)
relatively prime
remainder
root
sum
subtract
premiers entre eux
reste
racine
somme
soustraire

Algebra

Algebraic Expressions

$A=a^{2}$	capital a equals small a squared
$a=x+y$	a equals x plus y
$b=x-y$	b equals x minus y
$c=x \cdot y \cdot z$	c equals x times y times z
$c=x y z$	c equals x y z
$(x+y) z+x y$	x plus y in brackets times z plus x y
$x^{2}+y^{3}+z^{5}$	x squared plus y cubed plus z to the (power of) five
$x^{n}+y^{n}=z^{n}$	x to the n plus y to the n equals z to the n
$(x-y)^{3 m}$	x minus y in brackets to the (power of) three m x minus y, all to the (power of) three m
$2^{x} 3^{y}$	two to the x times three to the y
$a x^{2}+b x+c$	a x squared plus $\mathrm{b} \times$ plus c
$\sqrt{x}+\sqrt[3]{y}$	the square root of x plus the cube root of y
$\begin{aligned} & \sqrt[n]{x+y} \\ & a+b \end{aligned}$	the n-th root of x plus y
$\frac{a+b}{c-d}$	a plus b over c minus d
$\binom{n}{m}$	(the binomial coefficient) n over m

Indices

x_{0}	x zero ; x nought
$x_{1}+y_{i}$	x one plus y i
$R_{i j}$	(capital) R (subscript) ij ; (capital) R lower i j
$M_{i j}^{k}$	(capital) M upper k lower i j ;
	(capital) M superscript k subscript i j
$\sum_{i=0}^{n} a_{i} x^{i}$	sum of a i x to the ifor ifrom nought [= zero] to n ; sum over i (ranging) from zero to n of a i (times) x to the i
$\prod_{m=1}^{\infty} b_{m}$	product of b m for m from one to infinity ;
	product over m (ranging) from one to infinity of b m
$\sum_{j=1}^{n} a_{i j} b_{j k}$	sum of a i j times b jk for j from one to n ;
	sum over j (ranging) from one to n of a $\mathrm{i} j$ times bjk
$\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$	sum of n over i x to the i y to the n minus i for i
	from nought [$=$ zero] to n
	Matrices
column	colonne
column vector	vecteur colonne
determinant	déterminant
index (pl. indices)	indice
matrix	matrice
matrix entry (pl.	ntries) coefficient d'une matrice
$m \times n$ matrix [mby	n matrix] matrice à m lignes et n colonnes
multi-index	multiindice
row	ligne
row vector	vecteur ligne
square	carré
square matrix	matrice carrée

Inequalities

$x>y \quad \mathrm{x}$ is greater than y
$x \geq y \quad \mathrm{x}$ is greater (than) or equal to y
$x<y \quad \mathrm{x}$ is smaller than y
$x \leq y \quad \mathrm{x}$ is smaller (than) or equal to y
$x>0 \quad \mathrm{x}$ is positive
$x \geq 0 \quad x$ is positive or zero ; x is non-negative
$x<0 \quad \mathrm{x}$ is negative
$x \leq 0 \quad \mathrm{x}$ is negative or zero

The French terminology is different!
$x>y \quad x$ est strictement plus grand que y
$x \geq y \quad \mathrm{x}$ est supérieur ou égal à y
$x<y \quad x$ est strictement plus petit que y
$x \leq y \quad \mathrm{x}$ est inférieur ou égal à y
$x>0 \quad x$ est strictement positif
$x \geq 0 \quad$ x est positif ou nul
$x<0 \quad x$ est strictement négatif
$x \leq 0 \quad \mathrm{x}$ est négatif ou nul

Polynomial equations

A polynomial equation of degree $n \geq 1$ with complex coefficients

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0 \quad\left(a_{0} \neq 0\right)
$$

has n complex solutions ($=$ roots), provided that they are counted with multiplicities. For example, a quadratic equation

$$
a x^{2}+b x+c=0 \quad(a \neq 0)
$$

can be solved by completing the square, i.e., by rewriting the L.H.S. as $a(x+\text { constant })^{2}+$ another constant. This leads to an equivalent equation

$$
a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a}
$$

whose solutions are

$$
x_{1,2}=\frac{-b \pm \sqrt{\Delta}}{2 a}
$$

where $\Delta=b^{2}-4 a c\left(=a^{2}\left(x_{1}-x_{2}\right)^{2}\right)$ is the discriminant of the original equation. More precisely,

$$
a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

If all coefficients a, b, c are real, then the sign of Δ plays a crucial rôle :
if $\Delta=0$, then $x_{1}=x_{2}(=-b / 2 a)$ is a double root;
if $\Delta>0$, then $x_{1} \neq x_{2}$ are both real;
if $\Delta<0$, then $x_{1}=\overline{x_{2}}$ are complex conjugates of each other (and non-real).

coefficient	coefficient
degree	degré
discriminant	discriminant
equation	équation
L.H.S. [= left hand side]	terme de gauche
R.H.S. [= right hand side]	terme de droite
polynomial adj.	polynomial(e)
polynomial n.	polynôme
provided that	à condition que
root	racine
simple root	racine simple
double root	racine double
triple root	racine triple
multiple root	racine multiple
root of multiplicity \mathbf{m}	racine de multiplicité m
solution	solution
solve	résoudre

Congruences

Two integers a, b are congruent modulo a positive integer m if they have the same remainder when divided by m (equivalently, if their difference $a-b$ is a multiple of m).
$a \equiv b(\bmod m) \quad$ a is congruent to b modulo m
$a \equiv b(m)$

Some people use the following, slightly horrible, notation : $a=b[m]$.
Fermat's Little Theorem. If p is a prime number and a is an integer, then $a^{p} \equiv a(\bmod p)$. In other words, $a^{p}-a$ is always divisible by p.
Chinese Remainder Theorem. If m_{1}, \ldots, m_{k} are pairwise relatively prime integers, then the system of congruences

$$
x \equiv a_{1}\left(\bmod m_{1}\right) \quad \cdots \quad x \equiv a_{k}\left(\bmod m_{k}\right)
$$

has a unique solution modulo $m_{1} \cdots m_{k}$, for any integers a_{1}, \ldots, a_{k}.

Let E be the intersection of the diagonals of the rectangle $A B C D$. The lines $(A B)$ and $(C D)$ are parallel to each other (and similarly for $(B C)$ and $(D A)$). We can see on this picture several acute angles: $\angle E A D, \angle E A B, \angle E B A, \angle A E D, \angle B E C \ldots ;$ right angles : $\angle A B C, \angle C D A, \angle D A B$ and obtuse angles : $\angle A E B, \angle C E D$

Let P and Q be two points lying on an ellipse e. Denote by R the intersection point of the respective tangent lines to e at P and Q. The line r passing through P and Q is called the polar of the point R w.r.t. the ellipse e.

Here we see three concentric circles with respective radii equal to 1,2 and 3 .

If we draw a line through each vertex of a given triangle and the midpoint of the opposite side, we obtain three lines which intersect at the barycentre ($=$ the centre of gravity) of the triangle.

Above, three circles have a common tangent at their (unique) intersection point.

Euler's Formula

Let P be a convex polyhedron. Euler's formula asserts that

$$
V-E+F=2
$$

$$
\begin{array}{lr}
V= & \text { the number of vertices of } P \\
E= & \text { the number of edges of } P \\
F= & \text { thenumberof facesof } P
\end{array}
$$

angle
acute angle
obtuse angle
right angle
area
axis (pl. axes)
coordinate axis
horizontal axis
vertical axis
centre [US : center]
circle
colinear (points)
conic (section)
cone
convex
cube
curve
dimension
distance
dodecahedron
edge
ellipse
ellipsoid
face
hexagon
hyperbola
hyperboloid
one-sheet (two-sheet) hyperboloid
angle
angle aigu
angle obtus
angle droit
aire
axe
axe de coordonnées
axe horisontal
axe vertical
centre
cercle
(points) alignés
(section) conique
cône
convexe
cube
courbe
dimension
distance
dodecaèdre
arête
ellipse
ellipsoïde
face
hexagone
hyperbole
hyperboloïde
hyperbole
icosahedron
intersect
intersection
lattice
lettuce
length
line
midpoint of
octahedron
orthogonal ; perpendicular
parabola
parallel
parallelogram
pass through
pentagon
plane
point
(regular) polygon
(regular) polyhedron (pl. polyhedra)
projection
central projection projection
orthogonal projection
parallel projection
quadrilateral
radius (pl. radii)
rectangle
rectangular
rotation
side
slope
sphere
square
square lattice
surface
tangent to
tangent line
icosaèdre
intersecter
intersection
réseau
laitue
longeur
droite
milieu de
octaèdre
orthogonal(e) ; perpendiculaire
parabole
parallèl(e)
parallélogramme
passer par
pentagone
plan
point
polygone (régulier)
polyèdre (régulier)
projection
conique ; projection centrale
projection orthogonale
projection parallèle
quadrilatère
rayon
rectangle
rectangulaire
rotation
côté
pente
sphère
carré
réseau carré
surface
tangent(e) à
droite tangente

tangent hyper(plane)	(hyper)plan tangent
tetrahedron	tetraèdre
triangle	triangle
equilateral triangle	triangle équilatéral
isosceles triangle	triangle isocèle
right-angled triangle	triangle rectangle
vertex	sommet

Linear Algebra

basis (pl. bases)
change of basis
bilinear form
coordinate
(non-)degenerate
dimension
codimension
finite dimension
infinite dimension
dual space
eigenvalue
eigenvector
(hyper)plane
image
isometry
kernel
linear
linear form
linear map
linearly dependent
linearly independent
multi-linear form
origin
orthogonal ; perpendicular orthogonal complement
orthogonal matrix
base
changement de base
forme bilinéaire
coordonnée
(non) dégénéré(e)
dimension
codimension
dimension finie
dimension infinie
espace dual
valeur propre
vecteur propre
(hyper)plan
image
isométrie
noyau
linéaire
forme linéaire
application linéaire
liés ; linéairement dépendants
libres; linéairement indépendants
forme multilinéaire
origine
orthogonal(e) ; perpendiculaire
supplémentaire orthogonal
matrice orthogonale
(orthogonal) projection
quadratic form
reflection
represent
rotation
scalar
scalar product
subspace
(direct) sum
skew-symmetric
symmetric
trilinear form
vector
vector space
vector subspace
ctor space of dimension \mathbf{n}
projection (orthogonale)
forme quadratique
réflexion
représenter
rotation
scalaire
produit scalaire
sous-espace
somme (directe)
anti-symétrique
symétrique
forme trilinéaire
vecteur
espace vectoriel
sous-espace vectoriel
ve espace vectoriel de dimension n

Mathematical arguments

Set theory

$x \in A$	x is an element of $A ; x$ lies in A;
	x belongs to A ; x is in A
$x \notin A$	x is not an element of $A ; x$ does not lie in A;
	x does not belong to A ; x is not in A
$x, y \in A$	(both) x and y are elements of $A ; \ldots$ lie in A;
	\ldots belong to $\mathrm{A} ; \ldots$ are in A
$x, y \notin A$	(neither) x nor y is an element of $\mathrm{A} ; \ldots$. lies in A ;
	\ldots. . belongs to A ; ...is in A
\emptyset	the empty set ($=$ set with no elements)
$A=\emptyset$	A is an empty set
$A \neq \emptyset$	A is non-empty
$A \cup B$	the union of (the sets) A and B; A union B
$A \cap B$	the intersection of (the sets) A and B; A intersection B
$A \times B$	the product of (the sets) A and B; A times B
$A \cap B=\emptyset$	A is disjoint from B; the intersection of A and B is empty
$\{x \mid \ldots\}$	the set of all x such that ...
C	the set of all complex numbers
Q	the set of all rational numbers
R	the set of all real numbers

$A \cup B$ contains those elements that belong to A or to B (or to both).
$A \cap B$ contains those elements that belong to both A and B.
$A \times B$ contains the ordered pairs (a, b), where $a($ resp. , b) belongs to A (resp., to B)
$A^{n}=\underbrace{A \times \cdots \times A}_{n \text { times }}$ contains all ordered n-tuples of elements of A.
belong to appartenir à
disjoint from disjoint de
element élément
empty vide
non-empty non vide
intersection intersection
inverse l'inverse
the inverse map to $f \quad$ l'application réciproque de f
the inverse of f l'inverse de f
map application
bijective map application bijective
injective map application injective
surjective map application surjective
pair couple
ordered pair couple ordonné
triple triplet
quadruple quadruplet
n-tuple n-uplet
relation relation
equivalence relation relation d'équivalence
set ensemble
finite set ensemble fini
infinite set ensemble infini
union réunion

Logic

```
S\veeT S or T
S^T S and T
S\LongrightarrowT S implies T; if S then T
S\LongleftrightarrowT S is equivalent to T; S iff T
\negS not S
\forallx\inA... for each [= for every] x in A ...
\existsx\inA... there exists [= there is] an x in A (such that) ...
\exists!x\inA\ldots... there exists [= there is] a unique x in A (such that) ...
#x\inA\ldots. there is no x in A (such that)...
x>0\wedgey>0\Longrightarrowx+y>0 if both x and y are positive, so is }x+
#x\in\textrm{Q}\quad\mp@subsup{x}{}{2}=2 no rational number has a square equal to two
```



```
that the absolute value of x minus y is smaller than two thirds
```

Exercise. Read out the following statements.

$$
\begin{aligned}
& x \in A \cap B \Longleftrightarrow(x \in A \wedge x \in B), \quad x \in A \cup B \Longleftrightarrow(x \in A \vee x \in B), \\
& \forall x \in \mathbf{R} \quad x^{2} \geq 0, \quad \neg \exists x \in \mathbf{R} \quad x^{2}<0, \quad \forall y \in \mathbf{C} \exists z \in \mathbf{C} \quad y=z^{2}
\end{aligned}
$$

Basic arguments

It follows from ... that ...
We deduce from ... that ...
Conversely, ... implies that ...
Equality (1) holds, by Proposition 2.
By definition, ...
The following statements are equivalent.
Thanks to . . . , the properties . . . and . . . of . . . are equivalent to each other.
. . . has the following properties.
Theorem 1 holds unconditionally.
This result is conditional on Axiom A.
. . . is an immediate consequence of Theorem 3.
Note that . . . is well-defined, since . . .
As . . . satisfies . . . , formula (1) can be simplified as follows.
We conclude (the argument) by combining inequalities (2) and (3).
(Let us) denote by X the set of all . . .
Let X be the set of all . . .
Recall that . . . , by assumption.
It is enough to show that . . .
We are reduced to proving that . . .
The main idea is as follows.
We argue by contradiction. Assume that . . . exists.
The formal argument proceeds in several steps.
Consider first the special case when . . .
The assumptions . . . and . . . are independent (of each other), since . . .
..., which proves the required claim.
We use induction on n to show that . . .
On the other hand, . . .
..., which means that...
In other words, . . .
argument argument
assume supposer
assumption hypothèse
axiom axiome
case cas
special case cas particulier
claim v. affirmer
(the following) claim l'affirmation suivante; l'assertion suivante
concept notion
conclude conclure
conclusion conclusion
condition condition
a necessary and sufficient condition une condition necessaire et suffisante
conjecture conjecture
consequence conséquence
consider considérer
contradict contredire
contradiction contradiction
conversely réciproquement
corollary corollaire
deduce déduire
define définir
well-defined bien défini(e)
definition définition
equivalent équivalent(e)
establish établir
example exemple
exercise exercice
explain expliquer
explanation explication
false faux, fausse
formal formel
hand main
on one hand d'une part
on the other hand d'autre part
iff [= if and only if] si et seulement si
imply impliquer, entraîner
induction on récurrence sur
lemma lemme
proof preuve ; démonstration
property propriété
satisfy property \mathbf{P} satisfaire à la propriété P; verifier la propriété P
proposition proposition
reasoning raisonnement
reduce to se ramener à
remark remarque(r)
required réquis(e)
result résultat
s.t. $=$ such that
statement énoncé
t.f.a.e. $=$ the following are equivalent
theorem théorème
true vrai
truth vérité
wlog $=$ without loss of generality
word mot
in other words autrement dit

Functions

Formulas/Formulae

$f(x)$	f of x
$g(x, y)$	g of x (comma) y
$h(2 x, 3 y)$	h of two x (comma) three y
$\sin (x)$	sine x
$\cos (x)$	cosine x
$\tan (x)$	$\tan \mathrm{x}$
$\arcsin (x)$	$\operatorname{arc} \operatorname{sine~} \mathrm{x}$
$\arccos (x)$	arc cosine x
$\arctan (x)$	arc tan x
$\sinh (x)$	hyperbolic sine x
$\cosh (x)$	hyperbolic cosine x
$\tanh (x)$	hyperbolic tan x
$\sin \left(x^{2}\right)$	sine of x squared
$\sin (x)^{2}$	sine squared of x ; sine x, all squared
$\frac{x+1}{\tan \left(y^{4}\right)}$	x plus one, all over over tan of y to the four
$3^{x-\cos (2 x)}$	three to the (power of) x minus cosine of two x
$\exp \left(x^{3}+y^{3}\right)$	exponential of x cubed plus y cubed

Intervals

(a, b) open interval a b
$[a, b] \quad$ closed interval ab
(a, b] half open interval ab (open on the left, closed on the right)
$[a, b)$ half open interval a b (open on the right, closed on the left)

The French notation is different!
$] a, b[$ intervalle ouvert a b
$[a, b]$ intervalle fermé a b
]a,b] intervalle demi ouvert a b (ouvert à gauche, fermé à droite)
$[a, b[$ intervalle demi ouvert a b (ouvert à droite, ferme à gauche)

Exercise. Which of the two notations do you prefer, and why?

Derivatives

$f^{\prime} \quad \mathrm{f}$ dash; f prime; the first derivative of f
$f^{\prime \prime} \quad \mathrm{f}$ double dash; f double prime ; the second derivative of f
$f^{(3)} \quad$ the third derivative of f
$f^{(n)} \quad$ the n -th derivative of f
$\frac{d y}{d x} \quad d y$ by $d x$; the derivative of y by x
$\frac{d^{2} y}{d x^{2}} \quad$ the second derivative of y by x; d squared y by $\mathrm{d} x$ squared
$\frac{\partial f}{\partial x}$ the partial derivative of f by x (with respect to x); partial df by dx
$\frac{\partial^{2} f}{\partial x^{2}}$ the second partial derivative of f by x (with respect to x)
partial d squared f by d x squared
$\nabla f \quad$ nabla f ; the gradient of f
Δf delta f

Example. The (total) differential of a function $f(x, y, z)$ in three real variables is equal to

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z
$$

The gradient of f is the vector whose components are the partial derivatives of f with respect to the three variables :

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

The Laplace operator Δ acts on f by taking the sum of the second partial derivatives with respect to the three variables :

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

The Jacobian matrix of a pair of functions $g(x, y), h(x, y)$ in two real variables is the 2×2 matrix whose entries are the partial derivatives of g and h, respectively, with respect to the two variables :

$$
\left(\begin{array}{ll}
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\
\frac{\partial h}{\partial x} & \frac{\partial h}{\partial y}
\end{array}\right)
$$

Integrals

$\int f(x) d x \quad$ integral of f of $x d x$
$\int_{a}^{b} t^{2} d t \quad$ integral from a to b of t squared $d t$
$\iint_{S} h(x, y) d x d y \quad$ double integral over S of h of xydxdy

Differential equations

An ordinary (resp., a partial) differential equation, abbreviated as ODE (resp., PDE), is an equation involving an unknown function f of one (resp., more than one) variable together with its derivatives (resp., partial derivatives). Its order is the maximal order of derivatives that appear in the equation. The equation is linear if f and its derivatives appear linearly; otherwise it is non-linear.

$$
\begin{array}{ll}
f^{\prime}+x f=0 & \text { first order linear ODE } \\
f^{\prime \prime}+\sin (f)=0 & \text { second order non-linear ODE } \\
\left(x^{2}+y\right) \frac{\partial f}{\partial x}-\left(x+y^{2}\right) \frac{\partial f}{\partial y}+1=0 & \text { first order linear PDE }
\end{array}
$$

The classical linear PDEs arising from physics involve the Laplace operator

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

$\Delta f=0 \quad$ the Laplace equation
$\Delta f=\lambda f \quad$ the Helmholtz equation
$\Delta g=\frac{\partial g}{\partial t} \quad$ the heat equation
$\Delta g=\frac{\partial^{2} g}{\partial t^{2}} \quad$ the wave equation

Above, x, y, z are the standard coordinates on a suitable domain U in \mathbf{R}^{3}, t is the time variable, $f=f(x, y, z)$ and $g=g(x, y, z, t)$. In addition, the function f (resp. , g) is required to satisfy suitable boundary conditions (resp., initial conditions) on the boundary of U (resp., for $t=0$).
act v . agir
action action
bound borne
bounded borné(e)
bounded above borné(e) supérieurement
bounded below borné(e) inférieurement
unbounded non borné(e)
comma virgule
concave function fonction concave
condition condition
boundary condition condition au bord
initial condition condition initiale
constant n. constante
constant adj. constant(e)
constant function fonction constant(e)
non-constant adj. non constant(e)
non-constant function fonction non constante
continuous continu(e)
continuous function fonction continue
convex function fonction convexe
decrease \mathbf{n}. diminution
decrease v. décroître
decreasing function fonction décroissante
strictly decreasing function fonction strictement décroissante
derivative dérivée
second derivative dérivée seconde
n-th derivative dérivée n-ième
partial derivative dérivée partielle
differential n. différentielle
differential form forme différentielle
differentiable function fonction dérivable
twice differentiable function fonction deux fois dérivable
n -times continuously differentiable function fonction n fois continument dérivable
domain domaine
equation équation
the heat equation l'équation de la chaleur
the wave equation l'équation des ondes
function fonction
graph graphe
increase n. croissance
increase v. croître
increasing function fonction croissante
strictly increasing function fonction strictement croissante
integral intégrale
interval intervalle
closed interval intervalle fermé
open interval intervalle ouvert
half-open interval intervalle demi ouvert
Jacobian matrix matrice jacobienne
Jacobian le jacobien [= le déterminant de la matrice jacobienne]
linear linéaire
non-linear non linéaire
maximum maximum
global maximum maximum global
local maximum maximum local
minimum minimum
global minimum minimum global
local minimum minimum local
monotone function fonction monotone
strictly monotone function fonction strictement monotone
operator opérateur
the Laplace operator opérateur de Laplace
ordinary ordinaire
order ordre
otherwise autrement
partial partiel(le)
PDE [= partial differential equation] EDP
sign signe
value valeur
complex-valued function fonction à valeurs complexes
real-valued function fonction à valeurs réelles
variable variable
complex variable variable complexe
real variable variable réelle
function in three variables fonction en trois variables
with respect to [$=$ w.r.t.] par rapport ${ }^{\prime}$

This is all Greek to me

Small Greek letters used in mathematics

α	alpha	β	beta	γ	gamma	δ	delta
ϵ, ε	epsilon	ζ	zeta	η	eta	θ, ϑ	theta
ι	iota	κ	kappa	λ	lambda	μ	mu
ν	nu	ξ	xi	o	omicron	π, ϖ	pi
ρ, ϱ	rho	σ	sigma	τ	tau	v	upsilon
ϕ, φ	phi	χ	chi	ψ	psi	ω	omega

Capital Greek letters used in mathematics

B	Beta	Γ	Gamma	Δ	Delta	Θ	Theta
Λ	Lambda	Ξ	Xi	Π	Pi	Σ	Sigma
Υ	Upsilon	Φ	Phi	Ψ	Psi	Ω	Omega

Sequences, Series

Convergence criteria

By definition, an infinite series of complex numbers $\sum_{n=1}^{\infty} a_{n}$ converges (to a complex number s) if the sequence of partial sums $s_{n}=a_{1}+\cdots+a_{n}$ has a finite limit (equal to s) ; otherwise it diverges. The simplest convergence criteria are based on the following two facts.
Fact 1. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent, so is $\sum_{n=1}^{\infty} a_{n}$ (in this case we say that the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent).
Fact 2. If $0 \leq a_{n} \leq b_{n}$ for all sufficiently large n and if $\sum_{n=1}^{\infty} b_{n}$ converges, so does $\sum_{n=1}^{\infty} a_{n}$ Taking $b_{n}=r^{n}$ and using the fact that the geometric series $\sum_{n=1}^{\infty} r^{n}$ of ratio r is convergent iff $|r|<1$, we deduce from Fact 2 the following statements.

The ratio test (d'Alembert). If there exists $0<r<1$ such that, for all sufficiently large $n,\left|a_{n+1}\right| \leq r\left|a_{n}\right|$, then $\sum_{n=1}^{\infty} a_{n}$ is (absolutely) convergent.
The root test (Cauchy). If there exists $0<r<1$ such that, for all sufficiently large n, $\sqrt[n]{\left|a_{n}\right|} \leq r$, then $\sum_{n=1}^{\infty} a_{n}$ is (absolutely) convergent.

$$
\text { What is the sum } 1+2+3+\cdots \text { equal to? }
$$

At first glance, the answer is easy and not particularly interesting : as the partial sums

$$
1, \quad 1+2=3, \quad 1+2+3=6, \quad 1+2+3+4=10, \quad \ldots
$$

tend towards plus infinity, we have

$$
1+2+3+\cdots=+\infty
$$

It turns out that something much more interesting is going on behind the scenes. In fact, there are several ways of "regularising" this divergent series and they all lead to the following surprising answer : (the regularised value of) $1+2+3+\cdots=-\frac{1}{12}$ How is this possible? Let us pretend that the infinite sums

$$
\begin{aligned}
& a=1+2+3+4+\cdots \\
& b=1-2+3-4+\cdots \\
& c=1-1+1-1+\cdots
\end{aligned}
$$

all make sense. What can we say about their values? Firstly, adding c to itself yields

$$
\left.\begin{array}{c}
c=1-1+1-1+\cdots \\
c=1-1+1-\cdots \\
c+c=1+0+0+0+\cdots=1
\end{array}\right\} \Rightarrow c=\frac{1}{2}
$$

Secondly, computing $c^{2}=c(1-1+1-1+\cdots)=c-c+c-c+\cdots$ by adding the infinitely many rows in the following table

$$
\begin{array}{rr}
c=1 & -1+1-1+\cdots \\
-c= & -1+1-1+\cdots \\
c= & 1-1+\cdots \\
-c= & -1+\cdots
\end{array}
$$

we obtain $b=c^{2}=\frac{1}{4}$. Alternatively, adding b to itself gives

$$
\left.\begin{array}{rl}
b & =1-2+3-4+\cdots \\
b & =1-2+3-\cdots \\
b+b & =1-1+1-1+\cdots=c
\end{array}\right\} \Longrightarrow b=\frac{c}{2}=\frac{1}{4}
$$

Finally, we can relate a to b, by adding up the following two rows :

$$
\left.\begin{array}{c}
a=1+2+3+4+\cdots \\
-4 a=-4 \quad-8-\cdots
\end{array}\right\} \Rightarrow-3 a=b=\frac{1}{4} \Rightarrow a=-\frac{1}{12}
$$

Exercise. Using the same method, "compute" the sum

$$
\begin{gathered}
1^{2}+2^{2}+3^{2}+4^{2}+\cdots \\
\lim _{x \rightarrow 1} f(x)=2
\end{gathered}
$$

the limit of f of x as x tends to one is equal to two
approach
close
arbitrarily close to
compare
comparison
converge
convergence
criterion (pl. criteria)
diverge
divergence
infinite
infinity
minus infinity
plus infinity
large
large enough
sufficiently large
limit
tend to a limit
tends to $\sqrt{2}$
neighbo(u)rhood
sequence
bounded sequence
convergent sequence
divergent sequence
unbounded sequence
series
absolutely convergent series
geometric series
sum
partial sum
approcher
proche
arbitrairement proche de
comparer
comparaison
converger
convergence
critère
diverger
divergence
infini(e)
l'infini
moins l'infini
plus l'infini
grand
assez grand
suffisamment grand
limite
admettre une limite
tends vers $\sqrt{2}$
voisinage
suite
suite bornée
suite convergente
suite divergente
suite non bornée
série
série absolument convergente
série géométrique
somme
somme partielle

Prime Numbers

An integer $n>1$ is a prime (number) if it cannot be written as a product of two integers $a, b>1$. If, on the contrary, $n=a b$ for integers $a, b>1$, we say that n is a composite number. The list of
primes begins as follows :

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 \ldots
$$

Note the presence of several "twin primes" (pairs of primes of the form $p, p+2$) in this sequence :

$$
11,13 \quad 17,19 \quad 29,31 \quad 41,43 \quad 59,61
$$

Two fundamental properties of primes - with proofs - were already contained in Euclid's Elements : Proposition 1. There are infinitely many primes. Proposition 2. Every integer $n \geq 1$ can be written in a unique way (up to reordering of the factors) as a product of primes.

Recall the proof of Proposition 1 : given any finite set of primes p_{1}, \ldots, p_{j}, we must show that there is a prime p different from each p_{i}. Set $M=p_{1} \cdots p_{j}$; the integer $N=M+1 \geq 2$ is divisible by at least one prime p (namely, the smallest divisor of N greater than 1). If p was equal to p_{i} for some $i=1, \ldots, j$, then it would divide both N and $M=p_{i}\left(M / p_{i}\right)$, hence also $N-M=1$, which is impossible. This contradiction implies that $p \neq p_{1}, \ldots, p_{j}$, concluding the proof. any single prime, since the proof works even for $j=0$: in this case $N=2$ (as the empty product M is equal to 1 , by definition) and $p=2$.
It is easy to adapt this proof in order to show that there are infinitely many primes of the form $4 n+3$ (resp., $6 n+5$). It is slightly more difficult, but still elementary, to do the same for the primes of the form $4 n+1$ (resp., $6 n+1$).

Questions About Prime Numbers

Q1. Given a large integer n (say, with several hundred decimal digits), is it possible to decide whether or not n is a prime?

Yes, there are algorithms for "primality testing" which are reasonably fast both in theory (the Agrawal-Kayal-Saxena test) and in practice (the Miller-Rabin test).

Q2. Is it possible to find concrete large primes?
Searching for huge prime numbers usually involves numbers of special form, such as the Mersenne numbers $M_{n}=2^{n}-1$ (if M_{n} is a prime, n is necessarily also a prime). The point is that there is a simple test (the Lucas-Lehmer criterion) for deciding whether M_{n} is a prime or not.

In practice, if we wish to generate a prime with several hundred decimal digits, it is computationally feasible to pick a number randomly and then apply a primality testing algorithm to numbers in its vicinity (having first eliminated those which are divisible by small primes).
Q3. Given a large integer n, is it possible to make explicit the factorisation of n into a product of primes? $\quad\left[\right.$ For example, $999999=3^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 37$.]

At present, no (unless n has special form). It is an open question whether a fast "prime factorisation" algorithm exists (such an algorithm is known for a hypothetical quantum computer).

Q4. Are there infinitely many primes of special form?
According to Dirichlet's theorem on primes in arithmetic progressions, there are infinitely many primes of the form $a n+b$, for fixed integers $a, b \geq 1$ without a common factor. It is unknown whether there are infinitely many primes of the form $n^{2}+1$ (or, more generally, of the form $f(n)$, where $f(n)$ is a polynomial of degree $\operatorname{deg}(f)>1)$.

Similarly, it is unknown whether there are infinitely many primes of the form $2^{n}-1$ (the Mersenne primes) or $2^{n}+1$ (the Fermat primes).
Q5. Is there anything interesting about primes that one can actually prove?
Green and Tao have recently shown that there are arbitrarily long arithmetic progressions consisting entirely of primes.

```
digit
prime number
twin primes
progression
arithmetic progression
geometric progression
```

chiffre
nombre premier
nombres premiers jumeaux
progression
progression arithmétique
progression géométrique

