جامعة الشهيد حمه لخضر الـــــوادي

سنة ثانية كيمياء

كلية العلوم الدقيقة قسم الكيمياء سلسلة الأعمال الموجهة (TD)

المقياس: الكيمياء المعدنية

السلسلة 02: الروابط الكيميائية

التمرين:01: لتكن الجزيئات التالية: HF,HCl, HBr, HI إذا اعتبرنا أن الرابطة بين الهالوجين و الهيدروجين هي شاردية خالصة.

. ${f A}^0$ ، قيمة عزم ثنائي القطب لكل جزيء ويعطى طول الرابطة ب ${f 1}$

HF(0.92), HCl(1.27), HBr(1.4), HI(1.61)

القيم التجريبية لعزم ثنائي القطب بـ (Debye) هي كالآتي: (Debye) , HCl(1.07) , HBr(0.79) , HI(0.38) هي كالآتي

- 2 هذه القيم تختلف عن القيم النظرية. احسب قيم p(الشحن الجزئية) لهذه الجزيئات ثم استتج نوع الروابط بدقة .
 - 3 -ما هي الملاحظة التي يمكن وضعها لسلسلة هذه الأحماض؟

التمرين02: باستعمال قيم عزم ثنائي قطب الجزيء H₂S و طول الرابطة.

- 1 -احسب عزم ثنائي القطب للرابطة S-H في هذا الجزيء.
- 2 احسب الشحنة الكهربائية المحمولة على كل ذرة من ذرات هذا الجزيء بدلالة شحنة الإلكترون .6

 $HSH=93^{\circ}$, $I_{H-S}=1.33A^{\circ}$, $\mu_{H2S}=0.96D$.

3 - عزم ثنائي القطب للجزيء CO2 يساوي CD. ماذا تستتج عن وضعية ذرات الكربون و الأكسجين.

التمرين03: عزم ثنائي القطب للجزيء KCl في الحالة الغازية هو 10D، و المسافة بين النواتين تساوي 2.67.10-8 التمرين03:

- 1 ما هي طبيعة الرابطة في هذا الجزيء .
- 2 -أحسب النسبة المئوية لطبيعة هذه الرابطة.
- . H_2O , PCl_3 , Br_2 : بين قطيبة الروابط في الجزيئات 3

التمرين04:

1-ليكن لدينا قيم الشحنة الجزئية بـ (C) للروابط التالية :

Ca- O	O–Br	P–H	Ca– Br	Cs-Br	Cs-O	
$1.2112.10^{-19}$	$0.3392.\ 10^{-19}$	0	$0.872.\ 10^{-19}$	1.017610 ⁻¹⁹	1.3568. 10 ⁻¹⁹	

احسب النسبة المئوية للصفة الايونية لروابط الجزيئات مبينا نوع الرابطة في كل حالة .

. B_2 و A_2 طاقة الرابطة للجزيئة B_2 بينما تمثل E_{B-B} و E_{A-A} طاقة الرابطة للجزيئات A_2 بينما تمثل E_{A-B} و E_{A-B}

وليكن لدينا قيم طاقات الروابط التالية:

I_2	H_2	Br ₂	F_2	HI	HBr	HF	الجزيء
36.1	104	46	37	71.4	87	135	E(kcal/mol)

 $x_{H}=2.1$ إذا كانت قيمة كهروسلبية الهيدروجين في سلم باولينغ

أحسب قيم الكهروسلبية لعناصر الهالوجينات . ماذا تستنتج ؟

تمرین 05 :

1 أعط تمثيل مبسط للجزيئات التالية بإستعمال مخطط لويس:

CH₃-NH₂, C₂H₅NO₂, CH₃COOH, C₂H₄, C₂H₂, CH₃COCH₃, CH₃OH

. H_2O في جزيء OH عزم ثنائي القطب للرابطة OH

* اوجد قيمة العزم القطبي النظري والتجريبي للرابطة OH بوحدة

ب- أحسب النسبة المئوية الايونية للرابطة OH .ماذا تستنتج ؟

. O-H أول عن طول الرابطة $S_{\rm e}$ في جزيء $S_{\rm e}$ أقارنها مع طول الرابطة $S_{\rm e}$.

 μ_{H2O} =1.84D العزم القطبي + HOH=105° الزاوية (O-H)=097A° العزم القطبي + z_{Se} الرابطة z_{Se} 34 ، 1D=3.3.10⁻³⁰ c.m ،

تمرين 06: بكتابة مخطط لويس اشر إلى قطبية الروابط موضحا نوعها في الجزيئات التالية:

NaCl, LiF, BeF₂, Cl₂, NH₃, HCl, OPCl₃, HNO₃, CF₄

تعطى: الاعداد الذرية وقيم الكهروسلبية حسب سلم باولينغ:

Li	Be	Na	С	S	Cl	F	О	N	P	Н	
0.98	1.57	0.93	3	2.5	3.16	4	3.5	3	2.2	2.1	X
3	4	11	6	16	17	9	8	7	15	1	Z

تمرین 07 :

1-ارسم المخطط الطاقوي واعط البنية الالكترونية ثم احسب رتبة الروابط المشكلة موضحا الصيغة المفصلة

للجزيئات والشوارد الجزيئية التالية:

 O_2 ; O_2^+ ; O_2^- ; O_2^{2-}

2- رتب الجزيئات حسب استقرارها المتصاعد وتحدث عن ثبات الجزيئات المذكورة .

. اذكر شكل الروابط في جزيئه O_2 ثم قارن بينهما -3

4-عين لكل جزيئة طول الرابطة الموافق لها ورتبها تصاعديا حسب طاقة ربطها ثم تتازليا تبعا للمسافة بين ذراتها .

 $1.49 {
m A}^{\circ}$, $1.26 {
m ~A}^{\circ}$, $1.21 {
m ~A}^{\circ}$, $1.12 {
m ~A}^{\circ}$. لدينا القيم التالية

تمرين 1: 08 – أعط تمثيل مخطط طاقة الافلاك الجزيئية للمركب LiF .

البنية الالكترونية لشاردة N_2^+ في حالتها الأساسية هي :

 $(\sigma_{1s})^2(\sigma_{1s}^2)^2(\sigma_{2s})^2(\sigma_{2s}^2)^2(\pi_x)^2(\pi_y)^2\sigma_z^1$

أ - ارسم بيانات الطاقة للمحطات الجزيئية في جزيء N_2 واستنتج صيغته المفصلة .

. N_2^- ؛ N_2^+ ؛ الايونين الايونين N_2^- ؛ أم احسب قرينة الربط لكل من الايونين N_2^- ؛ المنية الالكترونية للأيون

تمرين 09 : 1- أي من الجزيئات التالية قادرة على تكوين روابط هيدروجينيَّة؟ إشرح ذلك .

 $CH_{3}\text{-}CH_{2}\text{-}OH \qquad CH_{3}\text{-}O\text{-}CH_{3} \qquad CH_{3}\text{-}NH_{2} \qquad CH_{3}\text{-}CH_{2}\text{-}CH_{3} \quad (CH_{3})_{3}\text{-}N$

2- أي من بين الجُزيئات التالية يُمكن ان تُكوِّن روابط هيدروجينيَّة:

 H_2O ; NH_3 ; R-OH ; Ne ; He ; Br_2 ; Cl_2 : مع الشرح الجزيئات مع الجزيئات مع المحاوية المحاوية