Faculté de technologie Département de Génie des Procédés ET Industries Pétrochimiques. 2éme EM / LMD

Série d'exercices N°01:

1. Cinématique des fluides

Exercice N°1: Rappels mathématiques

Soit le champ de vitesse stationnaire $\vec{V}(x,y,z)=u\vec{e}_x+v\vec{e}_y+w\vec{e}_z$ suivant (ou **a** et **w0** sont deux constantes) :

$$u = a(x + y)$$
 $v = a(x - y)$ $w = w_0$

ightharpoonup Calculez le div \overrightarrow{V} , \overrightarrow{rot} \overrightarrow{V} , $\overrightarrow{grad}V$ et ΔV

Exercice N°2: Un écoulement est défini en variable d'Euler par :

$$\vec{V}(t) = \begin{cases} u = a \\ v = b + kt \end{cases}$$

- 1) quelle est la nature de mouvement ?
- 2) Trouver la forme des lignes de courant.
- 3) déterminer l'équation de trajectoires.

 $Exercice\ N^{\circ}3$: On étudie l'écoulement décrit par le champ de vitesses suivant :

$$\vec{V} = w_0 y \vec{e_x} - w_0 x \vec{e_y}$$

- 1) Vérifier que cet écoulement est incompressible et irrationnel.
- 2) Trouver la forme des lignes de courant.
- 3) Déterminer l'équation de la trajectoire d'une particule présente en $M_0(x_0, y_0)$ à l'instant t = 0.
- 4) calculer l'accélération de la particule de fluide au temps t.
- 5) Calculer la dérivée particulaire de la vitesse $\partial_t \vec{V} + (\vec{V}. \overrightarrow{grad}) \vec{V}$ et comparer.

 $Exercice\ N^{\circ}4$: On considère l'écoulement bidimensionnel et instationnaire suivant :

$$\vec{v}(x, y, t) = v_0 cos(wt) \vec{e}_x + v_0 \vec{e}_y$$

- 1) Montrer que cet écoulement est incompressible et irrationnel.
- 2) Calculer les lignes courant et tracer les lignes de courant aux instants $\omega t = 0$, $\omega t = \pi/2$ et $\omega t = \pi$
- 3) Déterminer l'équation de la trajectoire d'une particule.

Exercice N°5:

On considère un écoulement permanent défini dans un repère (0, x, y, z) par le champ des vitesses suivant, en variables d'Euler :

$$\vec{V} = \begin{cases} u = 2x - 3z \\ v = 0 \\ w = 3x - 2z \end{cases}$$

- 1) Montre que le fluide est incompressible.
- 2) Calculer le champ des vecteurs accélérations \vec{a}
- 3) Déterminer les équations de réseau des lignes de courant.

2. Propriétés physiques des fluides

Exercice N°1:

Déterminer le poids volumique de l'essence sachant que sa densité d=0,7. On donne :

- l'accélération de la pesanteur g=9,81 m/s2
- > la masse volumique de l'eau 3 ρ = /1000 m

Exercice N°2:

Déterminer la viscosité dynamique de l'huile d'olive sachant que sa densité est 0,918 et sa viscosité cinématique est 1,089 Stockes.

Exercice N°3:

Du fuel porté à une température T=20°C a une viscosité dynamique $\mu=95.\,10^{-3}Pa.\,s$ Calculer sa viscosité cinématique ν en stockes sachant que sa densité est d=0,95. On donne la masse volumique de l'eau est $\rho_{eau}=1000$ kg/m

Exercice N°4:

Si 5 m³ de certaines huile pensent 45KN, calculer le pois volumique, la densité et la masse volumique de huile

Exercice N°5:

Une plaque (2m*2m) à 0.25mm de distance d'une plaque fixe se déplace à 40m/s et n'nécessite une force de 1N, déterminer la viscosité dynamique du fluide entre les plaque.

Si la masse volumique de cette fluide égale 918 kg /m^3 calculer la viscosité cinématique de ce fluide.

Exercice N°6:

Trouver la pression à l'intérieur d'une goutte d'eau ayant un diamètre 0.55mm à 20°C

Si la pression extérieur égale $1.031~\text{N/m}^2$ et la tension superficielle de l'eau à cette température est 0.0763~N/m

Exercice N°7: Soit un volume d'huile $V=6m^3$ qui pèse G=47KN. Calculer la masse volumique, le poids spécifique et la densité de cette huile sachant que $g=9.81 \text{ m/s}^2$. Calculer le poids G et la masse M d'un volume V=3 litres d'huile de boite de vitesse ayant une densité égale à 0.9.

Exercice $N^{\circ}8$: La viscosité de l'eau à 20°c est de 0.01008 Poise. Calculer La viscosité absolue (dynamique) - Si la densité est de 0.988, calculer la valeur de la viscosité cinématique en m^2 /s et en Stokes.

Exercice N°9 : On comprime un liquide dont les paramètres à l'état initial sont : p_1 = 50 bar et V_1 = 30.5 dm³ et les paramètres à l'état final sont : p_2 = 250bar et V_2 = 30 dm³. Calculer le coefficient de compressibilité β de ce liquide