1- المتالية الحقيقية:

تعریف:

نسمي متالية حقيقية كلُّ دالة من مجموعة الأعداد الطبيعية ١٨ في مجموعة الأعداد الحقيقية ١٨.

نرمز عادة للمتتالية بـ u_n أو اختصارا بـ (u_n) عوضا عن $\mathbb{R} \to \mathbb{R}$ n ونسمي العدد الحقيقي u_n أي صورة العدد u_n بهذه الدالة) الحد العام لهذه المتتالية .

أمثلة:

$$u_n = \sum_{k=0}^{k=n} 2^k$$
 , $u_n = \sin(n+1)$, $u_n = \frac{1}{n+2}$, $u_n = \sqrt{n}$, $u_n = (-1)^n$) and $u_n = (-1)^n$ (1)

.
$$(u_1 = 1, u_2 = 0, u_3 = -1, u_4 = -2, ...), u_{n+1} = 2u_{n+1} - u_{n-1}, u_1 = 1, u_2 = 0$$
 (ب

ملاحظة: يمكن تعريف متالية ابتداء من رتبة معينة فقط.

2- المتاليات المحدودة:

 $(u_n)_{n\in\mathbb{N}}$ تعريف: لتكن تتكن السية حقيقية.

 $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_n \leq M$: محدودة من الأعلى إذا تحقق $(u_n)_{n \in \mathbb{N}}$

 $\exists m \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_n \geq m$ عدودة من الأسفل إذا تحقق: $(u_n)_{n \in \mathbb{N}}$

 $\exists M > 0\,, \ \forall n \in \mathbb{N}\,, \ |u_n| \leq M$ محدودة إذا كانت محدودة من الأعلى ومن الأسفل أي إذا تحقق $(u_n)_{n \in \mathbb{N}}$

 $\exists M \in \mathbb{R} \,,\; \exists m \in \mathbb{R} \,,\;\; \forall \, n \in \mathbb{N} \,,\;\; \leq u_n \leq M$ أو إذا تحقق:

نتيجة: تكون متتالية حقيقية محدودة إذا وفقط إذا كانت محدودة في آن واحد من الأعلى ومن الأسفل.

 $\forall n \in \mathbb{N}, \ 0 \leq \frac{n^2}{n^2+1} \leq 1$ المتتالية $u_n = \frac{n^2}{n^2+1}$ محدودة من الأسفل بـ 0 و من الأعلى بـ 1 لأنّ: 1

 $\forall \ n \in \mathbb{N} \ , \quad 0 \leq \sqrt{n} \$ المتتالية $u_n = \sqrt{n}$ محدودة من الأسفل بـ 0 وغير محدودة من الأعلى لأنّ: $u_n = \sqrt{n}$

 $\forall \ n \in \mathbb{N} \ , \quad |u_n| = |(-1)^n| = 1 \le 2$ کدودة لأنّ: $u_n = (-1)^n$ المثنالية (3

ملاحظة: لإثبات أنّ متالية حقيقية محدودة نستعمل البرهان بالتراجع.

 $\forall \, n \in \mathbb{N} \,, \quad u_n \leq 2$ نشبت أن $u_0 = 0 \,, \ \forall \, n \in \mathbb{N} \,: \ u_{n+1} = \sqrt{u_n + 2} \,$ من أجل $u_n = 0 \,$ لدينا $u_n = 0 \,$ فرض أن $u_n \leq 2 \,$ و نبرهن أن $u_n \leq 2 \,$ لدينا $u_n = 0 \,$ لدينا $u_n = 0 \,$

 $\forall\,n\in\mathbb{N}\,,\quad u_{\scriptscriptstyle n}\leq 2 \implies u_{\scriptscriptstyle n}+2\leq 4 \Rightarrow \sqrt{u_{\scriptscriptstyle n}+2}\leq 2 \Rightarrow u_{\scriptscriptstyle n+1}\leq 2$ key like

من جهة أخرى لدينا $u_n \geq 0$ أن $\forall n \in \mathbb{N}$, $0 \leq u_n \leq 2$ إذا $v_n \in \mathbb{N}$ من جهة أخرى لدينا $v_n \in \mathbb{N}$ من حمل أخرى المنا أخرى ا

3- المتاليات الرتيبة:

تعاریف: لتکن $(u_n)_{n\in\mathbb{N}}$ متتالیة حقیقیة.

- $\forall n \in \mathbb{N}: u_n \geq u_{n+1}$ متزايدة إذا كان $u_n \geq u_n \leq \mathbb{N}: u_n \leq u_{n+1}$ متزايدة إذا كان $u_n \geq u_n$
 - $\forall n \in \mathbb{N}$: $u_n = u_{n+1}$ و نقول أنّ (u_n) ثابتة إذا كان
 - ♦ إذا كانت المتراجحة تامة > أو (<) نقول أن المتتالية متزايدة تماما أو (متناقصة تماما).
- ♦ إذا كانت المتالية (un) متزايدة فقط أو متناقصة فقط أي لا تغيير اتجاهها على N نقول أنها متالية رتيبة.

أمثلة: 1) المتالية $u_n = (-2)^n$ متناقصة $u_n = \sqrt{n}$ متناقصة (2) المتالية $u_n = \frac{1}{n+2}$ فير رتيبة.

ملاحظة: لدراسة رتابة (اتجاه تغيّر) متالية ندرس إشارة الفرق $u_{n+1}-u_n$ و يمكن مقارنة $\frac{u_n}{u_{n+1}}$ به زانج (انجاه تغيّر) متالية ندرس إشارة الفرق $u_{n+1}-u_n$ و يمكن مقارنة u_{n+1} به خدود المتالية موجبة .

4- تقارب وتباعد المتاليات الحقيقية:

تعاریف: لکن $(u_n)_{n\in\mathbb{N}}$ متالیة حقیقیة.

- $orall arepsilon > 0, \quad \exists n_0 \in \mathbb{N}, orall n \in \mathbb{N}: \ (n \geq n_0 \Rightarrow |u_n l| < arepsilon)...(*) \ .$ $\lim_{n \to \infty} |u_n l| = 0 \quad \text{dim} \quad u_n = l \quad u_n = l$
 - $\forall A>0,\ \exists n_0\in\mathbb{N},\ \forall n\in\mathbb{N}:(n\geq n_0\Rightarrow u_n>A)$: نهایة $u_n=+\infty$ نهایة $u_n=+\infty$ هي $u_n=+\infty$ نهایة $u_n=+\infty$ نهایت $u_n=+\infty$ نه
- $\forall A>0,\ \exists n_0\in\mathbb{N},\ \forall n\in\mathbb{N}: (n\geq n_0\Rightarrow u_n<-A)$ إذا تحقق ما يلي: $\lim_{n\to+\infty}u_n=-\infty$ ونكتب $u_n=-\infty$ ونكتب $u_n=-\infty$
 - ♦ نقول عن متالية حقيقية إنها متباعدة عندما لا تكن متقاربة أو بعبارة أخرى إذا كانت لا تملك نهاية أو نهايتها ∞+ أو ∞

 $orall \ l \in \mathbb{R} \, , \, \exists \varepsilon > 0 \, , \quad orall \ n_0 \in \mathbb{N} \, , \, \exists n \in \mathbb{N} \, : \, (n \geq n_0 \wedge |u_n - l| \geq \varepsilon) \,$ ونكتب: (u_n) متباعدة إذا تحقق ما يلي:

ملاحظات:

- لك تعيين طبيعة متالية حقيقية (u_n) يعنى إثبات تقاربها وتباعدها .
- ل إنّ اختيار الرتبة n_0 في التعاريف السابقة متعلق بـ: ε (في حالة النهاية المنتهية) و بـ: A (في حالة النهاية غير المنتهية)
 - 3) تبقى التعاريف السّابقة صحيحة إذا استبدلنا في الطرف الثاني للاستلزام > أو < بـ: ≥ أو ≤.

. 0 متقاربة نحو العدد $u_n = \frac{1}{n}$ المعرّفة بجدها العام $u_n = \frac{1}{n}$ متقاربة نحو العدد

 $orall arepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \, \forall n \in \mathbb{N}: \; (n \geq n_0 \Rightarrow |rac{1}{n}| = rac{1}{n} < arepsilon) \; : \; \dot{\mathbb{N}}$ لنُبْتُ أَنَّ

 $\forall n \geq n_0: \frac{1}{n} \leq \frac{1}{n_0} < \varepsilon \Rightarrow \frac{1}{n} < \varepsilon$ وبالتالي: $\frac{1}{n_0} < \varepsilon$ حسب بديهية أرخميدس فإنّه يوجد $n_0 \in \mathbb{N}^*$ يحقّق: $n_0 \times \varepsilon > 1$ وبالتالي: $n_0 < \varepsilon \Rightarrow \frac{1}{n_0} < \varepsilon$

لنشبت أن المتتالية (u_n) المعرّفة بجدها العام $u_n = \frac{3n}{n+2}$ لنشبت أن المتتالية (u_n) المعرّفة بجدها العام

 $\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}: \ (n \ge n_0 \Rightarrow |\frac{3n}{n+2} - 3| = \frac{6}{n+2} < \varepsilon)$: لنثبت أَنّ

 $\forall n \geq n_0: \frac{6}{n+2} < \varepsilon$ ليكن $\varepsilon > 0$ لدينا $\varepsilon > 0$ دينا $\varepsilon > 0$ أي $\varepsilon > 0$ أي $\varepsilon > 0$ يكفي أن نختار $\varepsilon > 0$ وبالتالي: $\varepsilon > 0$ دينا $\varepsilon > 0$ دينا

 $\lim_{n\to +\infty} u_n = +\infty$: $\lim_{n\to +\infty} u_n = 0$ المعرّفة بجدها العام $u_n = 2n^2 + 3$ متباعدة. لنثبت باستعمال التعريف أنّ

 $\forall A>0, \ \exists n_0\in\mathbb{N}, \ \forall n\in\mathbb{N}: (n\geq n_0\Rightarrow 2n^2+3>A)$: شبت أَنّ

 $\varepsilon = \frac{l'-l}{2}$ برهان: $\frac{d \mathbf{l}}{2}$ نبرهن بالخلف لتكن l و ' لنهايتين مختلفتين لمتتالية متقاربة (u_n) نفرض أن ' l < l . ولنختر في التعريف السابق $\exists n_1 \in \mathbb{N} : n \geq n_1 \Rightarrow |u_n - l'| < \varepsilon$ كذلك $\exists n_2 \in \mathbb{N} : n \geq n_2 \Rightarrow |u_n - l| < \varepsilon$ ومن ثمّ فإن: $n \geq n_1 \Rightarrow |u_n - l'| < \varepsilon$ كذلك $\exists n_2 \in \mathbb{N} : n \geq n_2 \Rightarrow |u_n - l| < \varepsilon$ وعندما نضع $n_0 \Rightarrow \frac{l'+l}{2} < u_n < \frac{l'+l}{2} < u_n < \frac{l'+l}{2} < u_n < \frac{l'-l}{2} < u_n < l+\frac{l'-l}{2} < u_n < l+\frac{l'-l}{2} < u_n < l+\frac{l'-l}{2}$ ومنه المطلوب.

 $\frac{d2}{d}$: لتكن l و 'l نهايتين لمتتالية متقاربة (u_n) وبالتالي:

 $orall arepsilon>0, \quad \exists n_2\in\mathbb{N}: \ n\geq n_2\Rightarrow |u_n-l'|<rac{arepsilon}{2}$ $orall arepsilon>0, \quad \exists n_1\in\mathbb{N}: \ n\geq n_1\Rightarrow |u_n-l|<rac{arepsilon}{2}$ $|l-l'|=\ \left|l-u_n+u_n-l'
ight|\leq \left|u_n-l\right|+\left|u_n-l'\right|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon$ بوضع |l-l'|=0 ومنه نستنج أنّه من أجل كل $|l-l'|<arepsilon: arepsilon>0, \quad \exists n_1\in\mathbb{N}: \ n\geq n_1\Rightarrow |u_n-l|<rac{arepsilon}{2}$ ومنه نستنج أنّه من أجل كل $|l-l'|<arepsilon: \ |l-l'|=0$ ومنه نستنج أنه من أجل كل |l-l'|<arepsilon

نظرية: كل متنالية حقيقية متقاربة هي متنالية محدودة. والعكس غير صحيح.

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N} : (n \geq n_0 \Rightarrow \left|u_n - l\right| < \varepsilon$: $u_n = 1$ مثلا، فيكون: $u_n = 1$ مثلا، فيكو

أمثلة:

 $\forall n \in \mathbb{N} : 0 < \frac{1}{n+2} \le \frac{1}{2} \text{ مقاربة نحو } 0 . ذلك أنه يكفي أن نختار في العلاقة (*) . فهي محدودة <math>u_n = \frac{1}{n+2} . 0$ المتتالية المعرفة $u_n = \frac{1}{n+2} . 0$ مقاربة نحو $u_n = -\frac{3n}{n+2} . 0$ المتتالية المعرفة $u_n = -\frac{3n}{n+2} . 0$ مقاربة نحو د ذلك أنه يكفي أن نختار في العلاقة (*) المتتالية تحقق العلاقة : $u_n = -\frac{3n}{n+2} . 0$ المتتالية تحقق العلاقة : (*) المتتالية تحقق العلاقة : $u_n = (-1)^n . 0$ من أجل $u_n = (-1)^n . 0$ من أجل $u_n = (-1)^n . 0$ من أجل $u_n = (-1)^n . 0$ وهذا تناقض .

 $(orall A>0,\ \exists n_0\in\mathbb{N}\ n\geq n_0\Rightarrow \sqrt{n}>A)$ $\lim_{n\to+\infty}u_n=+\infty$ كا المتتالية المعرفة بـ: $u_n=\sqrt{n}$ غير محدودة فهي متباعدة لأنّ: $u_n=\sqrt{n}$

. $n_0 = [A]^2 + 2$: يَكْفِي أَن نَأْخَذ

5- عمليات حول المتاليات:

مبرهنة 1: لنكن (u_n) و (v_n) متاليتين حقيقيتين متقاربتين حيث $u_n=l$ و عندئذ لدينا عندئذ لدينا

$$\lim_{n\to+\infty}\frac{u_n}{v_n}=\frac{l}{l'}:\ l'\neq0\ \text{ sinc}\ (3\ \lim_{n\to+\infty}(u_n\times v_n)=l\times l'\ (2\ \lim_{n\to+\infty}(\alpha u_n+\beta v_n)=\alpha l+\beta l',\ (\alpha,\beta)\in\mathbb{R}^2\ (1)$$

.
$$l \leq l'$$
 فإن $u_n \leq v_n$ فإن $u_n \leq v_n$ فإن $u_n \leq v_n$ فإن $u_n = 0$ إذا كان ابتداء من رتبة معينة $u_n = 0$ فإن $u_n = 0$ فإن $u_n \leq v_n$ فإن $u_n = 0$ فإن $u_n \leq v_n$

$$\forall n \in \mathbb{N}^*, u_n = \frac{n^3}{n^3} \times \frac{2 - \frac{1}{n} + \frac{1}{n^3}}{1 - \frac{4}{n^3}} = \frac{2 - \frac{1}{n} + \frac{1}{n^3}}{1 - \frac{4}{n^3}}$$
 لدينا $u_n = \frac{2n^3 - n^2 + 1}{n^3 - 4}$:غينة المثالية $(u_n)_{n \in \mathbb{N}}$ خيث:

$$\lim_{n\to+\infty}u_n=2$$
 ونعلم أَنّ: $\lim_{n\to+\infty}u_n=0, k\in\mathbb{R}, p\in\mathbb{N}^*$ ونعلم أَنّ:

$$u_n \ge 0 \implies \lim_{n \to +\infty} u_n \ge 0$$
 , $u_n \le 0 \implies \lim_{n \to +\infty} u_n \le 0$; أن: (6) أن: أن: نتيجة:

. $\lim_{n \to +\infty} u_n > 0$ ابتداء من أول رتبة أو ابتداء من رتبة معينة فهذا يؤدي إلى $\lim_{n \to +\infty} u_n \geq 0$ و لا يؤدي بالضرورة إلى $u_n > 0$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} = 0 \quad \text{i.i.} \quad \forall n \in \mathbb{N}^* : u_n = \frac{1}{n} > 0$$

مبرهنة 2: لتكن
$$(u_n)$$
 و (v_n) متاليتين حقيقيتين لدينا

 $\lim_{n\to +\infty} (u_n \times v_n) = 0$ إذا كانت (u_n) محدودة و نهاية (v_n) نؤول إلى الصفر فإنّ

البرهان:

$$\exists M>0, \ \forall n\in\mathbb{N}, \ |u_n|\leq M$$
.....(1) خدودة هذا يعني: (u_n)

$$\forall \; \varepsilon > 0 \; , \; \exists \; n_0 \in \mathbb{N} \; , \; \forall \; n \in \mathbb{N} \; : \; (n \geq n_0 \; \Rightarrow \; \left| u_n \right| < \varepsilon \;) \ldots (2)$$
 هذا يعني $\lim_{n \to +\infty} u_n = 0$

$$|u_n \times v_n| = |u_n| \times |v_n| \le \varepsilon M = \varepsilon' > 0$$
 من (1) و (2) من

$$\lim_{n\to +\infty}(u_n\times v_n)=0\quad \forall \, \varepsilon'>0, \ \exists \, n_0\in\mathbb{N}\,, \, \forall \, n\in\mathbb{N}\,: \ (n\geq n_0\Rightarrow \left|u_nv_n\right|<\varepsilon')$$

$$\lim_{n\to +\infty} v_n = \lim_{n\to +\infty} \frac{1}{\sqrt{n}} = 0 \quad \text{o} \quad \forall n\in \mathbb{N}, \quad |u_n| = |\sin n| \leq 1 \quad \text{with} \quad v_n = \frac{1}{\sqrt{n}} \quad \text{of } u_n = \sin n \quad \text{otherwise} \quad \lim_{n\to +\infty} \frac{\sin n}{\sqrt{n}} \quad \text{otherwise} \quad \text{otherwise} \quad \lim_{n\to +\infty} \frac{\sin n}{\sqrt{n}} \quad \text{otherwise} \quad \lim_{n\to +\infty} \frac{\sin n}{\sqrt{n}} \quad \text{otherwise} \quad \text{$$

$$\lim_{n\to +\infty} \frac{\sin n}{\sqrt{n}} = \lim_{n\to +\infty} (u_n \times v_n) = 0 \quad \text{i.i.} \quad \text{i.i.} \quad (v_n) \quad \text{i.i.} \quad (v_n) \quad \text{i.i.} \quad (u_n) \quad (u$$

مبرهنة 3: لنكن
$$(u_n)$$
 و (v_n) متناليتين حقيقيتين لدينا:

$$\lim_{n\to+\infty}u_n=\pm\infty\Rightarrow\lim_{n\to+\infty}\frac{1}{u_n}=0\ \ \text{if}\ \ \forall n\in\mathbb{N}:u_n\neq0\ \ \text{if}\ \ (2\lim_{n\to+\infty}u_n=+\infty\Leftrightarrow\lim_{n\to+\infty}(-u_n)=-\infty\ \ (1\lim_{n\to+\infty}u_n=\pm\infty)$$

$$(\lim_{n\to +\infty}u_n=\lim_{n\to +\infty}v_n=\pm\infty)\Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (4 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=\pm\infty)\Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (1 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=\pm\infty)\Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (1 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=\pm\infty)\Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R}) \Rightarrow \lim_{n\to +\infty}(u_n+v_n)=\pm\infty \quad (3 \quad (\lim_{n\to +\infty}u_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{R})\wedge (\lim_{n\to +\infty}v_n=l\in\mathbb{$$

.
$$l$$
 هي إشارة ε شيث $\lim_{n\to +\infty} u_n = l \in \mathbb{R}^*$ $\wedge (\lim_{n\to +\infty} v_n = +\infty) \Rightarrow \lim_{n\to +\infty} (u_n \times v_n) = \varepsilon.\infty$ ([5

$$\lim_{n\to +\infty} a^n = 0$$
 : فإنّ $a\in]-1,1[$ فإن $a\in]-1,1[$ أمّا إذا كان $a\in]-1,1[$ فإنّ $a\cap]-1,1[$ فإن $a\cap]-1$

مبرهنة 4: (نظرية الحصر):

 $\lim v_n = \lim w_n = l \ (l \in \mathbb{R})$ و $\exists n_0 \in \mathbb{N}, \ \forall n \geq n_0 : v_n \leq u_n \leq w_n$ فإن النا ثلاث متاليات حقيقية تحقق الناء النا ثلاث متاليات عقيقية تحقق الناء الن

. l متقاربة و لها نفس النهابة u_n

البرهان: ليكن $\varepsilon>0$. إنّ تقارب المتتاليتين (v_n) و (w_n) غو k يؤدي إلى وجود عددين طبيعيين n_1 و n_2 مجيث

$$n_0 = \max(n_1, n_2)$$
 عضع $n \ge n_1 \Rightarrow |v_n - l| < \varepsilon$ وبالتالي: $n \ge n_1 \Rightarrow |v_n - l| < \varepsilon$

.
$$l$$
 يخو u_n وهذا مكافئ $l : n \ge n_0 \Rightarrow n_0$

$$\lim_{n\to +\infty}\frac{\sin n}{n^2}=0\text{ i.i.}\lim_{n\to +\infty}\frac{-1}{n^2}=\lim_{n\to +\infty}\frac{1}{n^2}=0\text{ i.i.}\lim_{n\to +\infty}\frac{\sin n}{n^2}\leq \min_{n\to +\infty}\frac{1}{n^2}\leq \min_{n$$

مبرهنة 5: لتكن (u_n) متالية حقيقية و l عددا حقيقيا .

$$\lim_{n \to +\infty} u_n = 0 \quad \text{if} \quad \forall n \ge n_0: \left| \frac{u_{n+1}}{u_n} \right| < l < 1 \quad \text{if} \quad \text{if} \quad u_n = 0 \quad \text{$$

 $\forall n \geq n_0 : 0 < |u_n| < |u_{n_0}| | l^{n-n_0} |$ إذا $\left| \frac{u_n}{u_{n_0}} \right| < l^{n-n_0} < 1$ ومنه $\left| \frac{u_n}{u_{n_0}} \right| < l \times l \times \ldots \times l = l^{n-n_0}$ حسب الفرضية يكون $\left| \frac{u_n}{u_{n_0}} \right| < l \times l \times \ldots \times l = l^{n-n_0}$

 $\lim_{n \to +\infty} u_n = 0$ فإنّ 0 < l < 1 ومنه حسب نظرية الحصر $u_n = 0$ فإنّ 0 < l < 1 فإنّ 0 < l < 1

ملاحظات:

ا إذا كان l>1 متباعدة. $\left|\frac{u_{n+1}}{u_n}\right|>l>1$ إذا كان l>1

. (u_n) إذا كان l=1 لا نستطيع الحكم على تقارب أو تباعد المتالية (2

 $a \in \mathbb{R}$ حيث $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$ حيث

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to +\infty} \frac{a}{n+1} = 0 \quad \text{ويكون} \quad \forall n \in \mathbb{N} : \quad \frac{u_{n+1}}{u_n} = \frac{a^{n+1}}{(n+1)!} \times \frac{n!}{a^n} = \frac{aa^n}{(n+1)n!} \times \frac{n!}{a^n} = \frac{a}{n+1}$$
لدينا
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{a^n}{n!} = 0 \quad \text{e.i.} \quad \forall n \geq n_0 : \left| \frac{u_{n+1}}{u_n} \right| < 1$$
من أجل $\epsilon = 1$ يوجد $\epsilon = 1$ عددا طبيعيا ثابتا نجيث $\epsilon = 1$ وبالتالي حسب النظرية $\epsilon = 1$ من أجل $\epsilon = 1$

6- تقارب المتتاليات الرتيبة:

نظرية:

. $\sup(u_n)$ متالية متزايدة ومحدودة من الأعلى فهي متقاربة نحو $(u_n)_{n\in\mathbb{N}}$. 1

. $\inf(u_n)$ متالية متناقصة ومحدودة من الأسفل فهي متقاربة نحو $(u_n)_{n\in\mathbb{N}}$. 2

برهان: نعتبر $(u_n)_{n\in\mathbb{N}}$ متزايدة ومحدودة من الأعلى. وبالتالي فإنّ $(u_n)_{n\in\mathbb{N}}$ موجود .

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \sup u_n - \varepsilon < u_{n_0} \le \sup u_n < \sup u_n + \varepsilon$ (1)

. $n \geq n_0 \implies u_n \geq u_{n_0}$ (2) : من تزاید المتتالیة نجد

 $\forall \, \varepsilon > 0, \, \exists n_0 \in \mathbb{N} : \, n \geq n_0 \Rightarrow \sup u_n - \varepsilon < u_{n_0} \leq u_n \leq \sup u_n < \sup u_n + \varepsilon$ من (1) و (2) من السنتج أن $\forall \, \varepsilon > 0, \ \exists n_0 \in \mathbb{N} : \ n \geq n_0 \Rightarrow \sup u_n - \varepsilon < u_n < \sup u_n + \varepsilon$ التي يمكن اختصارها في الكتابة:

. $\sup u_n$ متقاربة نحو المتتالية المتالية المتتالية المتالية المتالية المتتالية المتتالية المتتالية المتالية المتالي

يمكن البرهان بطريقة مماثلة على الجزء المتبقي من النظرية.

 $\lim_{\infty} u_n = \sup(u_n) = 1$ متزايدة ومحدودة من الأعلى لأنّ: $\forall n \in \mathbb{N}, u_n < 1$ و بالتالية $u_n = \frac{n+1}{n+2}$

 $\lim_{\infty} v_n = \inf(v_n) = -1$ متناقصة ومحدودة من الأسفل لأنّ: $v_n = -1 + \frac{1}{2^n}$ وبالتالية $v_n = -1 + \frac{1}{2^n}$ متناقصة ومحدودة من الأسفل لأنّ: (2

7- المتاليات الجزئية (المستخرجة):

 v_n عرف: لتكن $(u_n)_{n\in\mathbb{N}}$ متالية حقيقية. نسمي متالية جزئية (مستخرجة) من $(u_n)_{n\in\mathbb{N}}$ كل متالية حقيقية.

. يساوي $u_{f(n)}$ حيث: $\mathbb{N} \to \mathbb{N}$ تطبيق متزايد تماما

. (u_n) المتالية المعرفة بـ: $v_n = u_{2n} = \frac{1}{(2n)^2} = \frac{1}{4n^2}$ المتالية المعرفة بـ: $u_n = \frac{1}{n^2}, n \in \mathbb{N}^*$ المتالية المعرفة بـ: (1

 $w_n = u_{2n+1} = 0$ و $v_n = u_{2n} = \frac{2}{(2n)^2} = \frac{1}{2n^2}$ یکن المتالیة المعرفة بـ: $u_n = \frac{(1 - (-1)^n)}{n^2}, \ n \in \mathbb{N}^*$ و 2 (u_n) مستخرجتان من المتالية

نظرية 1: كل متتالية مستخرجة من متتالية حقيقية متقاربة هي كذلك متقاربة نحو نفس النهاية و العكس غير صحيح.

 $\forall n \in \mathbb{N}, v_n = u_{f(n)}$ تَحْقَق: $(u_n)_{n \in \mathbb{N}}$ متالية مستخرجة من عالية حقيقية متقاربة نحو عدد $v_n = v_{f(n)}$ متالية حقيقية متقاربة نحو عدد $v_n = v_{f(n)}$. متقاربة نحو المين متزايد عماماً . لنشبت أنّ $f: \mathbb{N} \to \mathbb{N}$

 $orall arepsilon > 0, \quad \exists n_0 \in \mathbb{N} : \quad n \geq n_0 \quad \Rightarrow \quad \left| u_n - l \right| < arepsilon ...(I)$ لدينا

 $f(n) = f(0) + \sum_{k=1}^{k=n} f(k) - f(k-1) \ge 0 + \sum_{k=1}^{k=n} 1 = n : n \in \mathbb{N}$ من جهة أخرى لدينا من أجل كل

 $\forall \, \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}: \quad f(n) \geq f(n_0) \geq n_0 \ \, \Rightarrow \ \, | \ \, v_n - l | = | \ \, u_{f(n)} - l | < \varepsilon \ \,$

. العكس غير صحيح فمثلا المتتالية (v_n) المستخرجة من $u_n = (-1)^n$ حيث $u_n = u_{2n} = 1$ متباعدة العكس غير صحيح فمثلا المتتالية (v_n) المستخرجة من $u_n = (-1)^n$

(1) يمكن أن نبرهن بالمثل بأنه، إذا كانت متتالية تؤول إلى (∞) (∞) فإنّ كل متتالية جزئية من هذه المتتالية نؤول كذلك إلى (∞)

2) باستعمال العكس النقيض للاستلزام في النظرية السابقة نحصل على شرطكاف لتباعد متتالية:

إذا كانت لمتتاليتين جزئيتين من (u_n) نهايتين مختلفتين فإنّ المتتالية (u_n) متباعدة.

مثال: لنثبت أنّ المتالية المعرفة به: $u_n = \cos(n + \frac{1}{n})$ متباعدة.

لدينا: $\lim_{n\to +\infty} u_{2n} = \lim_{n\to +\infty} \cos(\pi + \frac{\pi}{2n+1}) = -1$ و $\lim_{n\to +\infty} u_{2n} = \lim_{n\to +\infty} \cos\frac{\pi}{2n} = 1$ دينا: $\lim_{n\to +\infty} u_{2n} = \lim_{n\to +\infty} \cos\frac{\pi}{2n} = 1$ دينا: المنابقة السابقة السابق

. l متقاربتين نحو عدد l إذا وفقط إذا كانت المتاليتان الجزئيتان (u_{2n+1}) و (u_{2n+1}) متقاربتين نحو نفس النهاية

8 – النهابة السفلى و النهابة العليا لمتالية:

أ- القيمة اللاصقة لمتالية حقيقية:

 (u_n) تعرف: نقول عن $a\in\mathbb{R}$ نهائة لمتتالية جزئية من $(a\in\mathbb{R}\cup\{-\infty,+\infty\})$ قيمة لاصقة لمتتالية $a\in\mathbb{R}$

 $\lim_{n \to +\infty} u_n = a$ فإن $a \in \overline{\mathbb{R}}$ فيمة لاصقة وحيدة عنان غير (u_n) فإن

 $\lim_{n \to +\infty} u_{2n+1} = \lim_{n \to +\infty} (1-1)(2n+1) = 0$ العدد $u_{n} = [1+(-1)^{n}]n$ العدد $u_{n} = [1+(-1)^{n}]n$

 $\lim_{n\to +\infty}u_{2n}=\lim_{n\to +\infty}(1+1)2n=\lim_{n\to +\infty}4n=+\infty$ لأنٌ (u_n) لأنٌ (u_n)

 (u_n) تعریف النهایة السفلی و النهایة العلیا لمتالیة: لکن (u_n) متالیة حقیقیة، نرمز با $Ad(u_n)$ لمجموعة القیم اللاصقة للمتالیة

 $\overline{\lim_{n \to +\infty}} u_n = \sup(Ad(u_n))$: النهاية العليا ك النهاية العليا ل ف نرمز لها ب $\overline{\lim_{n \to +\infty}} u_n = \sup(Ad(u_n))$ هي الحدّ الأعلى للمجموعة الأعلى المجموعة (1)

 $\lim_{n \to +\infty} u_n = \inf(Ad(u_n))$ و نرمز لها بـ: $\lim_{n \to +\infty} u_n = \inf(Ad(u_n))$ هي الحدّ الأسفل للمجموعة $Ad(u_n)$ و نكتب: (u_n) و نرمز لها بـ: (2

 $\lim_{n\to +\infty} u_n = \inf(Ad(u_n)) = 0$ ومنه $\lim_{n\to +\infty} u_n = \sup(Ad(u_n)) = +\infty$ ومنه $Ad(u_n) = \{0, +\infty\}$

خواص:) إذا كانت $(u_n)_{n\in\mathbb{N}}$ و $(v_n)_{n\in\mathbb{N}}$ متاليتين حقيقيتين فإنّ:

$$\underline{\lim}_{n \to +\infty} (u_n + v_n) \ge \underline{\lim}_{n \to +\infty} u_n + \underline{\lim}_{n \to +\infty} v_n \quad (3 \quad \overline{\lim}_{n \to +\infty} (u_n + v_n) \le \overline{\lim}_{n \to +\infty} u_n + \overline{\lim}_{n \to +\infty} v_n \quad (2 \quad \underline{\lim}_{n \to +\infty} u_n \le \overline{\lim}_{n \to +\infty} u_n \quad (1 \quad \underline{\lim}_{n \to +\infty} u_n \le \overline{\lim}_{n \to +\infty} u_n) \le \underline{\lim}_{n \to +\infty} u_n = \underline{\lim}_{n \to +\infty} u_n$$

$$\overline{\lim_{n\to +\infty}}u_n = \lim_{n\to +\infty}u_n = \lim_{n\to +\infty}u_n \text{ if } \lim_{n\to +\infty}u_n \in \overline{\mathbb{R}}$$

$$\lim_{n\to +\infty}u_n = -\overline{\lim_{n\to +\infty}}(-u_n) \text{ (5}$$

$$\lim_{n\to +\infty}u_n = -\overline{\lim_{n\to +\infty}}(-u_n) \text{ (4}$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = 0 < \overline{\lim}_{\substack{n \to +\infty \\ n \to +\infty}} u_n = 2 \quad \text{ ومنه } \quad A \, d \, (u_n) = \{0,1\} \quad \text{if } \quad u_n = 1 + (-1)^n \frac{n^2}{n^2 + 1}$$

$$\underline{\lim_{n\to +\infty}}u_n = -\infty < \overline{\lim_{n\to +\infty}}u_n = +\infty \quad \text{if} \quad u_n = (-1)^n n \quad \text{if} \quad \lim_{n\to +\infty}u_n = \overline{\lim_{n\to +\infty}}u_n = \lim_{n\to +\infty}u_n - \infty \quad \text{if} \quad u_n = -n \quad \text{if} \quad u_n$$

$$\lim_{n\to+\infty} u_n = -\infty < \overline{\lim}_{n\to+\infty} u_n = 0 \quad \text{if} \quad u_n = [-1-(-1)^n]n$$
اٍذِا كَانَت $u_n = [-1-(-1)^n]n$ إذا كانت

9- المتتاليتان المتجاورتان:

تعریف: نقول عن متالیتین حقیقیتین (u_n) و (v_n) إنهما متجاورتان إذا كانت إحداهما متزایدة والأخرى متناقصة وكانت نهایة متالیة الفرق (u_n-v_n) متقاربة نحو (u_n-v_n)

مثال: المتاليتان $u_n = -\frac{1}{n+1}$ و $u_n = -\frac{1}{n+1}$ متجاورتان لأن أولاهما متزايدة وثانيتهما متناقصة وفرقهما (المساوي ك:

. يؤول إلى الصفر $v_n - u_n = \frac{1}{n+1} + \frac{1}{n} = \frac{2n+1}{n(n+1)}$

نظرية: كل متتاليتين متجاورتين متقاربتان نحو نفس النهاية.

البرهان: لتكن (u_n) و (v_n) متاليتين متجاورتين أولاهما متزايدة وثانيتهما متناقصة. نضع من أجل كل $w_n = u_n - v_n$ ، من الواضح . $w_n \le 0$: u_n متزايدة، علما أن $u_n = 0$: $u_n = 0$ متزايدة، علما أن $u_n = 0$: $u_n = 0$. وهكذا يتضح أن المتاليتين رتيبتان ومحدودتان (بر u_n و $u_n \le v_n \le u_n \le v_n \le u_n$. إذن فهما متقاربتان علما أن $u_n = 0$. $u_n = 0$. $u_n = 0$. $u_n = 0$. $u_n = 0$ علما أن $u_n = 0$. $u_n = 0$. $u_n = 0$. $u_n = 0$ علما أن $u_n = 0$. $u_n = 0$. $u_n = 0$. $u_n = 0$ علما أن $u_n = 0$. $u_n = 0$. u

10. **نظرية بولزانو— فيرستراش** Bolzano-Weierstrass: من كل متتالية محدودة يمكن استخراج متتالية جزئية متقاربة.

 $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} (1 + \frac{1}{2n+1}) = 1$:المتالية جزئية مقاربة مثلا: $u_n = (-1)^n + \frac{1}{2n+1}$ عدودة حسب النظرية بمكن استخراج متاليات كوشى:

تعريف: نقول عن متالية حقيقية (u_n) أنها متالية كوشي إذا كانت تحقق شرط كوشي أي:

 $\forall \varepsilon > 0, \ \exists n_0 \in IN : \forall (m,n) \in IN^2, \ [m > n \geq n_0 \Longrightarrow |u_m - u_n| < \varepsilon]$

 $\forall \varepsilon>0,\quad \exists n_0\in IN, \forall (n,p)\in IN^2:\quad [n\geq n_0\Rightarrow |u_{n+p}-u_n|<\varepsilon]$. يمكن أيضا التعبير عن هذه العلاقة بالكتابة: $n\geq n_0$

لنثبت أن المتالية (u_n) المعرفة بـ: $n \in \mathbb{N}^*$ متالية كوشي (1) لنثبت أن المتالية كوشي

 $|u_{m} - u_{n}| = \left| \frac{1}{m^{2}} - \frac{1}{n^{2}} \right| = \left| \frac{n^{2} - m^{2}}{m^{2}n^{2}} \right| = \frac{(n - m)(n + m)}{m^{2}n^{2}} \quad \text{then } m > n \quad \text{then } m > n$ $|u_{m} - u_{n}| = \left| \frac{1}{m^{2}} - \frac{1}{n^{2}} \right| = \frac{(n - m)(n + m)}{m^{2}n^{2}} \quad \text{then } m > n \quad \text{then } m > n$ $|u_{m} - u_{n}| < \frac{2}{n^{2}} \quad \text{then } m < 2m \quad \text{then }$

 $\forall \varepsilon > 0, \ \exists n_0 \in IN \ (n_0 = [\sqrt{2/\varepsilon}] + 1) : [(m > n \ge n_0) \Rightarrow \frac{2}{n^2} < \varepsilon \Rightarrow |u_m - u_n| < \varepsilon]$

ملاحظة: تعود أهمية نظرية كوشي إلى أنها تسمح بدراسة طبيعة متتالية (أي معرفة ما إذا كانت متقاربة أم متباعدة) دون معرفة نهايتها (في حالة تقاربها).

نظرية 1: كلُّ متالية حقيقية متقاربة هي متالية كوشي .

 $orall arepsilon>0,\ \exists n_0\in IN: \forall n\in IN,\ [n\geq n_0\Rightarrow |u_n-l|<rac{arepsilon}{2}$ لدينا . l دينا . l مثالية متقاربة نحو عدد l د لدينا . l د دينا . l مثالية متقاربة نحو عدد l د لدينا . l د دينا . l مثالية كوشي . l مثالية كوشي .

نتيجة: كل متالية ليست كوشية هي متالية متباعدة

مثال: لنثبت أن المتالية (u_n) المعرفة كما يلي: \mathbb{N}^* , $n \in \mathbb{N}^*$ متباعدة .

 $\exists\, arepsilon>0 \ \ \forall\, n_0\in\mathbb{N}^*: \left[\, n\geq n_0\wedge p\in\mathbb{N}\wedge \mid u_{n+p}-u_n\mid \geq arepsilon\,
ight]:$ يكفي أن نثبت أن (u_n) ليست متالية كوشي أي: $n=p=n_0$. n عدد طبيعي غير معدوم $n=p=n_0$

 $\exists u_{2n} - u_n = (1 + \frac{1}{2} + \ldots + \frac{1}{n} + \frac{1}{n+1} + \ldots + \frac{1}{2n}) - (1 + \frac{1}{2} + \ldots + \frac{1}{n}) = \frac{1}{n+1} + \ldots + \frac{1}{2n} \geq n \cdot \frac{1}{2n} = \frac{1}{2} \Rightarrow u_{2n} - u_n \geq \frac{1}{2}$ خن $\exists u_{2n} - u_{n+p} \mid < \varepsilon$ با لكن هذا غير صحيح لأنه: $|u_n - u_{n+p}| = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+p} > \frac{p}{n+p} > \frac{1}{2}$ خطرية $\mathbf{2}$: إذا كانت المتتالية الحقيقية $(u_n)_{n\in\mathbb{N}}$ متتالية كوشي فهي محدودة .

 $orall arepsilon>0,\ \exists n_0\in IN: \forall (m,n)\in IN^2,\ [m>n\geq n_0\Rightarrow \mid u_m-u_n\mid<arepsilon]:$ البرهان البرهان المكن $m=n_0\Rightarrow |u_n|< |u_n|$ و $m=n_0\Rightarrow |u_n|< |u_n|$ و $m=n_0\Rightarrow |u_n|< |u_n|$

وبالتالي فكل عناصر المتتالية التي دليلها أكبر من أو يساوي n_0 محدودة. ثم إن المجموعة المنتهية $\{u_0, u_1, ..., u_{n_0-1}\}$ محدودة بأكبر عنصر فيها . ومنه فالمتتالية (u_n) محدودة .

 $\frac{id_{\mathbf{v}}\mathbf{s}}{id_{\mathbf{v}}\mathbf{s}}$. نظریة $(u_{\sigma(n)})_{n\in\mathbb{N}}$ ، نظریة $(u_{\sigma(n)})_{n\in\mathbb{N}}$ ، نظریة $(u_{\sigma(n)})_{n\in\mathbb{N}}$ ، نظریة $(u_{\sigma(n)})_{n\in\mathbb{N}}$ ، نظری $(u_{\sigma(n)})_{n\in\mathbb{N}}$ ، نظری $(u_{\sigma(n)})_{n\in\mathbb{N}}$ ، نظری $(u_{\sigma(n)})_{n\in\mathbb{N}}$ ، $(u_{\sigma(n)})_{n\in\mathbb{N}}$ ،

. $(u_n)_{n\in\mathbb{N}}$ قارب المتالية $n\geq n_0 \Rightarrow |u_n-l|\leq |u_n-u_{\varphi(n)}|+|u_{\varphi(n)}-l|< rac{\varepsilon}{2}+rac{\varepsilon}{2}=\varepsilon$

نظرية 4: كل متالية حقيقية تحقق شرط كوشي هي متالية متقاربة.

البرهان: : لتكن $(u_n)_{n\in\mathbb{N}}$ متنالية كوشي حسب النظرية 2 فهي محدودة و استنادا الى نظرية بولزانو u_n متنالية جزئية متقاربة و اعتمادا على النظرية 3 نستنتج أنّ $(u_n)_{n\in\mathbb{N}}$ متقاربة .

جــامعة الـوادي جــامعة الموادي حاصة الموادي الموادي

سلسلة أعمال موجّهة رقم 02 (المتتاليات الحقيقية)

ترين 1: لكن (u_n) متالية حقيقية . أكتب على شكل قضية مكمّمة كل جملة من الجمل التالية:

1) المتالية (u_n) ثابتة ابتداءً من رتبة معيّنة . (2 المتالية (u_n) متزايدة ابتداءً من رتبة معيّنة .

(3) المتالية (u_n) غير متناقصة ابتداء من رتبة معيّنة. (u_n) غير متناقصة ابتداء من رتبة معيّنة.

 x_{n} $x_{$

 $u_n = \ln[\ln(n)], l = +\infty$ (4 $u_n = -n^2 + n - 1, l = -\infty$ (3 $u_n = \frac{3n + (-1)^n}{3n + 5}, l = 1$ (*2 $u_n = \frac{1}{n^2}, l = 0$ (1

غرين 3: احسب نهاية المتتالية (u_n) في كل حالة من الحالات التالية:

 $u_n = \frac{\pi^n}{1 \times 3 \times ... \times (2n+1)} \quad (5 \quad u_n = \frac{1}{n^2} \sum_{k=1}^{k=n} [kx], \quad x \in \mathbb{R} \quad (*4 \quad u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n} \quad (3 \quad u_n = \left(1 + \frac{1}{n}\right)^n \quad (2 \quad u_n = n - \sqrt{(n+1)(n+2)} \quad (1 \quad u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n} \quad (3 \quad u_n = \frac{1}{n} + \frac{1}{n})^n \quad (3 \quad u_n = \frac{1}{n} + \frac{1}{n} +$

. (u_n) المتتالية الحقيقية المعرّفة بـ : $u_n = \sqrt{2 + u_n}$, $u_0 = \sqrt{2}$. اثبت أنّ 2 حادٌ من الأعلى للمتتالية u_n . u_n

قرين 5: لتكن $(u_n)_{n\geq 1}$ المتالية الحقيقية المعرّفة بـ : $u_n = \sum_{k=1}^{k=n} \frac{1}{k!}$ متالية منزايدة.

. **3** اشت أنّ: $u_n > 1$ و أنّ $u_n < 1$. استنج أنّ: $u_n < 2$ و أنّ $u_n < 1$. $u_n < 1$. $u_n < 2$. اثبت أنّ: $u_n < 1$. $u_n < 1$

 $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n=0 \Leftrightarrow \lim_{n\to+\infty}w_n=0 \text{ (in the proof } in) \text{ (in the proof } in)$

 $\lim_{n \to +\infty} (u_n^2 + v_n^2 + w_n^2) = 3a^2$ فرض أنّ: $a \in \mathbb{R}$ نفرض أنّ $a \in \mathbb{R}$ ثلاث متتاليات حقيقية، $a \in \mathbb{R}$. a متقاربة نحو (w_n) و (v_n) ، (u_n) متقاربة نحو

مرين 8: عين u_n و $\lim_{n \to +\infty} u_n$ (النهاية السفلى و النهاية العليا للمتتالية (u_n) في كل حالة من الحالات التالية:

 $u_n = 1 + n \sin \frac{n\pi}{2}$ (4 $u_n = \sqrt[n]{1 + 2^{n(-1)^n}}$ (3 $u_n = n^{(-1)^n n}$ (*2 $u_n = \frac{1}{n} + (-1)^n$ (1 $u_n = (2\cos\frac{2n\pi}{3})^n (5$

 $\lim_{n\to+\infty}u_{2n}=\lim_{n\to+\infty}u_{2n+1}=l\Leftrightarrow\lim_{n\to+\infty}u_n=l\quad\text{if.}\quad 1.$ متالية حقيقية . 1. أثبت أنّ:

 $(\lim_{n\to +\infty}u_{2n}=l)\wedge (\lim_{n\to +\infty}u_{2n+1}=l')\wedge (\lim_{n\to +\infty}u_{n^2}=l'')\Rightarrow (l=l'=l'')\wedge (\lim_{n\to +\infty}u_n=l) : \mathbf{2}.$

.3 فرض أنّ: $n \ge 1$ متجاورتان و ماذا يستنج . $u_n = 1 - \frac{1}{2!} + \frac{1}{4!} + \dots + (-1)^n \frac{1}{(2n)!}$, $n \ge 1$ فرض أنّ: $n \ge 1$

 $u_0 = a, \ v_n = \frac{a}{u_n}, \ u_{n+1} = \frac{u_n + v_n}{2}$: ليكن $a \ge 1$

اثبت أنّ المتاليتين (u_n) و (v_n) متجاورتان و احسب l نهايتهما المشتركة.

 $v_n = \frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2}$ و $u_n = 1 + \frac{1}{4} + \frac{2^2}{4^2} + \dots + \frac{n^2}{4^n}$ يلي: لنكن (v_n) مثاليتين معرفتين كما يلي: $u_n = \frac{1}{4} + \frac{2^2}{4^2} + \dots + \frac{n^2}{4^n}$

. (v_n) و (u_n) مستعملا شرط کوشی ادرس طبیعهٔ کلاً من

. يرهن أنّ (u_n) المتالية المعرفة بـ: $\frac{1}{2^n} = \sqrt{u_n^2 + \frac{1}{2^n}}$ متالية كوشي. $v_n = 1$ المتالية المعرفة بـ: $v_n = 1$ متالية كوشي.

جـــامعة الـوادي حصية العادي علية العام الدقيقة حصية العادي

تصحيح سلسلة أعمال موجهة رقم: 02 (المتاليات الحقيقية)

حل ت1: لتكن (u_n) متالية حقيقية. كتابة كل جملة من الجمل التالية على شكل قضيّة مكتمة

$$\exists n_0 \in \mathbb{N}, \forall n \geq n_0, \ u_{n+1} = u_n$$
 المتتالية (u_n) ثابتة ابتداءً من رتبة معيّنة . (1

$$\exists n_0 \in \mathbb{N}, \forall n \geq n_0$$
 , $u_{n+1} \geq u_n$. المتتالية (u_n) متزامدة التداءً من رتبة معيّنة (2

$$orall l \in \mathbb{R}, \ \exists \varepsilon > 0, \ orall n_0 \in \mathbb{N}, \exists n \in \mathbb{N}: (n \geq n_0 \wedge |u_n - l| \geq \varepsilon) \ . \ 0$$
 المتتالية (u_n) غير متقارية نحو العدد (3)

$$\exists n_0 \in \mathbb{N}, \forall n \geq n_0 \ , u_{n+1} > u_n$$
 المتتالية (u_n) غير متناقصة ابتداء من رتبة معيّنة (4

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}: (n \geq n_0 \Rightarrow |u_n - l| < \varepsilon): l$ هي المتتالية المتالية المتتالية المتتا

$$n_0 = \left[\frac{1}{\sqrt{\varepsilon}}\right] + 1$$
 : يَكْفِي أَن نَحْتَار: $u_n = \frac{1}{n^2}$. $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, $\forall n \in \mathbb{N}$: $(n \ge n_0 \Rightarrow \frac{1}{n^2} < \varepsilon)$: $u_n = \frac{1}{n^2}$, $l = 0$ (1)

.
$$\forall A < 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} : (n \ge n_0 \Rightarrow -n^2 + n - 1 < A)$$
 : $(3 - n_0) : (n \ge n_0) : (n \ge$

$$n_0 = \left[\sqrt{-A}\,
ight] + 1$$
 . کفی أن نختار: $n_0 = \left[\sqrt{-A}\,
ight] + 1$. کفی أن نختار: $n_0 = \left[\sqrt{-A}\,
ight]$

.
$$\forall A>0,\ \exists n_0\in\mathbb{N},\ \forall n\in\mathbb{N}:(n\geq n_0\Rightarrow\ln[\ln{(n)}]>A)$$
 : لِثِبَات أَنّ : $u_n=\ln[\ln{(n)}]$, $l=+\infty$ (4)

$$n_0 = \left[\exp(e^A)\right] + 2$$
 . کفی أن نختار: $n_0 = \left[\exp(e^A)\right] + 2$. $\forall n \in \mathbb{N}^* - \{1\} : \ln(\ln(n)) > A \Leftrightarrow \ln(n) > e^A \Leftrightarrow n > \exp(e^A)$ لدينا

 (u_n) خل ت 3: حساب نهامة المتالية

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (n + \sqrt{(n+1)(n+2)}) = \lim_{n \to +\infty} \frac{-3n-2}{n + \sqrt{(n+1)(n+2)}} = \lim_{n \to +\infty} \frac{n}{n} \cdot \frac{-3 - \frac{2}{n}}{1 + \sqrt{\left(1 + \frac{1}{n}\right)\left(1 + \frac{2}{n}\right)}} = \frac{-3}{2} \quad (1)$$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to +\infty} \exp \left(n \ln \left(1 + \frac{1}{n} \right) \right) = \lim_{n \to +\infty} \exp \left(\frac{\ln \left(1 + \frac{1}{n} \right)}{\frac{1}{n}} \right) = \lim_{n \to +\infty} \exp \left(\frac{\ln \left(1 + \frac{1}{n} \right)}{m} \right) = \exp(1) = e$$
 (2)

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{3^n}{3^n} \cdot \frac{1 - \left(\frac{-2}{3}\right)^n}{1 + \left(\frac{-2}{3}\right)^n} = 1 \quad (3)$$

$$\frac{u_{n+1}}{u_n} = \frac{\pi^{n+1}}{1 \times 3 \times ... \times (2n+1)(2n+3)} \times \frac{1 \times 3 \times ... \times (2n+1)}{\pi^n} = \frac{\pi}{2n+3} \text{ i. } u_n = \frac{\pi^n}{1 \times 3 \times ... \times (2n+1)}$$
(5)

$$\lim_{n\to +\infty} u_n = 0$$
 حسب المبرهنة $\lim_{n\to +\infty} \frac{\pi}{2n+3} = 0$ و بما أنّ

$$u_n = \sum_{k=1}^{k=n} \frac{1}{k!}$$
: لَكُن $(u_n)_{n \ge 1}$ المتالية الحقيقية المعرّفة ب

$$\forall n \in \mathbb{N} : u_{n+1} - u_n = \sum_{k=1}^{k=n+1} \frac{1}{k!} - \sum_{k=1}^{k=n} \frac{1}{k!} = \frac{1}{(n+1)!} > 0$$
. $\mathbf{1}$ مثالية متزايدة: $\mathbf{0}$

$$\forall n \in \mathbb{N}^*$$
: $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$ زُبَات أَنّ: **.2**

 $\frac{1}{(n+1)!} \le \frac{1}{2^n}$ نبرهن بالتراجع: من أجل n=1 لدينا: $1=1 \le \frac{1}{2^0} = 1$. نفرض أنّ : $\frac{1}{n+1} \le \frac{1}{2^{n-1}}$ و نثبت أنّ : n=1 $\frac{1}{n!} \le \frac{1}{2^{n-1}} \Rightarrow \frac{1}{n+1} \cdot \frac{1}{n!} \le \frac{1}{n+1} \cdot \frac{1}{2^{n-1}} \le \frac{1}{2^{n-1}} \Rightarrow \frac{1}{(n+1)!} \le \frac{1}{2^n}$ لدينا: . استنتاج أنّ: $u_n < 2$ و أنّ $u_n < 2$ عقارية. $\mathbf{3}$ $u_n \leq \frac{1-(\frac{1}{2})^n}{1-\frac{1}{2}} < 2$ بالتعویض بقیم $n \in \mathbb{N}^*$ و بجمع المتباینات نجد: $\sum_{k=1}^{k=n} \frac{1}{k!} \leq \sum_{k=1}^{k=n} \frac{1}{2^{k-1}}$ دینا $n \in \mathbb{N}^*$ بالتعویض بقیم $n \in \mathbb{N}^*$ و بالتالی $n \in \mathbb{N}^*$ المتالية $(u_n)_{n\geq 1}$ متزامدة ومحدودة من الأعلى فهي متقاربة. . $\forall n \in \mathbb{N} : w_n = \frac{u_n^3 + v_n^3}{u^2 + v^2}$: نظع : (v_n) و (u_n) متالیتین موجبتین تماما . نضع . $\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} v_n = 0$: غرض أَنّ : $\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} v_n = 0 \Leftrightarrow \lim_{n\to +\infty} w_n = 0$ إثبات أَنّ : $0 \le w_n = \frac{u_n^3 + v_n^3}{u_n^2 + v_n^2} \le \frac{u_n^3 + u_n^2 v_n + v_n^3 + u_n v_n^2}{u_n^2 + v_n^2} = \frac{u_n^2 (u_n + v_n) + v_n^2 (u_n + v_n)}{u_n^2 + v_n^2} = u_n + v_n \implies 0 \le w_n \le u_n + v_n$ $\downarrow \omega$ $\lim_{n \to +\infty} w_n = 0$: وتطبيق نظرية الحصر نجد $M_n = \max\{u_n, v_n\} : \mathbb{N}$ من n من أجل كل n من أجل كن . $\lim_{n \to \infty} w_n = 0$: فرض أنّ $\forall n \in \mathbb{N} : w_n = \frac{u_n^3 + v_n^3}{u^2 + v^2} \ge \frac{M_n^3}{2M^2} = \frac{M_n}{2} \ge 0 \Rightarrow (\forall n \in \mathbb{N} : 0 \le \frac{M_n}{2} \le w_n) : u_n$ وبتطبيق نظرية الحصر نجد : $\lim_{n \to +\infty} M_n = 0$ و بتطبيق نظرية الحصر مرّة أخرى في كلي $u_n \leq M_n \leq M_n$ وبتطبيق نظرية الحصر مرّة أخرى في كلي $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} v_n = 0 : المتباسيتين نجد$ (u_n) غيين $\lim_{n \to +\infty} u_n$ و $\lim_{n \to +\infty} u_n$. نرمز به نرمز به $\int \frac{\lim_{n \to +\infty} u_n}{\lim_{n \to +\infty} u_n}$ نرمز به نالاصقة للمتتالية السيا $Ad(u_n) = \{-1, +1\} \underbrace{\lim_{n \to +\infty} u_{2n+1}}_{n \to +\infty} = \lim_{n \to +\infty} \left(\frac{1}{2n+1} - 1\right) = -1 \underbrace{\lim_{n \to +\infty} u_{2n}}_{n \to +\infty} = \lim_{n \to +\infty} \left(\frac{1}{2n} + 1\right) = 1 \underbrace{\lim_{n \to +\infty} u_{2n}}_{n \to +\infty} : u_n = \frac{1}{n} + (-1)^n \left(1 + \frac{1}{2n} + 1\right) = 1$ $\lim_{n \to +\infty} u_n = \inf(Ad(u_n)) = -1 \quad \underbrace{\lim_{n \to +\infty} u_n} = \sup(Ad(u_n)) = 1$ لدينا : $u_n = \lim_{n \to +\infty} u_{2n+1} = \lim_{n \to +\infty} \frac{2n+1}{\sqrt{1+2^{-(2n+1)}}} = 1$ لدينا : $u_n = \sqrt[n]{1+2^{n(-1)^n}}$ (3 $\lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} \sqrt[2n]{1 + 2^{2n}} = \lim_{n \to +\infty} \exp \left[\frac{1}{2n} \ln(1 + 2^{2n}) \right] = \lim_{n \to +\infty} \exp \frac{1}{2n} \left[\ln 2^{2n} (2^{-2n} + 1) \right]$ $= \lim_{n \to +\infty} \exp \frac{1}{2n} \left[2n \ln 2 + \ln(2^{-2n} + 1) \right] = \lim_{n \to +\infty} \exp \left[\ln 2 + \frac{\ln(2^{-2n} + 1)}{2n} \right] = \exp(\ln 2) = 2$ $\lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = \inf(Ad(u_n)) = 0 \quad \text{of } \lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = \sup(Ad(u_n)) = 2 \quad \text{if } Ad(u_n) = \{1,2\}$ $u_n = 1 + n \sin \frac{2n\pi}{4}$ لدينا $u_n = 1 + n \sin \frac{n\pi}{2}$ (4 $\lim_{n \to +\infty} u_{4n} = \lim_{n \to +\infty} (1 + 4n \sin \frac{4n\pi}{2}) = \lim_{n \to +\infty} (1 + 4n \sin 2n\pi) = \lim_{n \to +\infty} (1 + 4n(0)) = 1$

```
\lim_{n\to+\infty} u_{4n+1} = \lim_{n\to+\infty} \left(1 + (4n+1)\sin\frac{(4n+1)\pi}{2}\right) = \lim_{n\to+\infty} \left(1 + (4n+1)\sin\left(\frac{\pi}{2} + \frac{4n\pi}{2}\right)\right) = \lim_{n\to+\infty} \left(1 + (4n+1)\sin\frac{\pi}{2}\right) = \lim_{n\to+\infty} \left(1 + (4n+1)\sin\frac{\pi}{2}\right
                           \lim_{n \to +\infty} u_{4n+2} = \lim_{n \to +\infty} \left( 1 + (4n+2)\sin\frac{(4n+2)\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 + (4n+2)\sin\left(\pi + 2n\pi\right) \right) = \lim_{n \to +\infty} \left( 1 + (4n+2)(0) \right) = 1
\lim_{n \to +\infty} u_{4n+3} = \lim_{n \to +\infty} \left( 1 + (4n+3)\sin\frac{(4n+3)\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 + (4n+3)\sin\left(\frac{3\pi}{2} + \frac{4n\pi}{2}\right) \right) = \lim_{n \to +\infty} \left( 1 + (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left( 1 - (4n+1)\sin\frac{3\pi}{2} \right) = \lim_{n \to +\infty} \left
                                                                                                                                         \underline{\lim_{n\to +\infty}}u_n=\inf(Ad(u_n))=-\infty \quad \underline{\lim_{n\to +\infty}}u_n=\sup(Ad(u_n))=+\infty \quad |\mathcal{A}d(u_n)|=\{-\infty,1,+\infty\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              u_n = (2\cos\frac{2n\pi}{2})^n (5
                                                                                                                                                                    \lim_{n \to +\infty} u_{3n} = \lim_{n \to +\infty} (2\cos\frac{6n\pi}{3})^{3n} = \lim_{n \to +\infty} (2\cos2n\pi)^{3n} = \lim_{n \to +\infty} (2\times1)^{3n} = +\infty
    \lim_{n \to +\infty} u_{3n+1} = \lim_{n \to +\infty} \left( 2\cos\frac{2(3n+1)\pi}{3} \right)^{3n+1} = \lim_{n \to +\infty} \left( 2\cos\left(\frac{2\pi}{3} + 2n\pi\right) \right)^{3n+1} = \lim_{n \to +\infty} \left( 2\left(-\frac{1}{2}\right) \right)^{3n+1} = \lim_{n \to +\infty} \left( -1 \right)^{3n+1} = \lim_{n \to 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     و نستنج أنّ (u_{3n+1}) لا تقبل نهایة.
  \lim_{n \to +\infty} u_{3n+2} = \lim_{n \to +\infty} \left( 2\cos\frac{2(3n+2)\pi}{3} \right)^{3n+2} = \lim_{n \to +\infty} \left( 2\cos\left(\frac{4\pi}{3} + 2n\pi\right) \right)^{3n+2} = \lim_{n \to +\infty} \left( 2\left(\frac{1}{2}\right) \right)^{3n+1} = \lim_{n \to +\infty} \left( +1 \right)^{3n+1} = 1
                                                                                                                                                                                       \underline{\lim_{n\to +\infty}}u_n=\inf(Ad(u_n))=1 ومنه \lim_{n\to +\infty}u_n=\sup(Ad(u_n))=+\infty إذا \det(Ad(u_n))=\{1,+\infty\}
                                                                                                                                                                                                                              \lim_{n\to +\infty} u_{2n} = \lim_{n\to +\infty} u_{2n+1} = l \Leftrightarrow \lim_{n\to +\infty} u_n = l : نكن (u_n) متالية حقيقية . 1 أثبات أنّ:
                                                                                                                                                              نز: \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}: (n \geq n_0 \Rightarrow |u_n - l| < \varepsilon) فرض أنّ: . \lim_{n \to \infty} u_n = l فرض أنّ: \bullet
                            \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} : (2n+1 > n \geq n_0 \Rightarrow |u_{2n+1} - l| < \varepsilon) \ \ \boldsymbol{\varrho} \ \ \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} : (2n \geq n \geq n_0 \Rightarrow |u_{2n} - l| < \varepsilon)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} u_{2n+1} = l \quad |\xi|
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} u_{2n+1} = l \quad \text{if } \bullet
                             \forall \varepsilon > 0, \ \exists n_2 \in \mathbb{N}, \forall n \in \mathbb{N}: (n \geq n_2 \Rightarrow \mid u_{2n+1} - l \mid < \varepsilon)...(2) \quad \forall \varepsilon > 0, \ \exists n_1 \in \mathbb{N}, \forall n \in \mathbb{N}: (n \geq n_1 \Rightarrow \mid u_{2n} - l \mid < \varepsilon)...(1) \quad \text{with } l \in \mathbb{N}
                                                                                  \lim_{n \to +\infty} u_n = l . و بناء على (1) و (2) فإنّ: u_n - l | < \varepsilon . من أجل كل n_0 = \max(2n_1, 2n_2 + 1)
                                                                                                                                                                           (\lim_{n\to +\infty}u_{2n}=l)\wedge(\lim_{n\to +\infty}u_{2n+1}=l')\wedge(\lim_{n\to +\infty}u_{n^2}=l'')\Rightarrow(l=l'=l'')\wedge(\lim_{n\to +\infty}u_n=l) . 2
                                                                                                                                                                                                                         l=l'' کذلك \lim_{n\to +\infty} u_{4n^2} = \lim_{n\to +\infty} u_{4n^2} = \lim_{n\to +\infty} u_{(2n)^2} = l'' كذلك \lim_{n\to +\infty} u_{4n^2} = \lim_{n\to +\infty} u_{2(2n^2)} = l لدينا
                                                                 l'=l'' من جهة أخرى \lim_{n \to +\infty} u_{4n^2+4n+1} = \lim_{n \to +\infty} u_{(2n+1)^2} = l'' كذلك \lim_{n \to +\infty} u_{4n^2+4n+1} = \lim_{n \to +\infty} u_{2(2n^2+2n)+1} = l' من جهة أخرى
                                                                                                                                                                                                \lim_{n \to +\infty} u_n = l وأخير ا نستنتج أنّ: l = l' و بالتالي: \lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} u_{2n+1} = l و بالتالي: \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{2n+1} = l
                                                                                                                                                                3. نفرض أنّ: n \ge 1 u_{2n-1} u_{2n-1} . u_n = 1 - \frac{1}{2!} + \frac{1}{4!} + \dots + (-1)^n \frac{1}{(2n)!} , n \ge 1 . نفرض أنّ: n \ge 1
                                                                                                                                                                                                                                                                                                                                               u_{2n-1} = 1 - \frac{1}{2!} + \frac{1}{4!} - \dots - \frac{1}{(4n-2)!} و u_{2n} = 1 - \frac{1}{2!} + \frac{1}{4!} - \dots + \frac{1}{(4n)!} لدينا
                                                                                                                                                                                                                                                                                                        . متناقصة u_{2n} - u_{2n} = u_{2n+2} - u_{2n} = -\frac{1}{(4n+2)!} + \frac{1}{(4n+4)!} < 0
                                                                                                                                                                                                                                                                                                               . متزایدة u_{2n-1} ومنه u_{2(n+1)-1} - u_{2n-1} = u_{2n-1} - u_{2n-1} = \frac{1}{(4n)!} - \frac{1}{(4n+2)!} > 0
```

. لنشبت أنّ $\lim_{n \to +\infty} (u_{2n-1}) = \lim_{n \to +\infty} \frac{1}{(4n)!} = 0$. لدينا $\lim_{n \to +\infty} (u_{2n} - u_{2n-1}) = \lim_{n \to +\infty} \frac{1}{(4n)!} = 0$. متجاورتان. . l لدينا $u_{2n}=\lim_{n\to +\infty}u_{2n}=\lim_{n\to +\infty}u_{2n-1}=l$ لدينا لدينا النهاية أنّ الستنتج أنّ الستانج السؤال النهاية الم $u_0 = a, \ v_n = \frac{a}{u_n}, \ u_{n+1} = \frac{u_n + v_n}{2}$: ليكن $a \ge 1$ $\forall n \in \mathbb{N}: u_n > 0, \ v_n > 0$ (یکن التّالیتین (u_n) و (v_n) متجاورتان و حساب (u_n) نهایتهما المشترکة. لدینا $u_{n+1} - u_n = \frac{u_n + v_n}{2} - u_n = \frac{v_n - u_n}{2} = \frac{a - u_n^2}{2u_n} = \frac{(\sqrt{a} - u_n)(\sqrt{a} + u_n)}{2u_n} . u_{n+1} - u_n$. $u_{n+1} - u_n$. $u_{n+1} - u_n$ $u_n - \sqrt{a} = \frac{u_{n-1}^2 + a}{2u_{n-1}} - \sqrt{a} = \frac{u_{n-1}^2 - 2\sqrt{a}u_{n-1} + a}{2u_{n-1}} = \frac{(u_{n-1} - \sqrt{a})^2}{2u_{n-1}} \ge 0$ نلاحظ أنّ اتجاه تغير المتالية (u_n) متعلق بإشارة الفرق $\sqrt{a} - u_n$ دينا . $\sqrt{a} - u_n$ $\forall n \in \mathbb{N} : u_n - v_n \geq 0$ وهذا يُثبت أنّ المتتالية (u_n) متناقصة و أنّ . د ينا من أجل كل n من $v_n:\mathbb{N}$ من $v_n:\mathbb{N}$ ومنه المتالية $v_n:\mathbb{N}$ متزايدة. . متزایدة (v_n) متزایدة . $\lim_{n\to+\infty}(u_n-v_n)=0$ متزایدة . 3 $\forall n \in \mathbb{N} : 0 \leq u_n - v_n \leq \frac{1}{2^n}(u_0 - v_0) : \quad u_{n+1} - v_{n+1} \leq u_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{1}{2}(u_n - v_n)$ $\text{length} \quad u_{n+1} - v_{n+1} \leq u_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{1}{2}(u_n - v_n)$. l وبتطبيق نظرية الحصر نجد $\lim_{n \to +\infty} (u_n - v_n) = 0$ و هذا يثبت أنّ المتتاليتين u_n و u_n متجاورتان، إذا تتقاربان نحو نفس النهاية $l=\sqrt{a}$ ان موجبتين إذا $u_n=\frac{a}{u_n}$, نا الدينا $u_n=\lim_{n\to\infty}u_n=\lim_{n\to\infty}v_n=l$ و كون $u_n=\lim_{n\to\infty}v_n=l$ لنحسب $u_n=\lim_{n\to\infty}v_n=l$ و كون الدينا الحسب الخصيب الخصيب المنا ال $v_n = \frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2}$ $u_n = 1 + \frac{1}{4} + \frac{2^2}{4^2} + \dots + \frac{n^2}{4^n}$ $u_n = \frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2}$ $u_n = \frac{1}{4} + \frac{2}{4^2} + \dots + \frac{n^2}{4^n}$ $u_n = \frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2}$ $u_n = \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{n^2}{4^n}$ $u_n = \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{n^2}{4^n}$ $u_n = \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{n^2}{4^n}$ $u_n = \frac{1}{4} + \frac{1}{4^n} + \frac{1}{4^n}$ (v_n) باستعمال شرط كوشي دراسة طبيعة كلاّ من (u_n) و $orall arepsilon>0, \quad \exists n_0\in\mathbb{N}, \ orall (p,n)\in\mathbb{N}^2: \quad (n\geq n_0\Rightarrow |u_{n+p}-u_n|<arepsilon):$ يعطى شرط كوشي كما يلي: . $\forall n \ge 5, 4^n > n^4$: باستعمال التراجع يمكن أنّ نبرهن 1: و بالتالي $|u_{n+p} - u_n| = \frac{(n+1)^2}{4^{n+1}} + \frac{(n+2)^2}{4^{n+2}} + \dots + \frac{(n+p)^2}{4^{n+p}} < \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2}$ $|u_{n+p}-u_n|<\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\dots+\frac{1}{(n+p-1)(n+p)}=\frac{1}{n}-\frac{1}{(n+1)}+\frac{1}{n+1}-\frac{1}{n+2}+\dots+\frac{1}{n+p-1}-\frac{1}{n+p}=\frac{1}{n}-\frac{1}{n+p}<\frac{1}{n-4}$ من أجل $<\varepsilon$ يكون $<\varepsilon$ من أجل $>\frac{1}{\varepsilon}$ وباختيار $<\varepsilon$ وباختيار $<\varepsilon$ من أجل $<\varepsilon$ من أجل $>\frac{1}{\varepsilon}$ وبالتالي $<\varepsilon$ وباختيار $<\varepsilon$ وباختيار $<\varepsilon$ من أجل $<\varepsilon$ من أجل $<\varepsilon$ وبالتالي $<\varepsilon$ من أجل $<\varepsilon$ من أجل $<\varepsilon$ من أجل $<\varepsilon$ وبالتالي $<\varepsilon$ من أجل $<\varepsilon$ من أحد من : p = n و $n \ge 1$ لدينا من أجل $v_n = \frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2}$. $v_{2n} - v_n = \frac{n+1}{(n+2)^2} + \frac{n+2}{(n+3)^2} \dots + \frac{2n-1}{(2n)^2} + \frac{2n}{(2n+1)^2} \ge n \cdot \frac{n+1}{(2n+1)^2} \ge \frac{n^2}{(3n)^2} = \frac{1}{9}$. عدة u_n وبالتالي u_n ليست متتالية كوشي إذا متباعدة arepsilon > 0 ($arepsilon = \frac{1}{9}$), $\forall n_0 \in \mathbb{N}, \exists (n,p) \in \mathbb{N}^2$: $\left\lfloor n \geq n_0 \wedge \left| u_{n+p} - u_n \right| \geq \frac{1}{9} \right\rfloor$