
5 
Phase Equ i l ibria i n  Flu id Systems 

Conventional chemical plants can usually be divided into a preparation, reaction, 

and separation step (see Figure 5 . 1 ) .  Although the reactor can be considered as the 

heart or the central unit of the chemical plant, often 60- 80% of the total costs are 

caused by the separation step, where the various thermal separation processes are 

applied to obtain the products with the desired purity, to recycle the unconverted 

reactants and to remove the undesired by-products . Because of the many advantages 

(energy used as separating agent. high-density differences between the two fluid 

phases (liquid, vapor) ) in 90% of the cases distillation processes are applied in the 

chemical or the petrochemical industry, whereas in the pharmaceutical industry 

crystallization processes are far more important [ 1 ] .  

Different aspects have t o  b e  considered during the synthesis o f  separation 

processes. As the preliminary step the chemical engineer has to decide which 

separation processes should be used. Then he has to find out if separation problems 

occur. In the case of distillation these problems are typically azeotropic points, which 

do not allow separation by ordinary distillation . To understand distillation processes, 

the knowledge of residue curves and boundary lines is quite helpful. In  the case of 

azeotropic points the engineer has to find an alternative way (e.g. separation at low 

or high pressure or by pressure swing distillation) ,  or to select suitable solvents for 

the separation of the considered system (e.g.  azeotropic or extractive distillation) 

or to choose a hybrid process ( i .e . ,  by combination of the distillation step with 

another separation process,  for example, membrane separation, adsorption, etc . ) .  

Furthermore, the engineer has  to  design the equipment (e .g .  to  determine the 

number of theoretical stages needed or the height of the packing of the separation 

column) and in addition, he has to choose the optimum separation sequence. To 

treat the different aspects mentioned above , a rel iable and detailed knowledge of the 

phase equilibrium behavior as a function oftemperature, pressure, and composition 

for the multicomponent system, which has to be separated, is required. 

The knowledge of the phase equilibrium behavior is not only important for the 

design of separation processes , but also for other applications, like the design of 

biphasic reactors, for example,  gas-liquid reactors . the estimation of the fate of 

persistent chemicals in the environment, and so on. 

In consequence, the typical question asked by the chemical engineer in the 

design phase is: "What is the composition and the pressure in phase (3, when 
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Figure 5.1 S imp l ified structure of a conventional chemical plant. 

phase f3 is in equilibrium with phase a at given composition and temperature?"  

(see Figure 5 . 2 ) .  In most cases, multicomponent systems with nonpolar, polar, 

supercritical compounds , and electrolytes have to be considered. For example, for 

the system ethanol-water-sodium chloride-C02 several questions can be raised 

from Figure 5 . 2 ,  such as: 

• How strong does sodium chloride influence the solubility of C02 in the system 

ethanol-water? 

• Does the system ethanol-water still show azeotropic behavior in the presence of 

sodium chloride? 

• How is the solubility of sodium chloride in water influenced by the presence of 

ethanol and C02 ? 

• Can the presence of sodium chloride cause a miscibility gap in the system 

ethanol-water? 

• How strong is the pH-value influenced by the presence of C02 ? 

• Which solvent can be applied to separate the azeotropic system ethanol-water 

by azeotropic or extractive distillation? 

• Or can carbon dioxide directly be used for the separation of ethanol and water by 

supercritical extraction? 

Phase � 

zf. z� . . . . .  
Phase a 

zf. z� . . . . .  

Temperature Typical vapor-l iquid equilibrium problem: 0 

Figure 5.2 Equ i l i b ri u m  stage and typical separation problem. 
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Figure 5.3 Seven l i q u i d  phases in equ i l i b r i u m  with the 
vapor phase [2] .  

However, the number of phases is not l imited to two only. For example, in the case 

of hetero-azeotropic mixtures like butanol-water or ethanol-water-cyclohexane 

already two liquid phases exist besides the vapor phase. Hildebrand showed that 

in the system water-heptane- perfluorokerosene-aniline-phosphorus-gall ium­

mercury even seven liquid phases are in equilibrium with the vapor phase (2] (see 

Figure 5 .3 ) .  
Depending on the state of the phases a and f3 vapor-liquid equilibria (VLE) , 

liquid-liquid equilibria (LLE) , solid-liquid equilibria (S LE) , and so on, can be 

distinguished . In the case of VLE the phase equilibrium behavior is shown in 

Figure 5 .4 as a Pxy-diagram for the binary system ethanol-water at 70 'C. For a 

given composit ion in the liquid phase the system pressure and the composition in 
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Figure 5.4 Pxy-d iagram for the system ethano l  ( 1 ) -water (2) at 70 C [8] . 
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Figure 5 .5  Illu stration of the law of opposite lever arms on 
the basis of the binary system methanol (1)-water (2) a t  
101.3 kPa. 

the vapor phase can be obtained from the diagram . Furthermore, it can be seen 
that at high ethanol concentrations the composition in the liquid phase is identical 

to the composition in the vapor phase, which makes a separation impossible by 

ordinary distillation. 
In Pxy- and Txy-diagrams, the law of the opposite lever arms can be applied 

to determine the amount of vapor and liquid in the two-phase region. This is 
demonstrated in the Txy-diagram of the system methanol-water at 101.3 kPa (see 

Figure 5.5). 
Consider a binary liquid mi.xh.ire with the concentration z0 and the temperature 

T0. I f  the mixture is heated up, the bubble point line is reached in point A, and the 
first bubble is formed. When the mixture is further heated up, a further increase of 

temperature is obtained and more vapor is formed. At point B, the mixture consists 

of a liquid with the composition x8 and a vapor with the composition y8. At point 
C, all liquid has been vaporized. Using nT as the total number of moles, the mass 
balance yields for point B 

( L v) L v nTzo = n + n zo = n xa + n Ya 

which is equivalent to 

Ya- zo 
zo- xa 

(5.1) 

(5.2) 

Therefore, the ratio between the amounts of vapor anJ liquid corresponds to the 
ratio of the lever arms located on the opposite side of the he line. 

From Figure 5.4 it can be seen that at 70 'C both compounds exist as liquids. 
Often the system temperature is above the critical temperature of one or morr 
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Figure 5.6 Pxy-d i agram for the system n itrogen (1) -methane  (2) at different temperatu res. 

components of the system considered. This is shown in Figure 5.6 for the binary 
system nitrogen-methane. Here the two phase regions do not cover the whole 
composition range for temperatures above the critical temperature of nitrogen 

(Tc = 126.2 K). Obviously now the binary system shows a critical point, where the 
length of the tie lines becomes zero. 

But by applying the Pxy-diagram again the pressure and composition in the 
vapor phase for a given temperature and the corresponding composition in the 
liquid phase can be determined. 

Often also the K-factors (K; = y;/x;) are plotted as a function of the pressure, 
as shown in Figure 5.7 for the system nitrogen-methane. From this diagram the 
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Figure 5.7 K-facto rs for the b ina ry system nitrogen 
( 1)  -methane  (2 )  as a fu nct ion of pressure at di fferent tem­
peratures. 
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Figure 5 .8 Isothermal  Px-d i agram for the bina ry system methane (1) -ethane  (2) at 250 K. 

K-factors for component 1 and 2 can be read directly for a given temperah.tre 
and pressure. While for the low-boiler N2 K-factors larger than one are obtained, 

K-factors smaller than one are observed for the high-boiler CH4. At the same time 
the critical pressure of the mixture can be determined as the pressure where for 
a given isotherm both K-factors for the considered nonazeotropic system show 
a value of 1. This point can be found for all the isotherms above the critical 

temperature of nitrogen (Tc = 126.2 K). 
With the help of an isothermal Pxy-diagram (see Figure 5.8) different phenomena 

which occur near the critical point , such as retrograde condensation or relrog t ade 
evaporation, can be explained. 

For mole fractions lower than XR the VLE behavior is similar to subcritical 
systems. Also in the range R-Ca liquid and a vapor phase is obtained. But the vapor 
phase now is depleted of the low boiling component with increasing pressure from 
CC to l. 

For compositions on the dew-point line in the range between C and CC a pressure 
decrease leads to the formation of a liquid phase. If the pressure is lowered further 

the amount of liquid phase will increase by condensation. At line P1 the largest 
amount of liquid is found according to the law of the opposite lever arms. Below 
CC the system shows VLE behavior like subcritical systems again. This means 
vaporization instead of condensation i� observed when the pressure is decreased, 
until the dew-point line is reached again and thus only vapor exists. 

The lower limit of the region of retrograde condensation CC is often called critical 
condensation point. At CC the high('st con centration of the low boiler in the vapor 

phase is obtained in equilibrium with the liqt•id phase. At this point the dew-point 
curve runs vertically and thus the slope for a given temperature is 

( :: tc = oo (5.3) 
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Figure 5.9 Experimenta l  vapor pressu res of ethane 
and heptane  and experi mental PT-data of the system 
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The upper limit of the retrograde region is the critical point C, which satisfies the 

following condition at constant temperature: 

- - 0 
( dP ) 

dy] c-
(5.4) 

The phenomenon that a liquid is formed by lowering the pressure at constant 

temperature or, respectively, by increasing the temperature at constant pressure is 

called retrograde condensation. 

Retrograde condensation plays an important role in technical applications , for 

example, in oil production, high-pressure pipelines, refrigeration processes and in 

natural gas reservoirs, where temperature and pressure are high enough to produce 

critical conditions. 

The region in which vapor and liquid may coexist in a binary system is limited by 

the vapor pressure curves of the pure components and the critical l ine. In Figure 5.9 

the vapor pressure curves of the pure compounds of the system ethane-heptane 

are shown together with the PT-curves of different fixed compositions of the liquid 

and the vapor phase. The intersections of the dew point and the bubble point curve 

for a given temperature and pressure mark the VLE for the chosen compositions in 

the liquid and the vapor phase. The critical points of a binary system can be found 

where a loop in Figure 5.9 is tangential to the envelope critical curve, also called 

critical locus. 
The typical VLE behavior of a binary system above the critical temperature 

of one of the compounds looks like the behavior also shown in Figure 5.6 
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Figure 5.10 VLE behavior of the following binary systems 
near the critical point: (a) ethane (1 ) -heptane (2 ) ;  (b) C02 
(1) -ethane (2) experimental data taken fro m [3]. 

for the system nitrogen-methane. Other examples are COrpropane and 

argon-krypton. 

In a few cases a different behavior is observed. In particular, this can happen if 

the system, for example, shows negative deviation from Raoult's law or a pressure 

maximum azeotrope. For the isobaric data of the system ethane-heptane and 

the isothermal data of the system C02-ethane this is shown in Figure 5.10. As 

can be seen for the system ethane-heptane, closed curves like islands appear at 

pressures of 68.9 and 86.2 bar. The reason is that at these pressures both compo­

nents are supercritical (ethane: Pc = 48.8 bar, Tc = 305.4 K; heptane: Pc = 27.3 bar, 

Tc = 540.3 K) but the mixture is subcritical, which means coexisting liquid and 
vapor phase. For the systrm C02-ethane, the isotherms at 293 K and 298 K show 
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two critical points, one on the right and the other on the left-hand side, and thus 

no coexisting phases in the medium concentration range between the two critical 

points. This is caused by the fact that the system shows a pressure maximum 
azeotrope. 

For multicomponent systems, the phase equilibrium behavior can become 

much more complicated. The phase equilibrium behavior of the ternary system 
ethanol-water-benzene at atmospheric pressure is shown in Figure 5.11. It can 

be seen that a ternary azeotrope exists besides three binary azeotropes. The binary 

system benzene-water shows a large miscibility gap, which results in a miscibility 

gap in the ternary system. In the diagram the binodal curve and a few tie l ines 

are shown. The tie lines connect the two liquid phases in equilibrium. While 
the azeotropes ethanol-water and ethanol-benzene are homogeneous, the binary 
azeotrope benzene-water and the ternary azeotrope are heterogeneous azeotropes. 

The ternary azeotrope shows the lowest boiling point. This can be used to separate 

the azeotropic system ethanol-water by the so-called azeotropic distillation'1 (see 
Section 11.4). After condensation, the ternary azeotrope forms two liquid phases, 

a benzene and a water-rich phase. The compositions of the two liquid phases are 
marked in Figure 5.11 by the arrows. The occurrence of azeotropic behavior and 
the selection of suitable solvents for azeotropic distillation are discussed in more 

detail in Sections 5.6 and 11 .4. In Figure 5 . 11 additionally the so-called boundary 
residual curves are shown. While in  b inary systems the azeotropic point cannot be 

crossed by ordinary distillation, boundary lines in ternary systems, and boundary 

1) Nowadays. benzene is no more used be­
cause of its toxicity. In commercial plants. 
it has been widely replaced by cyclohexane. 
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Figure 5 . 1 2 PT-diagram of a natural gas mixture consist i ng  
of  85.11 mol% methane, 10.07 mol% ethane, and 4.82 mol% 
propane [4]. 

surfaces in quaternary systems have the same consequences. How these residual 
curves are calculated is discussed in Section 11.3 in detail. 

A natural gas is a typical multicomponent mixture; thus, a diagram like Figure 5.8 

is not appropriate for illustration. Therefore, often PT-projections of phase dia­
grams, which are valid for a fixed overall concentration, are used (see Figure 5.12). 

5.1 
Thermodynamic Fundamentals 

While a large number of phase equilibrium data are available for binary systems, 
much less data have been published for ternary systems and almost no data 

can be found for multicomponent systems. Of course the various phase equilib­

ria for binary and multicomponent systems can be measured as d function of 
temperature or pressure and composition. Today highly sophisticated, reliable, 
and often computer-driven lab facilities are available to do so. Nevertheless, the 

measurement of the phase equil ibrium behavior of multicomponent systems is 

very time consuming. For a ten component system, the number of experimental 
VLE data required is l isted in Table 5.1, assuming the data are taken at constant 
pressure (e.g., atmospheric pressure) in 10 mol%-steps . For the pure components 

this means that only 10 normal boiling points have to be measured. Then there 

are 45 binary systems for which nine data points between 10 and 90 mol% are 

measured, so that in total 405 data points have to be measurrd. A� can be seen in 

'Ltble 5.1 there are additionally 120 ternary. 210 quaternary, 252 quinary, and many 

higher systems. For the 10-component system only one data point with 10 mol% 

of every component has to be experimentally determined. A total number of92378 
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Table 5.1 N u m ber of experi menta l  data requ i red for a 
ten-component  system at a given pres su re (e.g., atmospheric 
press u re) , when the data a re meas u red in 1 0  mol% steps .  

Number of Number of Data points/ Total number of 
components systems system data pointsfsystem 

10 1 10 
2 45 9 405 
3 120 36 4320 
4 210 84 17640 
5 2 52  126 31752 
6 210 126 26460 
7 120 84 10080 
8 45 36 1620 
9 10 9 90 

10 

Total number of 
data points 

10 
415 

473 5  

22375  
54127 
80587 

90667 
92287 
92377 
92378 

data points results , which have to be measured . If 10 data points can be measured 
per working day. the measurements would last �37 years [ 5 ] .  

Because of this time consuming effort reliable thermodynamic models are 
required . which allow the calculation of the phase equilibrium behavior of mul­
ticomponent systems using only a limited number of experimental data, for 
example, only binary data. From Table 5 . 1  it can be concluded that in this case 
only 42 days are required to measure all pure component and binary data of a 
ten-component system (in total 4 1 5  data points) .  S ince a lot of binary VLE data can 
be found in the literature [ 3 ,  6] , even less than 42 days of experimental work would 
be necessary. 

Following Gibbs, phase equilibrium exists if the components show identical 
chemical potentials in the different phases a and fJ: 

(4.71 )  

The chemical potential i s  a thermodynamic quantity, which was first introduced 
by Gibbs. It is not an easily imaginable quantity. Later it was shown by Lewis 
(see Section 4 .7 .2 )  that the phase equilibrium condition given in Eq. (4. 7 1 )  can be 
replaced by the following so-called isofugacity condition: 

ft' =It (4 .75 )  

At low pressures ,  except for strongly associating compounds the fugacities of  the 
pure compounds are approximately identical to the vapor pressure or sublimation 
pressure depending on the state (liquid or solid ) .  In case of mixtures, at low 
pressures the fugacity is nearly identical with the partial pressure of the compound 
considered. 

For practical applications, Eqs . (4. 71) and (4.75 )  are not very helpful, since the 
connection to the measurable quantities T, P and the composition in the liquid and 
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vapor phase is missing to be able to calculate the required K-factors K or separation 
factors au for the design of the different separation processes .'1 Therefore, auxiliary 
quantities such as activity coefficients y; and fugacity coefficients cp; have been 

introduced. 
The fugacity coefficient cp; of component i can be defined as the ratio of the fugacity 

in the liquid phase L (vapor phase V) to the product of the mole fraction x; (yi) and 
system pressure P. In the vapor phase the product y, P can be substituted by the 

partial pressure p;: 

The activity coefficient y, is defined as follows: 

f, Yi = --0 Xi!; 

( 5 . 5 )  

(5 .6) 

(5 .7) 

whereby the standard fugacity fi0 can be chosen arbitrarily . 
Using the different definitions for the fugacities two different approaches can 

be derived for the description of phase equilibria. Starting from Eq .  (4.75 ) ,  the 
following relations for VLE are obtained [7): 

(5 .8) 

Approach A: 

(5 .9) 

Approach B: 

( 5 . 10) 

In Approach A, the fugacity coefficients of the liquid cp( and vapor phase cp': are 
needed. They describe the deviation from ideal gas behavior and can be calculated 
with the help of equations of state, for example, cubic equations of state and reliable 

mixing rules. In Approach B, besides the activity coefficients y; a value for the 
standard fugacity .f;0 is required. In the case ofVLE usually the fugacity of the pure 

liquid at system temperature and system pressure is used as standard fugacity. For 
the calculation of the solubilities of supercritical compounds Henry constants are 
often applied as standard fugacity (see Section 5.7). 

2) In the case of distillation K; is defined as 
the ratio of the vapor phase mole fraction to 
the liquid phase mole fraction (K; = y;/xi) . 

and the separation factor a ii is the ratio of 
the K-factors (uij = K;/ Kj)· 

. 
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Using Eqs . (5.8) and (5.6) , the fugacity of the pure liquid at system temperature 

can directly be calculated, since the pressure is identical with the vapor pressure of 
the pure liquid which is in equilibrium with pure vapor: 

(5 . 1 1 )  

where the fugacity coefficient in the liquid o r  vapor phase in the saturation state <PF 
or cp'( can be replaced by the fugacity coefficient at saturation pressure cp�. 

To get the fugacity of the pure liquid not at the vapor pressure Pf, but at 
system pressure P, the compression or expansion of the pure liquid from the vapor 
pressure to the system pressure has to be taken into account. This can be done 
using Eq . (2.7 1 ): (illnfL) 

ap T RT 
(5 . 1 2) 

With the assumption that the molar liquid volume v;L is constant in the pressure 
range covered. Eq. ( 5 . 1 3 )  is obtained for the standard fugacity at system temperature 
and system pressure, where the exponential term in Eq. (5.1 3 )  is called Poynting 
factor Poy;: 

vL(P- P') ro (T Pl = m5 P' exp i i 
= ,n' PsPoy. (5 .13) Ji ' 't"t t RT 'YL l I 

Combining Eqs .  (5 .10) and ( 5 . 1 3 )  leads to the following relation for the description 
ofV LE with the help of activity coefficients: 

Introducing the auxiliary quantity f/J; gives 

with 
cpsPoy f/>; = -'-v -' 

CfJ; 

( 5 . 14) 

(5.1 5 )  

If  the pressure difference P - P� is not too large. the value of the Poynting factor i s  
approximately 1 .  This is shown below for the system ethanol-water at 70 "C. 

Example 5.1 
Calculate the Poynting factor for ethanol and water at 70 · C for pressure differences 
of 1, 10 and 100 bar. At 70 'C, the following molar volumes can be used: 

ethanol: 61.81 cm3 fmol, water 18 .42 cm3 fmo! . 

Solution 

For a pressure difference of 1 bar (e.g. system pressure P = 5 bar, vapor pressure 
P� = 4 bar) the following Poynting factors are obtained for ethanol and water: 

0 .06181 . 1 
Poy = exp = 1 . 0022 ethanol 0.0831433 · 343 . 1 5  

0 .01842 . 1 
Poy = exp = 1.0006 water 0.0831433 · 343 . 1 5  
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In the same way the following values are obtained for a pressure difference of 10 

and 100 bar: 

10 bar: 

100 bar: 
Poyethanol = 1.022, 

POYethanol = 1.242, 
Poywater = 1.006 

Poywater = 1.067 

It can be seen that at typical pressure differences (e .g . ,  P - Pi < 1 bar) in 
distillation processes the Poynting factors show values near unity. Because of the 
larger molar volume of ethanol, the deviation from unity is larger for ethanol than 

for water. 
Besides the Poynting factor, the real vapor phase behavior has to be taken into 

account in Eqs .  ( 5 . 14) and ( 5 . 1 5 ) .  This can be done with the help of equations 
of state . Since only the vapor phase nonideality has to be considered , simple 
equations of state, for example, the virial equation of state can be applied, which 
are only able to describe the PvT behavior of the vapor phase .  For moderate 
pressures the use of second virial coefficients is sufficient. In the case of systems 
with strong associating compounds such as carboxylic acids or hydrogen fluoride 
this approach cannot be applied any more. In this case the deviation from 
ideal gas behavior caused by the strong interactions - comparable to chemical 
reactions - has to be taken into account by so-called chemical contributions (see 

Section 1 3 . 2 ) .  

Example 5.2 
Calculate the fugacity coefficients cp'(, cp'/, and the auxiliary quantity 1>< for the 
system ethanol-water at 70 cC using the virial equation. At 70 °C the following 
second virial coefficients should be used for the system ethanol ( 1 ) -water(2) :  

B11 = - 1 100 cm3 (mol 
B12 = -850 cm3 (mol 
Bn = -650 cm3 (mol 

The following liquid molar volumes can be used for the calculation of the 
Poynting factors: water 18.42 cm3 fmol and ethanol : 61 .81 cm3 fmol. 

Solution 

The calculation procedure for the system ethanol ( 1 )  -water (2) is demonstrated for 
the data point x1 = 0 .252 ,  y1 = 0 . 552 ,  and P = 62 . 39  kPa listed in Table 5 . 2 .  

Using Eq. (4.97) for the calculation of the fugacity coefficients in  the vapor phase: 

In cpv = [2 "' y B - B] � ' � J u RT j 
(4.97) 
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Table 5.2 Vapor-liquid equilibrium data for the system 
ethanol (1 )-water (2) at 70 C [8]. 

x, Y, P(kPa) 

0.0 0.0 

0.062 0.374 
0.095 0.439 
0.13 1 0.482 
0.194 0.524 

0.252 0.552 

0.3 34 0.583 

0.401 0.611 

0.593 0.691 

0.680 0.739 
0.793 0.816 

0.810 0.826 

0.943 0.941 
0.947 0.945 

1.0 1.0 

and for the pure compounds :  

l s _ 

B;;P� 
n <P; - R T  

3 1.0931 
48.33  
5 3.2 
56.5 3 
60.12 
62.39 
64.73 
66.34 
70.11 
7 1.23 
72.35 
72.41 
72.59 
72. 59 
72.331 

( 2 . 108) 

where the second virial coefficient B of the mixture can be obtained using the 
following relation: 

(4.89) 

Using Eq. (4.89) the following virial coefficient is obtained for the given vapor 
phase composition: 

B = 0. 5 522 
· ( -1 100) + 2 · 0 .552  · 0.448 . ( -850) + 0.4482 · ( -650) 

= -886 cm3 jmol 

Using this value the fugacity coefficient of ethanol can be calculated directly using 
Eq. (4.97) : 

62 . 39  
In cp'( = [2 (0 . 552  · (- 1100) + 0.448 · (-850)) + 886] -----

8314.3 3 . 343 . 1 5  
= -0.0238 

cp'( = 0.9764 

3) Unfortunately, in [8] the pure component 
vapor pressures were not measured. There­
fore, these values were added by using 

the available constants for the Antoine 
equation (see Figure 5.30). 
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The fugacity coefficient of ethanol ( 1 )  in the saturation state is obtained as 

ln s = 
-llOO · 72 . 30 

= -0.02787 lf!1 8314 .33  · 343 . 1 5  
If!� = 0 .9725 

In a similar way, the following values are obtained for water (2): 

�Pi= 0.9862 

If!� = 0 .9929 

With the Poynting factors 

0 .06181 . (0.6239 - 0.72 3 )  
Poy = exp = 0.9998 ethanol 0.083 1433  · 343 .1 5  

0 .01842 . (0.6239 - 0 . 3 109) 
Poy = exp = 1 .0002 water 0 .083 1433 · 343 . 1 5  

the following r/>i values are obtained for this data point: 

0 .9725 . 0. 9998 
= 0 .9958 rPethanol = 

0. 9764 

rPwarer = 0 '9929 . l.0002 
= 1 .0070 

0 .9862 

For the whole composition range the ¢;-values are shown in Figure 5 . 1 3 .  I t  can be 
seen that in the whole composition range, the ¢;-values are between 0.98 and 1 .0 1 .  

As shown in Example 5 . 2 ,  for nonassociating compounds in contrast to  strongly 
associating compounds such as carboxylic acids or HF the fugacity coefficients 
in the vapor phase If!'/ and in the saturation state If!� show very similar values at 
moderate pressures, so that 4>i-values around unity are obtained. This means that 
for nonassociating systems the following simplified relation can often be used to 
describe the VLE behavior: 

(5 .16) 

Using the different approaches, the following relations are obtained to calculate 
the required K-factors K; and relative volatilities (separation factors) aij: 

L 
K - }'i _ !;_ '-Xi -If!'/ 

P' K_}'i""'� , -X; p 

( 5 . 1 7) 

( 5 . 18) 

As can be seen later, both approaches allow the calculation of the VLE behavior of 
multicomponent systems using binary data alone. 

When the advantages and disadvantages of different approaches are compared, 
approach A (lf!-1{! approach) shows various important advantages over Approach B ,  
for example, that the same auxiliary quantities are used t o  describe the real behavior 
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Figure 5 .1 3  ¢;-values for the system ethanol(l)-water (2) at 70 C. 

in the l iquid and vapor phase. No additional model is required to account for the 
real behavior of the vapor phase. Furthermore, no problem arises with supercritical 
compounds , since no standard fugacity (vapor pressure) is required. At the same 

time densities, enthalpies (including heats of vaporization), heat capacities, and 
so on, as a function of temperature, pressure, and compos ition can be calculated 
for both phases , which are required as additional information in Approach 

B- the so-called y-rp-approach (see Section 5.2). The disadvantage is that for the 
calculation a computer is required. On the other hand , the strength of Approach 
B is its relative simplicity and the opportunity to have independent correlations for 

each quantity, which can be fitted as accurately as possible and as necessary. 

5.2 
Appl ication of Activity Coefficient Models 

The equation of sta te approach is very attractive for the calculation of VLE. But it 
requires an equation of state and reliable mixing rules, which are able to describe 
the PvTbehavior not only of the vapor but also of the liqu id phase with the required 
accuracy. In spite of the progress achieved in the las t 20 years , up to now there is 
no universal equation of state and mixing rule which can be successfully applied to 
all kind of systems in a wide temperature and pressure range for pure compounds 
and mixtures. 

For the calculation of VLE with Approach B often the simplified Eq. (5.16) is 
applied. Then besides the activity coefficients as a function of composi tion and 

temperature only the vapor pressures of the components are required for the 
calculation . 
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Using Eq. (5 .1 6) the required activity coefficients and the excess Gibbs energies 
can directly be derived from complete experimental V LE data. This is shown in 
Example 5 . 3  for the binary system ethanol-water measured at 70 "C. 

Example 5.3 
Calculate the activity coefficients and the excess Gibbs energies for the system 
ethanol ( 1 ) -water (2) at 70 -c as a function of composition using Eq. ( 5 . 1 6) and 

Table 5 . 2 .  

Solution 

For the system ethanol ( 1 )-water (2 ), the calculation of the activity coefficients and 
the excess  Gibbs energy is demonstrated for a mole fraction x1 = 0 .252 .  

Using the simplified Eq. ( 5 . 16), the activity coefficients can be calculated by the 
following relation: 

y;P 
Yi� --x;f1 

For the selected composition the following activity coefficients are obtained for 
ethanol ( 1 )  and water (2): 

0 . 552 . 62 .39 
y; 

= 0 .252  · 72 . 30 
= 1 . 890 

0 .448 . 62 . 39  
y = = 1 . 202 2 

0 .748 . 3 1 . 09 

With the help of these activity coefficients the excess Gibbs energy can be calculated 

using Eq . (4.86) . 

gE = RT (x1 ln-y1 + Xz In Yz) 

gE = 8 . 3 1 43 3  · 343 . 1 5 (0 .252 ln 1 .890 + 0.748 ln 1 . 202) = 850.2 Jjmol 

E 
L = 0.252 ln 1 .890 + 0. 748 ln 1 . 202 = 0. 298 
R T  

For the other compositions the activity coefficients , the excess Gibbs energies 
and the dimensionless excess Gibbs energies (gE /RT) are listed in Table 5 . 3 .  
Furthermore the values are shown in  the graphical form in Figure 5 . 1 4  together 
with the correlation results using the Wilson model (see Chapter 5 . 3 ) .  

Depending on  the values o f  the activity coefficients y1 and y2 and the vapor 
pressures � and P�. a very different VLE behavior is observed. In Figure 5 . 1 5 , 
the vapor phase composition y1• the activity coefficients In y;, the pressure P at 
isothermal conditions and the temperature Tat isobaric conditions as a function of 
the mole fraction of component 1 •> in the liquid (vapor) phase are shown for binary 

4) In the case of binary VLE the low boiling 
substance is always designated as compo­
nent 1. 



5.2 Application of Activity Coefficient Models 

Table 
5.3 Exper imenta l  data [8] for the system ethano l  

(1 )-water (2)  at 70 C and  the derived act iv ity coefficients 
and excess G i bbs ene rgies.  

Xl Y1 P (kPa) Y1 Y2 

0 0 31.09 1.000 
0.062 0.374 48.33 4.032 1.037 
0.095 0.439 53.2 3.400 1.06 1 
0.131 0.482 56.53 2.877 1.084 
0.194 0.5 24 60.12 2.246 1.142 
0.252 0.5 5 2  62.39 1.890 1.202 
0.334 0.583 64.73 1.563 1.304 
0.401 0.611 66.34 1.398 1.386 
0.593 0.691 70.11 1.130 1.712 
0.68 0.739 71.23 1.071 1.869 
0.793 0.816 72.35 1.030 2.069 
0 .81 0.826 72.41 1.02 1 2.133 

0.943 0.941 72.59 1.002 2.417 
0.947 0.945 72.59 1.002 2.423 

1 72.3 1.000 

6 

5 
0.3 

• 

4 0 .2 
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Figure 5.14 Concen tration dependence of the activi ty coeffi­
c ients and  of the d imension less excess Gi bbs energy for the 
system ethano l  (1) -water (2) at 70 C [8] - Wi l son model. 

-----

gE (Jfmol) ffRT 

0 0 
345.0 0.1209 
483.9 0.1696 

594.6 0.2084 
753.2 0.2640 

850.2 0.2980 

929.2 0.3257 
940.9 0.3298 

831.1 0.2913 

703.3 0.2465 
495.5 0.1737 
459.3 0.1610 

148.6 0.0521 
138.9 0.0487 

0 0 

• • 
• 

0.5 1 .0 

:r 

systems with very different real behavior. In the two diagrams on the right-hand 

side the pressure and temperature are not only given as a function of the liquid 

phase (continuous boiling point line) but also as a function of the vapor phase 

composition (dashed dew-point line) . 

While the first system benzene-toluene shows nearly ideal behavior (y; � 1) , the 

activity coefficients for the next three systems steadily increase (positive deviation 

from Raoult's law). The influence of the activity coefficients can particularly be 

11
95 



1 96 1 5 Phase Equilibria in Fluid Systems 

·olZJ .0 0.8 3 
- 0.6 

� 2 "' c 0.4 -
0.2 1 

0 0 

120 

�

100 

ll. 80 

60 
/ 

/ 

/ / 

I / / 

I I I 

0 0.2 0.4 0.6 0.8 1 
.1 

0 0.2 0.4 0.6 0.8 1 
K1 

0 0.2 0.4 0.6 0.8 1 
x,. y, 

0.4 - a... 40 1 _

:� �:o
�

= 

0.2 
0 0 - - - 20 1--+-r----+--+---1 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 
.1 x,, Yt 

.:�ld�:n�= 
·:LJ :� .+---+----i-+---+--l 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

K1 

0.4 .s � 15 

0.2 0.4 0.6 0.8 1 
x,. Yt 

·�· 
(/' ' ' ' ' ', _

:0 ,

:o �

= 

0.2 • 1 
� 

� 
�

--- 10 

0 0 - 5 +---+---<r-+---+-l 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 

x, 
0.2 0.4 0.6 0.8 1 

x1• Y1 

380 

g 370 
... 

360 

' ' ' ' ' ' ' ' ' ' ' ' 
0.2 0.4 0.6 0 8 1 

x,, Yt 
350 ,---,----,--,--,---, 

340 
g 
f-J30 

320 

370 
g 
f-366 

362 

' ' ' ' ' ' ' ' ' ' ' 
0 0.2 0.4 0.6 0 8 1 

x,. Yt 

0 0.2 0.4 0.6 08 1 
x,,h 

345,--,---,--,---,---. 
340 
335 

g 320 ... 
315 
310 

, , 
/ 

/ 
/ �. 

/ / / 

315 +---+---<f--+---+-l 
0 02 0.4 0.6 0.8 1 

x,. y, 

2 

3 

4 

10� oo-
08 ..... , ' 

;::
06 ,;-1 

' 

04 ..£ � :: _____ / ( 
----,,

, 5 

.,200� 360�-
02 40 

0 2 0 300 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

.1 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0 6 08 1 

K1 
10[Z] ou-

0 6 ............ ' 
06 ' 

� ,:- 1 
04 .E 

02 
0 � 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

., 

x,. Yt �::ba/ 
90 '- ..... / 

80 
0 0.2 0.4 0.6 0.8 1 

x,. Y1 

Figure 5.15 Different types of vapor-liqu id equ i l ib­
rium diagrams  for the following binary systems: (1) ben­
zene (1) - to luene (2); (2) methanol (1)-water (2); (3) 
1 p ropano l  ( 1 )-water (2); (4) 1-butanol (1) -water (2); 
(5) d ich loromethane (1 ) -2-butanone (2); (6) acetone 
(1)-ch loroform (2). 

x1. y, _::0'', 
� \ 6 

330 

325 
0 0.2 0.4 0.6 0.8 1 

x,, y, 



5.3 Calculation of Vapor-Liquid Equilibria Using gE·Models 1 1 97 

recognized from the pressure as a function of the liquid phase mole fraction 
x1 at a given temperature. While a straight line for the pressure is obtained 
in the case of the nearly ideal system benzene-toluene following Raoult's  law, 
higher pressures than the values obtained using Raoult's law are observed for 
the system methanol-water (Yi > 1 ) .  With increasing activity coefficients as in 
the case of the system 1-propanol-water (Yi » 1) the pressure even shows a 
maximum. At the same time a minimum of the temperature is observed in the 
isobaric case. At the pressure maximum (respectively minimum of the temper­
ature) the boiling point line and the dew-point line meet. This means that the 
composition in the liquid and the vapor phase becomes identical and in the 
y-x-diagram an intersection of the 45; line is observed. These points are called 
azeotropic points. Systems with an azeotropic point cannot be separated by ordinary 
distillation. 

When the values of the activity coefficients further increase, two liquid phases can 
occur. as in the case of the system 1 -butanol-water. If the two liquid phase region 
(shown by the horizontal line) intersect the 45 line in the y-x-diagram, a so-called 
heterogeneous azeotropic point occurs . In the case of heterogeneous azeotropic 
points the condensation of the vapor leads to the formation of two liquid phases . In  
the system 1 -butanol-water a butanol-rich and a water-rich phase i s  formed. The 
pressure (temperature) and the vapor phase composition show constant values for 
the binary system in the whole heterogeneous region . 

Besides the large number of systems with positive deviation from Raoult's 
law (Yi > 1 ) ,  sometimes systems with negative deviation from Raoult's law 
(y; < 1), are observed. In Figure 5 . 1 5 , the systems dichloromethane-2-butanone 
and acetone-chloroform were chosen as examples .  Because of the strong hydrogen 
bonding effects between the two compounds, associates with low volatility are 
formed in these systems. This results in the fact that the pressure above the liquid 
mixture is lower than the pressure assuming ideal behavior (y; = 1). Depending 
on the vapor pressures azeotropic behavior can also occur in systems with negative 
deviations from Raoult's law, as in the system acetone-chloroform. However, in 
contrast to systems with positive deviations from Raoult 's  law, in these systems 
azeotropic points with a pressure minimum (temperature maximum) are formed. 
Binary systems with negative deviation from Raoult ' s  law (Yi < 1) cannot show 
two liquid phases . The occurrence and disappearance of binary azeotropes are 
discussed in more detail in Section 5 .6 .  

5.3 
Calculation of Vapor-Liquid Equ i l ibria Using gE·Models 

As discussed in Section 5 . 1 ,  besides the vapor pressure of the pure compounds 
an activity coefficient model is required, which allows the calculation of the 
VLE behavior using only binary experimental data . Using Eq. (4.85) an analytical 
expression for the activity coefficients can be derived if an expression for the excess 
Gibbs energy is available. By definition, the expression for the excess Gibbs energy 
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must obey the following boundary condition: gE ---> 0 for Xi --> 1 

For the binary case the excess G ibbs energy gE shows a value of 0 for x1 = 1 and 
x2 = 1. The simplest expression which obeys the boundary conditions is  the Porter 
equation [9] : 

gE 
- = AX] X2 
RT 

( 5 . 19)  

In this equation, A is a parameter which can be fitted to experimental data. Using 
Eq. (4.85)  an analytical expression for the activity coefficients can be derived directly 
from Porter's expression [9] .  For the derivation it is advisable to replace the mole 
fractions by the mole numbers : 

GE An, nz 
R T  n1 + nz ( a cE 1 RT ) 

ln y1 = -.-'--d n, T. P .n2  
In Y1 = Ax� 

An2 ( nJ + nz ) - An1 n2 
( ni + nz ) 2 

In the same way, the following expression is obtained for component 2 : 

ln Y2 = Axf 
Porter's equation can be applied if gE shows a symmetric curvature, this means an 
extreme value at equimolar composition (x1 = 0 . 5 ) .  This behavior is only observed 
for chemically similar compounds of similar size. 

For the description of gE f RTfor all other binary systems a more flexible expression 
is required. The simplest way is the introduction of further adjustable parameters , 
as in the Redlich- Kister expansion [ 10] : 

gE 2 
- = x1 x2 [A + B (x1 - x2 l + C (x1 - Xz ) + · · · ] RT ( 5 . 20) 

With the help of the flexible Redlich - Kister expansion all kinds of concentration 
dependencies of gE for binary systems can be described. The contribution of 
the different parameters to the value of the excess Gibbs energy is shown in 
Figure 5 . 16 .  However, both the Porter and the Redlich - Kister model can only 
be used for binary systems . Furthermore, the correct temperature dependence 
of the activity coefficients cannot be described using temperature-independent 
parameters .  

In practice, gE ·models are required which allow the calculation of the real behavior 
of multicomponent systems in the whole composition and a wide temperature 
range using binary data alone. The largest part of the VLE data (88 . 5%) has 
been published for binary systems .  Only 10 .3% of the VLE data published are for 
ternary and approx. 1% for quaternary systems [3 ] .  This means there is nearly 
no chance to find the required experimental VLE data for quaternary and higher 
systems. 
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Figure 5 . 16  Contribut ion of the d ifferent 
parameters of the Red l i c h-K i ster expans ion 
to the va l ue  of the excess G i bbs energy. 

A = B = C = 1  

0.5 1 .0 
-

A sophisticated thermodynamic model should take into account the various 

contributions to the excess G ibbs energy to be able to describe not only the 

concentration, but also the temperature and pressure dependence correctly: 

(5 .2 1) 

Most of the excess properties are available experimentally. While the gE -values can 

be obtained from VLE measurements (see Example 5 . 3 ) ,  the excess enthalpies hE are 

obtained from calorimetric and the excess volumes v E from density measurements. 

When the excess properties mentioned before are known, other excess properties , 

for example the excess entropy sF , can directly be derived, as shown in the next 

example. 

Example 5 .4 
Construct a diagram with the thermodynamic excess properties gE , hE, and - TsE 

for the system ethanol ( 1 )-water (2)  from the VLE data of Mertl (8] (Tables 5 . 2  and 

5 . 3 ) and the excess enthalpies ( 1 1 ]  in Table 5.4. 

Solution 

The gE -values can directly be calculated from the activity coefficients derived from 

the experimental VLE-data . The values for gE J RT were already listed in Table 5 . 3 .  

At a concentration of x 1  = 0 . 252  the following value for the excess Gibbs energy is 

obtJined: 

gE = 8 . 3 1433  343 . 1 5  · 0.298 = 850 .2 J fmo! . 
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Figure 5.1 7 Excess G ibbs  energy, excess entha l py, and 
- TsE for the system ethanol ( 1 )  -water (2) at 70 ' C. 

The value for - TsE can be calculated from the difference gE -hE : 
For  the whole composition range the results are  shown in Figure 5 . 17 .  

When the excess properties are known, the values of the activity coefficients 

can be extrapolated to other conditions. Applying the van't Hoff equation (see 

Appendix C), the following temperature and pressure dependences of the excess 

Gibbs energy are obtained: ( a (gE JT) ) aT 
respectively: 

P,x 

( a (gE/T) ) = hE a ( 1/T) P.x 

and 

(5 .22) 

(5 .23)  

(5 . 24) 
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The temperature dependence of the molar excess enthalpy can be expressed by the 
molar excess heat capacity c�. ( ilhE ) = C� 

a T  P.x 
( 5 . 25 )  

With the help of these expressions . the temperature and pressure dependence of 
the activity coefficients can be derived directly: 

( a  ln y; ) 
o (lj T) P x  

c ln y; ) 
B P T.x 

-E 
h; 
R (5 .26) 

- E  v, 

RT ( 5 . 27) 

The partial molar excess properties vary with composition. They can be derived 
directly from the curvature of the excess enthalpies hE or excess volumes vE as a 
function of the mole fraction. How the partial molar properties can be determined 
by the tangent line for the excess enthalpy and a composition of x1 = 0 .252  is 
shown in Figure 5 . 1 7 . U sing the partial molar excess values h�and v;E the activity 
coefficient at a different temperature or pressure can be determined. But it has 
to be considered that these partial molar excess properties do not only depend on 
composition but also on temperature and pressure. 

While the pressure influence on the activity coefficient can usually be neglected 
in the case of VLE, the temperature dependence should be considered. This is 
shown in Example 5 . 5 .  

Example 5 . 5  
Estimate the activity coefficients for x 1  = 0 . 2 52  a t  50 "C for the system ethanol 
( 1 )  -water (2) using the activity coefficients given in Table 5 . 3  and the experimental 
excess enthalpy data from Table 5 .4. Simplifying, it should be assumed that the 
excess enthalpy hE is constant in the temperature range considered. 

Activity coefficients at 70 c C: 

Yt = 1 .890 

Y2 = 1 . 202 

Solution 

For a mole fraction of x1 = 0 .252 ,  the following values for the partial molar excess 
enthalpy can be read from Figure 5 . 17 :  

-E h1 = 725 J jmol -E h2 = -335  J fmol 
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Table 5.4 Excess entha l py data [l l ]  for the system ethano l  ( 1 ) -water (2) at 70 c. 

x, hE (Jfmol) x, hE (Jfmol) 

0.0303 - 1 08.7 0. 3962 6 1 .6 

0.0596 - 1 73 . 7  0.4502 1 0 1 . 3  

0.0896 -200. 1 0 .4980 129.7 

0. 1238 - 1 94.0 0 .5802 1 5 1 . 3  

0 .1239 - 1 96.4 0.5889 1 5 3 . 3  

0. 1697 - 1 60.9 0.6976 1 35 .8  

0 . 1905 - 1 49.9 0.7439 1 1 5 .0  

0. 2402 -92 .2  0 .8022 84.0 

0. 3021 -24.8 0.8457 62 .0 

0 .35 1 4  22 .8  0 .8957 39 .3  

While for the partial molar excess enthalpy of ethanol ( 1 )  a positive value is  obtained, 
a negative value is obtained for water (2) for this composition. Following Eq. ( 5 .26) 
one obtains with the help of these values 

hE ( 1 1 ) 
In y, (Tz ) = In yi (T, ) + � Tz 

- T1 , 

the values for the activity coefficients at 50 ' C can be calculated : 

In y! ( 323 . 1 5 K) = In 1 .890 + --- --- - --725 ( 1 1 ) 
8 . 3 1 433 323 . 1 5  343 . 1 5  

y! (323 . 1 5 K) = 1 . 920 
335 ( 1 1 ) ln y2 (323 . 1 5 K) = In 1 . 202 - -- -- - --

8 . 3 1433 323 . 1 5  343 . 1 5  
y2 (32 3 . 1 5 K) = 1 . 193 .  

I t  can be  recognized that different temperature dependencies are observed for 
the two compounds involved, caused by the different sign of the partial molar 
excess enthalpies .  While the activity coefficient for ethanol decreases , the activity 
coefficient for water increases with increasing temperature in the temperature 
range covered. But as can be seen from Figure 5 . 1 7  the temperature dependence of 
the partial molar excess enthalpies strongly depends on composition. For example, 
for compositions x1 < 0. 1 negative partial molar excess enthalpies for ethanol 
would result. 

Example 5.6 
Calculate the activity coefficient at infinite dilution of ethanol (1) in n-decane (2) at 
353 . 1 5  and 433 . 1 5  K from the Ytc value at 338.65 K [ 3 ] :  

y)"" = 1 5 .9 
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assuming that the value of the partial molar excess enthalpy of ethanol 
-E oo 
h1 • = 1 9000 J fmol (3] is constant in the temperature range covered. 

Solution 
Using Eq. ( 5 .26) , the following activity coefficients result: 

19000 ( 1 1 ) 
In y100(35 3 ' 1 5 K) = ln 1 5 '9 + 8 . 3 1433 353 . 1 5 - 338 .65 

= 2 .7663 - 0.2771 = 2.4892 

Yi"" ( 353 . 1 5  K) = 12 .05 
' 19000 ( 1 1 ) 

In rt' (433 ' 1 5 K) = In 1 5 '9 + 8 . 3 1433 433 . 1 5
-

3 38 .65 
= 2 .7663 - 1 .4722 = 1 . 2941 

YJ00 (43 3 . 1 5  K) = 3 .65  

It can be  seen that the activity coefficient a t  infinite dilution of ethanol in  n-decane 

decreases by a factor greater than 4 when the temperature is increased from 338 to 

433 K. 
From these results it can be concluded that the temperature dependence cannot 

be neglected. While positive values of the partial molar excess enthalpies lead to 

a decrease of the activity coefficients with increasing temperature, negative values 

of the partial molar excess enthalpies lead to an increase of the activity coefficients 

with increasing temperature. The variation of the molar excess enthalpy with 
composition and temperature is often very complex. In the system ethanol-water 

around 70 oc even the sign changes with composition, as shown in Figure 5 . 18 .  

1 200 

800 

400 
0 E 
:2. 0 

w -<::: 
400 

800 

1 200 
0 

Figure 5 . 18  Selected excess enthalpy d ata at different tem­
peratu res fo r the system ethanol -water [3] .  
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Figure 5.1 9 Excess vol u mes of the system ethano l  ( 1 ) -water (2) at 20 "C  [3 ] .  

Example 5 .7  
Estimate the difference between the sum of the volumes of the pure compounds 
and the volume of the resulting binary mixture of 0.4 mol ethanol and 0.6 mol 
water at 20 oC. Additionally please check the influence of a pressure difference of 
2 bar on the activity coefficient qualitatively. 

In the table below the densities at 20 °C and the molar masses are giVen [ 3 ] .  
( see also Example 4. 1 )  

Compound 

Ethanol 

Water 

Density (gjcm3 ) 

0.7893 

0.9982 

Molar mass (gfmol) 

46.069 

18 015  

The excess volumes for the system ethanol ( 1 )-water (2) at  20 "C are shown in 
Figure 5 . 19 .  

Solu.tion 

To determine the volume of the pure compounds first the masses have to be 
calculated: 

methanol = 0. 4 ° 46.069 = 18.43 g 

m H ? O  = 0.6 · 18 .015  = 10 .81  g 

18 .43 3 Vethanol = 
0_7893 

= 23 . 3 5  em 

10 .81 3 VH o = -- = 10.83 em 2 0 .9982 
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This means that the total volume of the pure compounds under ideal conditions is 
34. 1 8 cm3 . 

For the calculation of the correct mixture volume the excess volume has to be 
known. From Figure 5 . 1 9  an excess  volume of - 1 . 10  cm3 ;mol for a composition of 
x1 = 0.4 can be read. Using this value the volume of the mixture can be calculated 
using Eq. (4. 57 ) :  

V =  LX; V; + VE 
v = 34 . 18 - 1 . 10 = 3 3 .08 cm3jmol 

This means that the volume of the mixture is approx. 3 . 2% lower than the volume 
of the pure compounds ,  this means starting from 100 cm3 only 96.8 cm3 remain. 

For x1 = 0.4 for both components a partial molar excess volume of - 1 . 1  cm3 jmol 
(intersection at x1 = 0 and x1 = 1 of the slope at x1 = 0.4) is obtained. Using this 
value the following change of the activity coefficients i s  obtained , when the pressure 
is increased by 2 bar: 

In y; ( Pz ) = \} ( Pz - P! ) = 
-0.001 1 . 2 

= -9.026 . w-s 
y; (PJ ) RT 0.083 1433 · 293 . 1 5  

y; (Pz )  
= 0.9999 

y; (P! ) 

Because of the negative sign of the partial molar excess volume the actlVlty 
coefficient decrease with increasing pressure. But it can be seen that in contrast 
to the temperature influence caused by hE , the pressure influence on the activity 
coefficients is negligible for typical pressure differences observed for VLE . But 
for large pressure differences the effect has to be taken into account. This is 
demonstrated in Section 5 .8  for LLE. 

The excess properties hE and vE do not only depend on temperature but also 
on pressure. This is shown in Figure 5 . 20 for the excess volumes of the system 
ethanol-water at 298 K. While for an equimolar mixture approximately a value of 
-1 cm3 jmol is observed at low pressures , the excess volume decreases to values 
smaller than -0 .3  cm3 jmol at pressures above 2000 bar. 

The temperature dependence of the excess Gibbs energy and the activity coeffi­
cients can be derived from a gE - hE -diagram (Figure 5 . 2 1 ) .  Depending on the sign 
of the excess properties gE and hE four quadrants are obtained. ' !  

5 )  However, following Eq.  5 . 26  not  the excess 
enthalpy but the partial molar excess 
enthalpy is the determining property to 
describe the temperature dependence 
of the activity coefficients. Depending 
on the curvature of hE as a function 
of composition for positive (negative) 
values of hE negative (positive) partial 

molar excess enthalpies can be obtained, 
for example, if an S-shaped curvature 
occurs as shown in Figure 5 . 18 .  Therefore, 
the following statements are only valid 
conditionally. But in most cases the sign 
of the partial molar and the molar excess  
enthalpy are identical (exception for 
S -shaped curves) .  
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Figure 5.20 Excess vo l ume  of the system ethano l  (l ) ­
water (2) a t  3 23 K a s  a fu nction o f  p res su re [3 , 1 2] . 

I Athermal m ixture ( hE = 0) I 

Y; > 1 
g E  Y ;  > 1 

CJy; l CJ T >  0 CJy; f CJ T  < 0 

II I 

h E 

Y; < 1 
CJy; f CJ T > 0 

Y; < 1 
ar; l a T  < O  

Ill IV  

I Regular sol ution I [lheory (s E = O) 

Figure 5.21 Representat ion of the temperature dependence 
of the activity coefficients in a gE -hE-d iagra m .  

For positive deviations from Raoult 's law (gE > 0, y; > 1 ) ,  depend ing on the sign 

of the excess enthalpy two cases can be distinguished. In the case of endothermic 
behavior (hE > 0) , the excess Gibbs energy and therewith,  the values of the activity 
coefficient decrease with increasing temperature . 
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Most of the binary systems belong to quadrant I, this means they show positive 
deviations from Raoult's law and endothermic hE behavior. This means that these 
systems become more ideal with increasing temperature. In the case of exothermal 
behavior (quadrant I I ) ,  the activity coefficient will increase with temperature; 
this means stronger deviation from Raoult's  law is obtained with increasing 
temperature. Only a few systems belong to quadrant I I  (gE > 0, hE < 0) . '1 Just these 
systems ,  for example, alcohol -water·, alkyl amine-water systems, and so on, are 
of great technical importance. Systems with negative deviation from Raoult's law 
(gE < 0 (quadrants I I I  and IV))  are significantly more rare. In these systems the 
interaction energies between different components are stronger than those between 
the pure components , as for example, in the system acetone-chloroform. Because 
of the strong hydrogen bondings complexes are formed, which are less volatile .  
The systems which belong to quadrant I I I  become more ideal , since for the excess 
Gibbs energy less negative values are obtained with increasing temperature. For 
systems in quadrant IV stronger negative deviation from Raoult's law are observed 
with increasing temperature. In Figure 5 . 2 1  also the lines for the so-called a thermal 
mixture (hE =  0, i . e  .. gE = -TsE )  and the regular solution (sE = 0, i. e . , gE = hE )  
are shown. 

It would be desirable to apply analytical expressions for the activity coefficient, 
which are not only able to describe the concentration dependence, but also 
the temperature dependence correctly. Presently, there is no approach completely 
fulfilling this task. But the newer approaches, as for example, the Wilson [ 13 ] ,  N RTL 
(nonrandom two liquid theory) [ 14] ,  and UNIQUAC (universal quasi-chemical 
theory) equation [ 15 ]  allow for an improved description of the real behavior of 
multicomponent systems from the information of the binary systems .  These 
approaches are based on the concept of local composition, introduced by Wilson 
[ 13 ] .  This concept assumes that the local composition is different from the overall 
composition because of the interacting forces .  For this approach , different boundary 
cases can be distinguished: 
• Because of the very similar interacting forces ,  the local composition is identical 

with the macroscopic composition (random mixture, almost ideal behavior 
Yi ""' 1 ) . 

• Two liquid phases are formed, since molecule 2 has no tendency to locate near 
molecule 1 and vice versa (strong positive deviation from Raoult's law, y; » 1 ) .  

• The interacting forces between the different molecules are much larger than 
those between the same molecules ,  so that complexes are formed (negative 
deviation from Raoult' s  law, y; < 1 ) . 

The different equations are represented in detail in the literature. To derive a 
reliable gE- resp. activity coefficient model using Eq. (4.85) the different excess 
properties (hE , sE , vE ) should be taken into account. Flory [ 1 6] and Huggins 
[ 17 ,  18] independently derived an expression for gE starting from the excess entropy 

6) Sometimes only in a limited concentration 
range (see Figure 5 . 18) .  
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of a thermal polymer solutions that means hE = 0 using the lattice theory. In these 
mixtures with molecules very different in size, volume fractions l/>; instead of mole 
fractions are used. In binary systems the volume fraction can be calculated by the 
following expressions using the molar volumes v; : 

Using the expression for the excess entropy: 

sE = - R  (xl In 4>1 + Xz ln 4>z ) XJ Xz 
an expression for the excess Gibbs energy can be derived , 

E E ( ] <!>J ] </>z ) g = - Ts = RT x1 n - + x2 n -X1 Xz 

( 5 . 28) 

( 5 . 29) 

( 5 . 30) 

which can be used to derive an expression for the activity coefficients y; with the 
help of Eq. (4.85) for an athermal solution (hE = 0, see Figure 5 . 2 1 ) :  

In y; = In � + 1 - � X; X; ( 5 . 3 1 )  

With the help of  this expression i t  can be  shown that strong negative deviations 
from Raoult' s  law result for systems with compounds very different in size. From 
Eq. (5 . 3 1 )  it can easily be understood why the removal of the remaining monomers 
from polymer solutions is much more difficult than expected. 

Example 5.8 
Calculate the activity coefficient of the monomer in a polymer using the a thermal 
Flory- Huggins equation. For the calculation the following volumes should be 

used: 

v1 = 70 cm3 jmol v2 = 70000 cm3 jmol 

Solution 

The calculation is performed for a mole fraction of x1 = 0 .2 .  For this composition 
the following volume fractions are obtained: 

0. 2 . 70 

4> = = 2 .499 . 10-4 
I 

0 .2  · 70 + 0.8 · 70000 4>z = 0.99975 

Using these values the activity coefficient y1 can be calculated directly: 

2 .499 . 10-4 2 .499 . 10-4 
In y1 = ln + 1 - = - 5 . 686 

0 .2  0 .2  

YI = 3 . 39 . 10- 3 

For the whole composition range the activity coefficient of the monomer ( 1 )  as a 
function of the weight fraction of the polymer is shown in Figure 5 . 22 .  It can be 
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0 ,_------------,-----------� 
0 

Figure 5.22 Calculated activity coefficients of the monomer 
and resu l ting  system press ures as a function of the we ight  
fract ion of the polymer for a polymer sol u tion u s ing the 
Flory - H u gg ins eq uat ion.  

seen that the volati lity (activity coefficient) of the monomer drastically decreases 

with decreas ing composition of the monomer. 

To be able to account for contributions caused by the excess enthalpy hE, a s imple 
one parameter term was added to the Flory- Huggins equation:  

gE ¢1 ¢2 - = x1 In - + X2 In - + ¢J¢2 X ( 5 . 32) 
RT x1 x2 

S tarting from Eq. ( 5 . 32) the following expression is obtained for the activity 
coefficient of the monomer: 

¢1 ¢1 2 In Y1 = In - + 1 - - + x ¢2 (5 . 3 3) XJ X1 
Wilson started from a similar equation as Flory and Huggins for the derivation of 
his equation for arbitrary mixtures apart from polymers [ 1 3 ] .  However, instead of 

the true volume fractions Wilson used the so-called local volume fraction �i in the 
expression for the excess Gibbs energy: 

gE � ­
RT = .Z.:: x; ln � 

I 
( 5 . 34) 

Local mole fractions were introduced by Wilson to define the local volume fraction, 

where the deviation from the macroscopic concentration is taken into account with 

the help of interaction energies between the different compounds using Boltzmann 
factors. With the introduction of the auxiliary quantities Au the equations for gE and 
y; can be derived.71 The great advantage of the Wilson ( 'quation is that only binary 

7)  ' l  he detailed derivation of the expression 
for the activity coefficients of the Wilson 

equation starting from Eq. ( 5 . 34) is given 
in Ap pendix C, El .  
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and no ternary or higher parameters are required for the calculation of the 
real behavior of multicomponent systems. But the Wilson equation has the 
disadvantage, as in contrast to other gE ·models it cannot be applied to calculate LLE 

(see Appendix C ,  E3 ) .  

Example 5 . 9  
Compare the experimental vapor phase mole fractions published by Hiaki et a l .  [ 1 9] 
for the system acetone ( I )-chloroform (2) -methanol (3 )  at 1 atm with the calculated 
ones using the binary Wilson parameters l'l. A. ij  listed in Table 5 . 5 assuming ideal 

vapor phase behavior. 
For the calculation, the following molar volumes: 

v1 = 74.04 cm3 mol-
1 : v2 = 80 .67 cm 3 mol- 1 : v3 = 40.73  cm3 mol- 1 

and constants for the Antoine equation (log Pi (mm Hg) = A - B/ ( O ( C) + C) 

should be used to calculate the vapor pressures. 

Solution 

Component 

Acetone 

Chloroform 

Methanol 

A 

7 . 1 327  

6.95465 

8.08097 

B 

1 2 19 .97 

1 1 70.97 

1 5 82 .27 

c 

230 .653  

226 .232  

239 .7  

The calculation should be performed for the following composition at 

T = 3 3 1 .42 K: 

x1 = 0. 229, x2 = 0. 1 75 , x3 = 0.596,  Y1 = 0.250, Y2 = 0.2 1 1 , y3 = 0 . 539.  

Using the Wilson interaction parameters listed in Table 5 .5 at 33 1 .42 K the following 
values for f'l. A.ij are obtained: 

f'l.A.12  = 375 . 2835 - 3 . 78434 · 3 3 1 .42 + 0.0079107 · 33 1 . 422 = - 10.02 K 

Table 5.5 Wilson i n teraction parameters (K) for the te rnary 
system acetone (1 ) -ch lo roform (2) - methano l  (3 ) (defin it ion 
of au ,  bu ,  cy , see Eq . (5 . 3 5 ) . 

j Oij (K) Oji (K) bij bji Cij (K-1 ) Cji (K-1 ) 

2 375 .2835  - 1 722 .58 - 3 . 78434 6.405502 7 .91073E-03 - 7 .47788E-03 

3 3 1 . 1 208 747 .2 17  - 0.67704 -0 .256645 8 .68371  E - 04 - 1 . 24796E-03 

2 3 - 1 1 40.79 3596 . 1 7  2 . 59359 -6 .2234 3 . 1 0E-05 3.00E-05 
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In the same way one obtains 

LlA.2 1 = -421 .03 K, LlA. 1 3  = -97.88 K, LlA. 3 J =  525 .08 K. 

LlA.23 = - 277.82 K, LlA.32 = 1 5 36 .91 K. 

In the next step the Wilson parameters A ij used in Table 5 .6  can be determined: 

1J [ t-.A.ij ] A y = - - exp - --v, T 
80.67 [ 10 .02 ] 

A 12 = -- · exp -- = 1 . 1 2 30 
74.04 3 3 1 .42 

In the same way the other Wilson parameters are obtained: 

A 21 = 3 .2695 
A 1 3 = 0.7391 , A 3 1  = 0 .3728 
A 23 = 1 . 1675 , A 32 = 0.019 18  

With the help of  these parameters A ,; the required activity coefficients can be 
calculated. For y1 one obtains 

X1 A 1 1 
In YI = - In (x1 A 1 1 + x2 A 1 2  + x3 A 1 3 ) + 1 - --------­

XJ A u  + X2 A 1 2  + X3 A 1 3 
x2 A 2 1 X3 A 3 1  

X! A2 1  + X2 A 22 + X3 A2 3  X 1  A l 1 + X2 A l2 + X3 A 3 3 
For the selected composition of x1 = 0. 229, x2 = 0 . 1 7 5 .  and x3 = 0. 596 the follow­
ing activity coefficient is obtained: 

In y1 = - ln (0.229 + 0 . 1 75 · 1 . 123  + 0 .596 · 0.739 1 )  
0 .229 + 1 - -------------

0. 229 + 0. 175 . 1 . 1 2 3  + 0. 596 . 0 .7391  
0 . 1 75 . 3 . 2695 

0 .229 . 3 . 2695 + 0 . 175 + 0. 596 . 1 . 1675 
0. 596 . 0 . 3728 

--,------,----c::--:----c------- = 0. 201 6 
0. 229 . 0 . 3728 + 0. 1 75 . 0 .01918  + 0. 596 

YI = 1 . 223 

Similarly the other activity coefficients are calculated as 

Y2 = 1 . 101 , Yl = 1 . 205 

For the vapor pressures one obtains at the measured temperature of 3 3 1 .42 K: 

B, 
A , - --

Pf = 10 I'J + C; 
1 2 19 .97 

7 . 1 327- ------P'!. = 10 58 .27 + 230 .653 = 8 1 3 . 2 5  mm Hg. � = 689 .91  mm Hg, 

� = 589 . 94 mm Hg 

Then the partial pressures and the total pressure can be calculated: 

Pi = x, · Yi · ?'! 
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p = 0.229 . 1 . 223 . 81 3 . 25  + 0 .175 . 1 . 101 . 689 .91  + 0 .596 . 1 . 205 . 589.94 
P = 227 .76 + 1 32 .93  + 423 . 68 = 784 . 37 mm Hg 

The vapor phase composition is obtained from the ratio of the partial and the total 

pressure: 

p1 227 . 76 Y1 = - = -- = 0. 2904, Y2 = 0 . 1694, Y3 = 0. 5402 p 784. 37 

Since the calculated pressure is greater than the constant experimental pres­

sure of 760 mm Hg the calculated temperature has to be decreased in the next 

step until the experimental and the calculated pressure are identical. For the 

liquid composition considered this is fulfilled at a temperature of 330.60 K, 

where nearly the same values are obtained for the vapor phase mole frac­

tion. 

In the same way the vapor phase mole fractions can be calculated for all other 

data published by Hiaki et al. [ 1 9] .  The experimental and calculated values are 

shown in Figure 5 . 23 .  
I t  can be  seen that nearly perfect agreement between the experimental and cal ­

culated vapor phase mole fractions is obtained. Furthermore, the complex topology 

and the ternary saddle point are predicted correctly, as shown in Figure 5 . 24. 
This means that the Wilson equation based on the local composition concept 

allows the prediction of the VLE behavior of multicomponent systems from binary 

data . 

Later, further gE ·models based on the local composition concept were published, 

such as the N RTL r 14] and the UNIQUAC [ 1 5] equation ,  which also allow the 

prediction of the activity coefficients of multicomponent systems using only binary 
parameters. In the case of the UNIQUAC equation the activity coefficient is calcu­

lated by a combinatorial and a residual part. While the temperature-independent 

combinatorial part takes into account the size and the shape of the molecule , the 

interactions between the different compounds are considered by the residual part. 

In contrast to the Wilson equation the NRTL und UNIQUAC equation can also be 

used for the calculation of LLE. 

The analytical expressions of the activity coefficients for binary and multi ­

component systems for the three gE -models are given in Table 5 .6 .  While 

for the Wilson and the UNIQUAC model two binary interaction parameters 

(t.A.12 . t.A.2 1 resp. t. u1 2 , t. u2 1 )  are used, in the case of the NRTL equation besides 

the two binary interaction parameters (t.g12 , t.g2 1 ) additionally a nonrandomness 
factor a12 is required for a binary system, which is often not fitted but set to a 

defined value. For the Wilson equation additionally molar volumes and for the 

UNI  Q U AC equation relative van der Waals volumes and surface areas are required. 

These values are easily available. 
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Table 5.6 I m porta n t  express ions for t he  excess G i b bs 
energy and the derived act iv ity coefficients .  

Model Parameters 

Wilson [ 1 3] 

NRTL ( 14] 

UNIQUAC [ 1 5 ] 

Expressions for the activity coefficients 

ln y/'- = 1 - ln 1\ 2 1 - 1\ 1 2 

c ( � � ) ln y2 = 1 - Vz + ln Vz - 5q2 1 - - + In -F2 F2 

(continued overleaf) 
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Table 5.6 (continued) 

Model Parameters Expressions for the activity coefficients 

In y; = In Y,c + In Y;R 

In Y;c = 1 - V; + In V, - Sq; (I - * + In f; )  
In R - ( 1  - In LJ 'lj'J'ji - ' _5.5.5:.._) Y; - q, "LJ qyJ 7 Lk qkxk 'kJ 

v " A ;1 = � exp ( - t- A ,1 / T) ,  A ;, = 1 ;  

V; molar volume o f  component i�1 ; 
t-i.y interaction parameter between component i and) (K) .  
b r0 = t-gy / T, r;; = 0 ;  G,1 = exp( -a;f Tif ) ,  G;; = 1 ;  
t-g!i interaction parameter between component i and) (K) :  
CtJ nonrandomness parameter : a lJ = a J l '  

' y,c combinatorial part of the activity coefficient of component i ;  
y,R residual part of the activity coefficient of component i ;  
r0 = exp ( - t- uy / T) ,  r;; = 1 .  
t- u0 interaction parameter between component i and) (K) 
r; relative van der Waals volume of component i 
q; relative van der Waals surface area of component i 
V, = L';1x, volume fractionfmole fraction of component i 

J 
F; = _'1!_ surface area fraction/mole fraction of component i L q,xJ ) 

While for the interaction parameters f'l.)..ij ,  L'l.gij, L'l. uu the unit K can be used, 
often for the published interaction parameters , for example, given in [6] the unit 
of a molar energy can be found. That is the case when in the denominator of 
the exponential term RT instead of T is used. The unit then depends on the 
choice of the unit of the general gas constant R (J Jmol K, calf mol K, etc . ) .  When a 
large temperature range is covered . temperature-dependent parameters have to be 
used to describe the temperature dependence of the activity coefficients with the 
required accuracy, this means, following the Gibbs-Helmholtz relation the excess 
enthalpies resp. partial molar excess enthalpies in the temperature range covered. 
In  this textbook the following temperature dependence of the binary interaction 

parameters is used: 

f'l.).. u (T) = L'l.gu (T) = L'l. uij ( T) = au + bu T + cij T
2 

The application of the gE -models is also explained in Appendix C, E2. 

8) In practice usually constant, this means 
temperature-independent molar volumes 
v; are used. 

( 5 . 3 5 )  
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Figure 5.23 Experimenta l  (3 , 1 9] and calcu l ated vapor 
phase mole fractions  for the system acetone ( 1 ) -chloroform 
(2) -methanol  (3 ) at atmospher ic p ressure.  

Chloroform 

336 K 

334 K 

332 K 

330 K 

328 K 
Methanol Acetone 

Figure 5.24 Experi mental Tx-data [3 , 1 9] and 
ca lcu l ated Tx behavior of the ternary system 
acetone-ch loroform-methanol  a t  1 atm us i ng  bmary Wi l son 
parameters . 
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I nput: xi, P 
Parameters tor g E , pis 

In itial value tor T 

Calculation of Peale• Yi 
Peale = L x, Yi pis 

5.4 

Yi = (xi Yi pis) I Peale 

no 

Fitting of gE-Model Parameters 

Figure 5.25 Flow d i agram fo r the ca l ­
cu lation o f  i sobar ic V L E  data assum ing  
idea l  behav ior i n  the vapor phase .  

The quality of the design of a distillation column by solving the MESH equations'1 
mainly depends on the accuracy of the K-factors (separation factors) [ 1 ] .  Using 
one of the gE -models given in Table 5.6 these values can be calculated for the 
system to be separated, if the binary parameters are available. However. for the 
proper design binary parameters have to be used which describe the K-factors resp .  
separation factors au of the system to be separated over the entire composition and 
temperature range considered reliably. 

The separation factors mainly depend on composition and temperature. The 
correct composition dependence is described with the help of activity coefficients . 
Following the Clausius-Clapeyron equation presented in Section 2 .4.4 the temper­
ature dependence is mainly influenced by the slope of the vapor pressure curves (en­
thalpy of vaporization) of the components involved. But also the activity coefficients 
are temperature-dependent following the Gibbs- Helmholtz equation (Eq. ( 5 .26) ) .  
This means that besides a correct description of  the composition dependence of  the 
activity coefficients also an accurate description of their temperature dependence 
is required. For distillation processes at moderate pressures, the pressure effect on 
the activity coefficients (see Example 5. 7) can be neglected . To take into account the 
real vapor phase behavior, equations of state, for example, the virial equation, cubic 
equations of state, such as the Redlich-Kwong, Soave- Redlich- Kwong ( SRK) ,  
Peng- Robinson (PR) ,  the association model, and so on, can be applied. 

Assuming ideal vapor phase behavior in phase equilibrium calculations, besides 
carefully chosen binary gE ·model parameters only reliable vapor pressures are 
needed. The simple calculation procedure for the isobaric case is shown in 
Figure 5 . 25 .  In  the isobaric case initial values for the temperature are required. 
During the calculation the temperature has to be changed in a way that the difference 

9) M E S H  equations: these are the resulting 
balance equations for the ideal stage 
concept for the material balance (M) .  

equilibrium conditions ( E) ,  summation 
conditions (5) ,  and the heat balance (H).  



I nput : 
Temperature and mole fractions x, 

if-model parameters 
p u re component data: P;5 , v,, r;. q; 

equation of state of parameters 

Calcu lation of the activity coeffic ients Y; 

Assumpti on:  ¢, = 1 

Calculation of the total pressure and the 
mole fractions in the vapor phase: 

P =  L X1 · Y; ·¢; · P,5 

y, = X; · y1:1 · P15 

Calculation of new val ues fo r ¢; 

Result :  P, Y; 

yes 

no 

5. 4 Fitting of gE -Model Parameters 1 21 7 

Figure 5.26 F low d iagram for 
the ca lcu lat ion of i sothe rma l  VLE 
tak i ng  i n to account  the non ideal 
behav ior of the vapor phase . 

between the calculated and the desired pressure is smaller than a chosen value c .  
The calculation for the isothermal case i s  still simpler, since the temperature does 
not have to be guessed and then adjusted by iteration. The calculation procedure 
shown in Figure 5 . 25  can also be applied for multicomponent systems. 

If the real vapor phase behavior and the Poynting factor have to be taken into 
account, the procedure is a little more complicated. The procedure is shown in 
Figure 5 . 26 .  As input, information about the molar volumes and the real vapor 
phase behavior is required additionally, for example, the parameters of the equation 
of state chosen, the parameters for the association constants , and so on. With the 
help of this information, the Poynting factors and the fugacity coefficients for the 
mixture and the pure compounds are calculated. 

A prerequisite for the correct description of the real behavior of multicomponent 
systems is a reliable description of the binary subsystems with the help of the fitted 
binary gE -model parameters. 
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For fitting the binary interaction parameters nonlinear regression methods are 
applied, which allow adjusting the parameters in such a way that a minimum 
deviation of an arbitrary chosen objective function F is obtained. For this job, 
for example, the Simplex-Nelder-Mead method [21 ]  can be applied successfully. 
The Simplex-Nelder-Mead method in contrast to many other methods [22] is a 
simple search routine, which does not need the first and the second derivate of 
the objective function with respect to the different variables . This has the great 
advantage that computational problems ,  such as "underflow" or "overflow" with 
the arbitrarily chosen initial parameters can be avoided. 

As objective function for fitting the required gE -model parameters different 
types of objective functions and experimental or derived properties X, for example, 
vapor phase mole fraction, pressure .  temperature, K-factor K; , separation factor 
a 1 2 , and so on, can be selected, where either the relative or the absolute deviation 
of the experimental and correlated values (pressure, temperature, vapor phase 
composition, etc . )  can be minimized, 

] "" "" 2 '  . F = - � � (Xcal<.. iJ - Xexp. ij) = Mm n 

F = � L L I Xca lc . t ,/ - Xexp. i.J I  � Min 

1 [ v  I - X  . . ] 2 ' 
F = 

-
L L "ca c. •J  

. 
exp,tJ = Min 

n Xexp. •J 

F = � L L I Xcalc . ij - Xexp, ij I � Min 
n Xexp.•J 

In  the case of complete data, this means VLE data, where P, T, x; , y; is given, also 
the deviation between the experimental and predicted activity coefficients or excess 
Gibbs energies can be used to fit the required binary parameters . Furthermore the 
parameters can be determined by a simultaneous fit to different properties to cover 
properly the composition and temperature dependence of the activity coefficients . 
For example, the deviation of the derived activity coefficients can be minimized 
together with the deviations of the activity coefficients at infinite dilution, excess 
enthalpies , and so on. Accurate activity coefficients at infinite dilution measured 
with sophisticated experimental techniques are of special importance, since they 
deliver the only reliable information about the real behavior in the dilute range 

[23 ] , 101 for example, at the top or the bottom of a distillation column. Excess 
enthalpies measured using flow calorimetry are important too, since they provide 
the most reliable information about the temperature dependence of the activity 

1 0) With the required care it is quite simple 
to measure reliable activity coefficients at 
infinite dilution of a low boil ing substance 
in a high boiling compound, for example, 
with the help of the dilutor technique, 
gas -liquid chromatography, ebulliometry, 
Rayleigh distillation, and so on. I t  is much 
more difficult to measure these values for 
high boiling components in low boiling 

compounds, for example, water in ethylene 
oxide, NMP in benzene, etc. But these 
values are of special importance for the 
proper design of distillation columns. In 
the case of positive deviation from Raoult's 
law the greatest separation effort is re­
quired for the removal of the last traces of 
the high boiling compounds at the top of 
the column. 
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coefficients via the Gibbs- Helmholtz equation (see Eq. ( 5 . 26 ) ) , and thus for the 
separation factors and K-factors. 

In  the past in different papers e.g. [70] the maximum likelihood method was 
recommended. In this method the experimental errors of all measured quantities 
are taken into account in the objective function. But later it was found out that this 
procedure did not improve the results for ternary, quaternary, and higher systems 
using the fitted binary parameters. 

The impact of inaccurate gE ·model parameters can be very serious. The pa­
rameters have a major influence on the investment and operating costs (number 
of stages, reflux ratio ) .  The influence of the gE ·model parameters on the results 
is especially large if the separation factor is close to unity . Poor parameters can 
either lead to the calculation of nonexisting azeotropes in zeotropic systems (see 
Section 1 1 . 1 )  or the calculation of zeotropic behavior in azeotropic systems. Poor 
parameters can also lead to a miscibility gap which does not exist ." 1  In the 
case of positive deviation from Raoult 's law a separation problem often occurs 
at the top of the column, where the high boiler has to be removed. since at 
the top of a distillation column the most unfortunate separation factors are 
obtained. 

Starting from Eq. ( 5 . 18 ) ,  the following separation factors at the top and the 
bottom of a distillation column (low boiler: component 1) are obtained: 
top of the column (x1 --> 1 ) :  

ps OI X· - __ 1 _  1 2  - hYJ p� 
bottom of the column (x2 ....,. 1 ) :  

X yt Pi 01 - --1 2 - p� 
From these equations it can easily be seen that for positive deviation from Raoult' s  
law (Yi > 1 )  the smallest separation factors and therewith the greatest separation 
problems occur at the top of the column. To determine the separation factor at the 
top of the column, one divides by a number larger than unity (yt') , while in the 
bottom of the column one multiplies with a number larger than unity (y1"" ) .  While, 
for example, for the system acetone-water separation factors a little above unity 
are obtained at the top of the column at atmospheric pressure , separation factors 
greater than 40 are observed at the bottom of the column (see Chapter 1 1 ) .  In the 

1 1 )  Process simulators often contain exten­
sive data banks with pure component and 
m ixture parameters , for example , default 
gf -model parameters . This allows for gen­
erating the required input very fast. But the 
user should use these data and parameters 
with care. Even the simulator companies 
mention that these default values should 
not directly be used for process simulation. 
The user should ask the company expert 
for phase equilibrium thermodynamics to 

check the pure component data and mix­
ture parameters carefully . In Figures 5 . 3 1  
and 5 . 34 i t  is shown what can happen when 
the default values provided by the process 
simulator compan ies are used. An addi­
tional example for bad default values is 
given in Appendix F. 

In Section 11.1 it is shown how the ther­
mophysical properties should be checked 
prior to process simulation. 
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Table 5.7 Type of VLE data pub l i shed .  

Type ofVLE data Measured values Percentage of 
the published 

X; y; p T VLE data 

Isothermal complete � � � constant 18 .33  

Isobaric complete � � constant � 28 .37  

I sothermal Px data J � constant 29.66 

Isobaric Tx data J constant � 9. 1 1  

Isothermal xy data � J constant 3 . 1 2  

I sobaric xy data J � constant 2.03 

Isothermal y P data � J constant 0.54 

I sobaric yT data � constant � 0. 1 6  

Isoplethic PT data constant � J 6 .84 

Complete data J � � � 1 .85 

· ----

case of negative deviations from Raoult' s  law the separation problem usually occurs 

at the bottom of the column. 
Published VLE data are often of questionable quality. For fitting reliable gE -model 

parameters accurate experimental VLE data should be used. An overview about the 

different types of VLE data published together with the proportion of such data 

from all published VLE data is given in Table 5 .7 .  
In  most cases the measurements are performed at  isothermal or isobaric 

conditions. Occasionally measurements are also performed at constant compo­

sition .  Sometimes none of the properties is kept constant. In less than 50% 

of the cases all values (x; ,  y; , T, P) are measured. The reason is that any 

three of the four values (x; , y;, T, P) are sufficient to derive the fourth quan­
tity. Because of the greater experimental effort required, seldom dew-point 

data (T, P, y; ) are measured. But these data are of special importance to de­

termine reliable separation factors for high boiling compounds (e.g . ,  water) 

in low boiling compounds (ethylene oxide) at the top of the column, which 
at the end mainly determine the number of stages of a distillation column 

(see Chapter 1 1 ) .  

A s  can b e  seen from Table 5 . 7 ,  the measurement o f  complete isobaric data i s  

very popular. The reason i s  that a great number o f  chemical engineers prefer 
isobaric data, since distillation columns run at nearly isobaric conditions . But the 

measurement of isobaric data shows several disadvantages compared to isother­
mal data. This was already discussed in detail by Van Ness (24] . For example, 

the temperature dependence of the vapor pressure Pf has to be taken into ac­
count. At the same time the temperature and composition dependence of the 

gE ·model has to be regarded. Therefore Van Ness (24] comes to the following 

conclusion: 
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In the early unsophisticated days of chemical engineering VLE data were taken 
at constant pressure for direct application in the design of distillation columns, 
which were treated as though they operated at uniform pressure. There is no longer 
excuse for taking isobaric data, but regrettably the practice persists. Rigorous 
thermodynamic treatment of isobaric data presents problems that do not arise 
with isothermal data. Their origin is the need to take into account not only 
the composition dependence of the excess Gibbs energy but also its temperature 
dependence. 

Since the measurement of temperature and pressure is more accurate than con­
centration measurements , Van Ness recommended the measurement of Px-data at 

isothermal conditions. Indeed, today mainly isothermal Px-data are measured. In  

the cell of  the static equipments the precise liquid composition i s  usually achieved 
by injection of the degassed liquids with the help of precise piston pumps . The 

change of the feed composition by evaporation can easily be taken into account, 

when the volume of the cell and the pressure is known. Depending on the vapor 
volume the change of the feed composition is smaller than 0 .1  mol% at moderate 

pressures . By this method a much more precise determination of the liquid com­

position is achieved than by analytical measurements . The measurement of the 

pressure and the temperature can be realized very precisely. 

5 . 4 . 1  
Check ofVLE Data for Thermodynamic Consistency 

Not in all cases, the quality of the published data is sufficient. The quality of 
complete data ( P, T, x; , y; ) can be checked with the help of thermodynamic 

consistency tests . A large number of consistency tests have been developed. Most 
often the so-called area test is applied. The derivation of the required equations for 

the area test is started from the following equation (see Section 4 . 3 ) :  

dGE  ( a GE jRT) ( a GEjRT ) ( (J GE jR T) 
- = , dP + . dT + L dn; RT (J P T.n;  aT P,n, a ni T. P.n r#, 

By substitution 

-- = yE ( acE )  
a P  T n  ' '  ( acE;y) _ HE 

� P,n, - - -y2 ( aGEjRT) 
= In Yi 

(J ni T,P. nj',<n; 

( 5 . 36) 

( 5 . 37) 

( 5 . 38) 

( 5 . 39) 
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and applying of molar properties, the following relation is obtained for a binary 

system (dx1 = - dx2 ) .  

VE hE � - dP - - dT + 1n - dx1 
RT RT2 Y2 

(5 .40) 

After integration from x1 = 0 to x1 = 1 an expression is obtained, which can be 
applied for the graphical examination of complete VLE data"' for thermodynamic 

consistency. 

In the case of isothermal or isobaric data one term in the equation above can be 
cancelled. S ince the pressure dependence can usually be neglected, in the case of 
isothermal VLE data the following simple relation can be used for checking the 

thermodynamic consistency of VLE data: 

1X] = l Yl ln - dx1 = 0 
X] =O Y2 

(5 .42) 

The consistency test (Redlich - Kister test) is performed by plotting the logarithmic 
value of the ratio of the activity coefficients as a function of the mole fraction x1 . I f  
the VLE  data are thermodynamically consistent the area above and below the x-axis 

should be equal. 
In the case of isobaric data the excess enthalpy part has to be taken into account. 

This can be done if the excess enthalpies for the system investigated are known. 
S ince the excess enthalpies are usually not known, in the area test the contribution 

is taken into account empirically using the quantity J as suggested by Redlich and 
Kister [25] :  

J = 1 50 1 L'l Tmax l (%) 
Tmin 

(5 .43) 

The value of J strongly depends on the temperature difference 6 T max · I n  the case 
of zeotropic systems this is the difference of the boiling points . 

In the DECHEMA Chemistry Data Series [6] a deviation of D < 10% is allowed 
to pass the thermodynamic consistency test successfully, 

l A - B l D =  -- 100(%) 
A + B (5 .44) 

where A is the area above the x-axis and B is the area below the x-axis. 

1 2) As well isothermal VLE data, where only 
the liquid and vapor phase mole fractions, 
this means K-factors are measured (e .g . .  
by headspace gas-chromatography) can be 

checked for thermodynamic consistency 
with the help of the area test, since the 
system pressure cancels out when the ratio 
of the activity coefficients is calculated. 
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Figure 5.27 Check of i sotherma l  comp lete VLE 
data of the system ethano l  ( l  ) -water (2) [8 ]  for 
thermodynam i c  cons i s tency "'ith the he lp  of the 
a rea test. 

While in the isothermal case a deviation of D < 10% is accepted, in the isobaric 
case a larger area deviation is allowed to take into account the contribution of the 
excess enthalpy by Eq. (5 .43) : 

D - J < 10% 

Example 5.1 0 
Check the isothermal VLE data of the system ethanol ( 1)-water (2) measured by 
Mertl [8] at 70 " C  (see Table 5. 3 )  for thermodynamic consistency using the area test. 

Solution 

For the judgm: :nt of the qual ity of the VLE data the logarithmic values of the ratio 
of the activity coefficients ln  yJ !y2 have to be plotted against the mole fraction of 
ethanol. The required activity coefficients are given in Table 5 . 3 .  For example, for a 

mole fraction of x1 = 0.252  the following ratio is obtained: 

In YT = In 
1 . 890 

= 0.45 3 
Y2 1.202 

For the whole composition range the values are shown in Figure 5 . 27 .  I t  can be seen 

that the areas above and below the x-ax.is are nearly identical (� 2% deviation). This 
means that the data published by Mertl [8] can be considered as thermodynamically 
consistent. 

Another option to check complete VLE data for thermodynamic consistency was 
developed by Van Ness et al. [26] resp. Fredenslund et al. [27] . I n  this consistency 
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x1 Y1 T p Regression of the coefficients of 
a flexible g E-polynomial to fit 

isothermal Px-data 

F = L (Peale - Pexp)2 
Peale = L Xi Yi pis 

I 
Calculation of vapor phase 

composition Yi using the fitted 
parameters 

I 
Comparison of exp. and calc. 

vapor phase composit ions 

I 
Lly < 0 . 0 1  

- Data are consistent 

Figure 5.28 F low d i agram of the con s i stency test of Van 
Ness et a/. [26] and Freden s l u nd et a/. [27] .  

test only a part of the redundant phase equilibrium data , usually the TPx-data, 

are used to fit the gE -model parameters of a flexible gE -model . such as the 
Redlich- Kister expansion to minimize , for example, the deviation in pressure. 

In the next step the fitted parameters are used to calculate the data, which were 
not used for fitting the parameters, this means the corresponding vapor phase 

compositions .  When a mean deviation between the experimental and calculated 
vapor phase mole fraction of <0.01 is obtained, the VLE data are considered as 
thermodynamically consistent. A flow diagram of this consistency test is shown in 

Figure 5 . 28.  
Often isothermal Px-data are measured (see Table 5 .7) .  They cannot be checked 

for thermodynamic consistency. But if the data can be described very accurately 

with the help of a consistent gE -model , these VLE data can also be considered as 

thermodynamically consistent. The same is true for other incomplete VLE data 

listed in Table 5 .7 .  
With the help of the gE -model only the deviations from Raoult's law should be 

described. The correct deviations from Raoult's law can only be obtained, i f  the 
exact values of the pure component vapor pressures are used during the fitting 
procedure. This is shown below for fitting the N RTL parameters for the nearly ideal 
but nevertheless azeotropic system 2-propanol- tert-butanol simultaneously to two 

isothermal Px-data sets measured at 40 °C .  The very different results of the fitting 
procedure are shown in Figure 5 .29 .  Obviously, the two data sets show a systematic 
small difference in the pressure measurement. While a correct description of the 
Px-data and the azeotropic VLE behavior is obtained, if the vapor pressure data of 
the authors are used for fitting the parameters. Total disagreement is observed if 

the VLE calculation is performed using the vapor pressures calculated by Antoine 
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pure component vapor pressu res of the au­
thors (6g1 2 = -54.254 ca l jmo l ,  6gz1 = 
26 .4 1  ca lfmol ,  an = 0 . 3 680) for fitti ng the 
N RTL-paramete rs .  

constants from literature. From Figure 5 .29 it can directly be seen that of course 
for the objective function F: 

F = L ( Pexp. i - Pcalc . i ) 2 

i Pexp.o 
a much lower value is obtained, if the pure component vapor pressures given by 
the authors are used. 

For a large number of binary systems the required binary gE ·model parameters 
for the Wilson, NRTL, and UNIQUAC equation and the results of the consistency 
tests can be found in the VLE Data Collection of the DECHEMA Chemistry Data 
Series published by Gmehling et al. [6] . One example page is shown in Figure 5 . 30. 
It shows the VLE data for the system ethanol and water at 70 oC published by 
Mertl [8] . On every page of this data compilation the reader will find the system, 
the reference, the Antoine constants with the range of validity, the experimental 

1 .0 

1 .0 
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ALPHA 1 2  

0.2974 

Appendix: 
v1 = 58.69 cm3/mol 
v2 = 1 8.07 cm3/mol 

r 1  = 2 . 1 055 q 1 = 1 .972 

r2 = 0.9200 q2 = 1 .400 

VAN LAAR WILSON 

1 .00 

0.80 +---'--t---'--1 0 60 

0 40 > 

0.20 

0.00 
0.00 0.20 0.40 0.60 

x , -

NRTL 

0.80 1 .00 

UNIQUAC 
P MM HG X1 Y1 DIFF P DIFF Y 1  D I F F  P DIFF Y1 DIFF p DIFF Y1  D IFF  p DIFF Y1  

362.50 0.0620 0.3740 -0.0097 -1 .25 -0.01 49 4 .27 -0.0084 3.26 -0.0098 
399.00 0.0950 0.4390 --0.0 1 1 8  4 .2 1  -0.0083 4 .82 -0.01 1 7  4 .44 --0.01 1 7  
424.00 0 . 1 3 1 0  0.4820 -0.01 27 6 .63 -0.0043 3.31 -0. 0 1 36 3.58 --0.01 25 
450.90 0. 1 940 0.5240 -0.01 58 7.52 -0.0057 1 .51 --0 . 0 1 74 2.42 --0.0 1 56 
468.00 0.2520 0.5520 -0.01 44 7.80 -0.0063 2 . 1 7  -0. 0 1 60 3.20 -0.01 43 
485.50 0.3340 0.5830 -0.01 31 6.67 -0.0096 3 . 1 4  -0. 0 1 42 3.94 -0.01 3 1  
497.60 0.40 1 0  0.61 1 0  -0.0082 5.90 -0.0081 4 . 1 2  -0.0088 4 .64 --0.0083 
525.90 0.5930 0.6910  -0.0070 4. 1 7  -0.01 1 2  5.24 --0.0063 5 .21  -0.0072 
534.30 0.6800 0.7390 -0.005 1 2. 1 7  -0.0084 3.77 -0.0043 3.61 -0.0051 
542.70 0.7930 0.8 1 60 0.0007 0.97 --0.00 1 5  2.91 -0.0003 2 .65 -0.0007 
543. 1 0  0.8 1 00 0.8260 . 031 0.39 -0.0035 2.34 -0.0028 2 .07 --0.0031 
544 .50 0.9430 0.94 1 0  -0. 7 -0.44 0.0006 0.74 -0.0009 0.55 -0.0007 
544.50 0.9470 0. 9450 -0.000 -0.34 0.0007 0.79 -0.0008 0 .60 -0.0006 

MEAN DEVIATION : 

MAX. DEVIATION : 

4.28 0.0 1 05 � 0.0079 3.73 0. 0064 3.01 0.0081  3.09 0.0079 

1 1 .71 0.0280 0 .0 1 58 . 0  0.0 1 49 5 .24 0.0 1 74 5.21  0.01 56 . 

cal /mol J A 1 2  = t.>. 12 resp. t.g 1 2  resp. t w 1 2 J 
Figure 5.30 Examp l e  page of the VLE Data Col lect ion [6]. 
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VLE data, the results of two thermodynamic consistency tests, and the parameters 
of different gE -models ,  such as the Wilson, NRTL, and UNIQUAC equation . 
Additionally, the parameters of the Margules [28] and van Laar [29] equation are 
listed . ' 1 ' Furthermore, the calculated results for the different models are given. For 
the model which shows the lowest mean deviation in vapor phase mole fraction the 
results are additionally shown in graphical form together with the experimental 
data and the calculated activity coefficients at infinite dilution. In the appendix of 
the data compilation the reader will find the additionally required pure component 
data , such as the molar volumes for the Wilson equation, the relative van der Waals 
properties for the UN IQUAC equation, and the parameters of the dimerization 
constants for carboxylic acids . Usually, the Antoine parameter A is adjusted to A' 
to start from the vapor pressure data given by the authors, and to use the gE -model 
parameters only to describe the deviation from Raoult 's law. 1 ' 1  S ince in this data 
compilation only VLE data up to 5000 mm Hg are presented, ideal vapor phase 
behavior is assumed when fitting the parameters . For systems with carboxylic 
acids the association model is used to describe the deviation from ideal vapor phase 
behavior. 

In practice almost exclusively VLE data are used to fit the required parameters. 
Since a distillation column works nearly at constant pressure , most chemical 
engineers prefer thermodynamically consistent isobaric VLE-data in contrast to 
isothermal VLE-data to fit the model parameters . But that can cause problems,  in 
particular if the boiling points of the two compounds considered are very different 
[24], as for example, for the binary system ethanol- n-decane. The result of the 
Wilson equation after fitting temperature-independent binary parameters only to re­
liable isobaric data at 1 atm is shown in Figure 5 . 3 1  for the system ethanol-n-decane, 
where the sum of the relative deviations of the activity coefficients was used as 
objective function. 

From the results shown in Figure 5 . 3 1  it can be seen that already for VLE 
poor results are obtained. In particular large deviations are obtained at low 
ethanol concentrations. This is not only true for the Txy behavior, but also for 
the activity coefficients , although the activity coefficients were used to fit the 
Wilson parameters .  The reason for the observed large deviations is that with 
temperature-independent parameters the observed temperature dependence can­
not be described correctly. This conclusion can also be drawn when looking at the 
calculated excess enthalpies shown in Figure 5 . 3 1 .  Reliable gE-model parameters 
should be able to describe the excess enthalpies following the Gibbs- Helmholtz 
equation. Apparently, excess enthalpies are obtained which strongly deviate from 
the experimental values [3 ] ,  in particular at 90 and 1 40 '-c _  Of course wrong 
hE -values will mean an incorrect temperature dependence of the activity coeffi­
cients. For the activity coefficients of ethanol at infinite dilution this is shown in 
Figure 5 . 3 1 .  

1 3) Both models (Margules , van Laar) are 
hardly used for process simulation today. 

1 4) Unfortunately, Mertl [8] has not given the 
pure component vapor pressures. But with 

Antoine constants used reliable vapor pres­
sures are obtained as can be seen from 
Figure 5.4 
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the same system us i ng  the fitted parame­
ters - Wi lson (Wi l son parameters : <'>.>.1 2 = 
1 284 . 1 2 ca l/mo l ,  l>.A21 = 1 1 72 .85  ca l /mo l ,  
v1 = 58 .68 cm3 jmo l ,  v2 = 1 95 . 92 cm3 jmol )  
• exper imenta l  (3]. 

In the case oi isobaric data the temperature will change with composition. In  
particular a t  low ethanol concentrations the temperature alters drastically . I t  can 
be seen that the temperature change between x1 = 0 to x1 = 0. 1 is nearly 100 K. 
Since the sy:.;tem ethanol (1 ) - n-decane (2) shows strong endothermic behavior 
with large positive values of the partial molar excess enthalpies for ethanol 

(h�oo � 19000 J fmo!, see Figures 5 . 3 1  and 5 . 32 ) ,  which results in a decrease o[ 
the activity coefficient of ethanol with increasing temperature (see Example 5 .6 )  
following the Gibbs- Helmholtz equation . This le-ads to a maximum value of y1  at 
a mole fraction of approx . x1 = 0. 1 for the isobaric data as shown in Figure 5 . 3 1 .  
I t  can easily b e  understood that this curvature can not b e  fitted correctly using 
temperature-independent parameters. 
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To obtain the correct values at infinite dilution and the correct temperature 
dependence resp. excess enthalpies ,  besides VLE data further reliable thermody­
namic information should be taken into account for fitting temperature-dependent 
gE -model parameters . Temperature-dependent Wilson parameters fitted simulta­
neously to VLE, excess enthalpies and activity coefficients at infinite dilution of 
the system ethanol- n-decane are given in Table 5 .8 .  The results for VLE, activity 
coefficients as a function of composition and at infinite dilution and excess en­
thalpies obtained using these parameters are shown in Figure 5 . 3 2  together with 
the experimental values .  It can be seen that with the temperature-dependent binary 
Wilson parameters (recommended values) not only the VLE behavior, but also the 
activ ity coefficients and the excess enthalpies as a function of composition and 
temperature are described correctly. 
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Table 5.8 Temperatu re-dependent W i l son  pa-
rameters for the system ethanol  ( 1  ) -n-decane (2) · 

13./..ij (cal jmol )  = aij + bij T + Cij T2 . 
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Figure 5.33 l n Auence of the error  of the separat ion factor 
on the m i n i m u m  n u m ber of theoret ica l  stages ca lcu l ated u � ­
i ng  the Fens ke equat ion .  

Already small deviations between the experimental and calculated separation 
factors can lead to a very different number of stages required for a given separation 

problem. This is especially true if the separation factor is not far away from unity. 
For three different separation factors the influence of an error on the minimum 
number of theoretical s tages calculated by the Fenske equation (30] is shown in 

Figure 5 . 3 3 ,  

log (xi /xz )d  
(xt fxz )h Nth,min = 

log a1 2 
where d is the distillate and b the bottom product. From Figure 5 . 3 3  it can be 
recogn ized that for a separation factor of 1 . 1  an error of -4.5%, the m inimum 

number of theoretical stages is nearly doubled. In the case of a separation factor of 
2.0 the minimum number of theoretical stages is increased by less than 7%. 
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5 .4 .2  
Recommended gE-Model Parameters 

As discussed in the chapters above reliable model parameters are most important. 
While mainly VLE data are used in the chemical industry, it is recommended 
to use all kinds of reliable data (phase equilibrium data (VLE ,  y "" ,  azeotropic 
data , S LE of eutectic systems ,  etc . ) ,  excess enthalpies) for fitting simultane­
ously gE ·model parameters, which often have to be temperature dependent. To 
account only for the deviations from Raoult's law, it is recommended to use 
the pure component vapor pressures measured by the authors for every data 
set. This can be done by multiplying the vapor pressure with a correction 
factor, for the Antoine equation, this corresponds to changing the parame­
ter A to A'. Sometimes a large number of experimental data are available. 
Then of course the data used should be distributed equally over the whole 
temperature (pressure) range. S ince often a lot of VLE data at atmospheric 
pressure are reported , perhaps some of the data have to be removed or at 
least a lower weighting factor for the numerous data should be used. The 
same is true for excess enthalpies . Most authors have measured excess en­
thalpies around room temperature. For fitting temperature-dependent model 
parameters the whole temperature range should be covered. While consis­
tent VLE data (azeotropic data) provide the information about the composition 

Table 5.9 Recommended N RTL i nteract ion parameters 
(ca l fmo l ) fo r d ifferent binary systems .  

a12 Q21 b12 b21 ,1 2 '21 a12 
(calf mol) (calfmol) (calf(mol K)) (calf(mol K)) (calf(mol K2)) (calf(mol K2)) 

Acetone ( 1 ) - cyclohexane (2 ) 
1 423 .8 2880.0 - 2 .9548 - 10. 1 36 0.0008073 0.01 1832 0.42 1 2  

Acetone ( I ) -benzene (2)  

- 1 6.064 1 10 .25  0 .37896 0.6426 -0.0004859 -0.00048 19 0.699 1 

Benzene ( 1 ) - cyclohexane (2) 
1 403 . 1  8.4201 -7 . 5455 1 .8632 0.01 3 1 6  -0.006295 0 .3  

Acetone ( I ) -water (2) 
833 .97 - 3 1 46.5 0.83 106 1 7 .457 -0.003781 6  -0.0 13622 0.5466 

Ethanol ( 1 ) - 1 ,4-dioxane (2) 
412 .58  1 3 34.9 0.4 19 17  - 3 . 7 1 48 0 .3548 

Acetone ( I ) -chloroform (2) 
5563 .9 - 1 2824.0 -43 . 308 83 .358 0.061 888 -0. 1 1 637  0.0850 

Acetone ( I ) - methanol (2) 
477 . 04 327 .46 0.0381 5  -0.73 1 93 -0.002931 0.001 805 1 0.7 

Chloroform ( I ) -methanol (2 ) 
5 378.5 - 147 1 .6  6 .37397 - 1 3 .015  -0.032724 0.032599 0.055 
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dependence of the activity coefficients, excess enthalpies deliver the most important 
information about the temperature dependence. Accurate activity coefficients at 
infinite dilution deliver the only reliable information about the dilute compo­
sition range. In the case of simple eutectic systems, also S LE data can be 
used. SLE data of eutectic systems deliver supporting data at low tempera­
ture, while excess enthalpies at high temperature can be used as supporting 
data at high temperature, to fit reliable temperature-dependent parameters for 
the temperature range covered. For fitting the parameters simultaneously to 
all kind of data , weighting factors w; are used, so that the objective function 
looks like 

+ WLLE L � LLE + Ws LE L � SLE + WAz o  L �AZD (5 .45 ) 

For several binary systems recommended model parameters for the gE -models 
Wilson, NRTL, and UNIQUAC are given in Tables 5 .9- 5 . 1 1 .  Typical results for the 
system acetone-water using the NRTL model are shown in Figure 5 . 34. It can be 

Table 5.1 0 Recommended W i l son  i n teract ion pa ramete rs 
(ca l jmol )  for d ifferent b i na ry systems .  

al1 
(ca lfmol) 

a21 
(calf mol) 

Acetone ( I ) -cyclohexane (2) 

bl1 
(calf(mol K)) 

3 109.2 I670.7 - 1 0.622 

Acetone ( I ) - benzene (2 ) 
- I 1 3 .72 201 .96 

Benzene (I ) -cyclohexane (2 ) 
2 .5292 

1 5 58.96 - 203 .7 -8.2383 

Acetone ( I ) -water (2 ) 
- 1 305 .7  I054.9 

Ethanol ( I ) - I ,4-dioxane (2) 
l .434I 

1 404.7 1 36.80 - 3 . 3856 

Acetone ( I ) -chloroform (2 ) 
375.28 - 1 722.6 - 3 .7843 

Acetone ( I ) - methanol (2) 
- 60.756 863.79 -0.06 1 1 4  

Chloroform ( I ) -methanol (2 )  

- 1 1 40.8 3596.2 2 .5936 

Ethanol ( I ) - n-decane (2) 
4841 . 1  1 276.8 -7 .9999 

b21 
(calf(mol K)) 

-4.5 I89 

- 1 . 5 5 I6  

3 . 2 1 40 

3 .4522 

0.82783 

6.405 5 

- 1 .05 3 3  

-6.2234 

- 2 . I 2 3  

CJ2 ,21 
(cal/(mol K2)) (calf(mol K2)) 

0.01 3757 O.OOI2266 

- 0.0035 364 0.0026447 

0 .012856 -0.0075245 

0.00941 4  -0.005907 

0.00791 07 -0.0074779 

0.00003 I 0.000030 

0.0002705 0.0005442 
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Table 5.1 1 Recommended U N  IQUAC i n te ract ion parameters 
(ca ljmol )  for d ifferent b i na ry systems .  

au a21 bu b21 cu C21 
(calf mol) (calfmol) (calf(mol K)) (calf(mol K)) (calf(mol K2) )  (calf(mol K2 ))  

Acetone ( 1  ) -cyclohexane (2) 
259. 1 8  560.82 - 1 .0167 0.04 1 374 

Acetone ( 1 ) - benzene (2) 
- 75 .46 1 20.20 -0 . 10062 0.44835  -0.0008052 0.0004704 

Benzene ( 1 ) - cyclohexane (2)  

566.78 - 1 16 . 17 -3 .8 155  2 .20 1 7  0.006297 -0.004641 

Acetone ( 1 ) -water (2 ) 
261 9.0 3 3 .80 -6. 3 1 49 -4.6102 0.000881 7  0 .012937 

Ethanol ( 1 ) - 1 .4-dioxane (2 ) 
-27 .083 762 . 43 0.47646 - 1 .9128  

Acetone ( I ) -chloroform (2 ) 
10 1 . 70 -853 .91  -4.4866 6.9067 0.01 0999 -0.01 3 2 1 1 

Acetone ( I ) -methanol (2) 

324.48 59.98 1 . 2457 -0.8408 -0.003207 0.0013662 

Chloroform ( ! ) - methanol (2) 
3561 . 3  -41 6.85 -9.4697 -0. 3 3 196 0 .0073773 0.002 5 1 5  

seen that nearly perfect agreement between experimental and correlated VLE data, 

activity coefficients at infinite dilution as f(T) ,  azeotropic composition as f(T) and ex­

cess enthalpies as f(T) is obtained.  In Figure 5 . 3 5  the results for default values given 

in a process simulator are shown. The difference in quality can easily be recognized. 

For all properties much better results are obtained using the recommended NRTL 

parameters. This is especially true for the excess enthalpies and as consequence 

for the temperature dependence of the activity coefficient at infinite dilution . But 

reliable activity coefficients at infinite dilution are of particular importance for the 

design of distillation columns, where at the top (bottom) the last traces of high (low) 

boiler have to be removed. As described the separation factors at infinite dilution 

mainly influence the number oftheoretical stages required for a distillation column. 

The procedure for fitting recommended temperature-dependent gE ·model param­

eters is described in more detail by Rarey-Nies et al .  [ 31 ]  and Tochigi et al .  [ 32 ] .  

For some binary systems the use of temperature-dependent parameters is es ­

sential, since with temperature-independent parameters excess enthalpies above 

certain values cannot be described anymore with the chosen gE ·model (Novak [20]) 

using temperature-independent parameters. Problems can also arise if systems ,  

such as alkane-alcohol systems, show strong deviations from Raoult's law, this 

means large activity coefficients at infinite dilution,  but no miscibility gap. Typical 
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234 1 
380 

360 

g 
..... 

340 

320 

550 

500 

450 
g 
..... 

400 

350 

300 

5 Phase Equilibria in Fluid Systems 

• 
• 

0 

0 0 .5  

Yt .az 

1 atm 

"' 

.l 

1 5  

1 0 

5 

0 

280 

900 

600 

300 

-300 

-600 

-900 

0 
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examples are ethanol-decane or cyclohexane-1-propanol . When the activity coef­
ficients at infinite dilution are described correctly with the NRTL or the UNJQUAC 
model a miscibility gap is calculated . As long as homogeneous behavior is described 

with these models, too low activity coefficients at infinite dilution result (Novak 
[20] ) .  Only with the Wilson equation the correct activity coefficients at infinite 
dilution and homogeneous behavior can be described as shown before. 

In Section 1 1 . 1  the importance of reliable gE ·model parameters for the synthesis 
and design of extractive distillation processes is demonstrated for the separation of 
cyclohexane from benzene using NMP as entrainer. Furthermore for the system 

acetone-water it is shown how default values can lead to poor separation factors or 
even not existing azeotropic points at the top of the column (Xacetone ""* 1 ) .  
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As mentioned before, Approach A (also called <p-<p approach) compared to 

Approach B (also called Y-f/J approach) has the great advantage that supercritical 

compounds can be handled easily and that besides the phase equilibrium behavior 

various other properties such as densities, enthalpies including enthalpies of va­

porization,  heat capacities and a large number of other important thermodynamic 

properties can be calculated via residual functions for the pure compounds and 

their mixtures. For the calculation besides the critical data and the acentric factor 

for the equation of state and reliable mixing rules , only the ideal gas heat capacities 

of the pure compounds as a function of temperature are additionally required. A 

perfect equation of s ta te with perfect mixing rules woult.l provide perfect results . 

This is the reason why after the development of the van der Waals equation of state 

in 1873 an enormous number of different equations of state have been suggested. 



236 1 5 Phase Equilibria in Fluid Systems 

3.5 

3 

<U 2 .5  
(L � 2 "' c:_-
0> 

.Q 1 .5 

0 .5 �--�--------------------------�--
2 2.2 2 .4 2 .6 2 .8 3 .0 3.2 3 .4 

1 000/T (K} 

Figure 5.36 Experi menta l  [3 ]  and ca lcu l ated vapor pressu res 
fo r selected so lvents u s i n g  the PR equat ion of state and the 
Twu-a-fu nct i on .  

In principle, for the calculation of VLE any equation of state can be used 

which is able to describe the PvT behavior of the vapor and the liquid phase, 
for example, cubic equations of state, further developments of the virial equation, 
or Helmholtz equations of state. Most popular in chemical industry are further 

developments of the cubic van der Waals equation of state. Great improvements 

were obtained by modification of the attractive part, by introducing the temperature 
dependence of the attractive parameter with the help of a so-called a-function and 

the development of improved mixing rules , the so-called gE ·mixing rules, which 

allow the applicability to asymmetric systems and systems with polar compounds. 
Exemplarily a few typical results of cubic equations of state used in practice 

are shown below. A prerequisite for the reliable description of VLE data of binary 
and multicomponent systems is the reliable description of the pure component 

vapor pressures . With the introduction of an a-function for the description of 
the temperature dependence of the attractive parameter a( I) and the usage of the 

acentric factor w as third parameter the results for pure component vapor pressures 

were significantly improved. In Figure 5 . 36  the experimental and calculated vapor 
pressures for five solvents are shown, where the PR equation of state with the 

Twu a-function was used. I t  can be seen that nearly perfect agreement is obtained 
in the wide temperature range covered. Even the slopes are described reliably. 
This means that following the Clausius -Clapeyron equation also the enthalpies 
of vaporization are described correctly. From the slopes it can be concluded that 

the enthalpies of vaporization increase from benzene to the alcohols, and then to 

water. This leads to the fact that in binary systems,  for example, acetone-methanol, 
or ethanol-benzene the low boiler at low temperature can become the high boiler 

at higher temperatures .  
In Figure 5 . 37  the experimental and calculated enthalpies of vaporization using 

the S RK and the volume translated PR equation of state for 1 1  different compounds 

in a wide temperature range up to the critical temperature are shown. It can be 
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seen that both equations of state provide excellent agreement with the experimental 

findings. That is not surprising, since with the reliably calculated vapor pressures 
and volumes of the vapor and liquid phase, reliable enthalpies of vaporization 
should be obtained following the Clausius-Clapeyron equation (see Eq. (2 .86)) . 

Example 5.1 1 
Calculate the liquid density of cyclohexane at the normal boiling point 

( Tb = 353 .85 K, P = 1 atm) with the help of the PR equation of state . 

Pure component properties: 

Component T, (K) P, (bar) 

Cyclohexane 84. 1 6  553 .8  40.8 0.213  

Solution 
For the calculation of the liquid density at the normal boiling point for cyclohexane 
first the parameters a and b of the PR equation of state have to be determined from 

the critical data and the acentric factor using Eqs. ( 2 . 167) - (2 169) . 

R2 T2 0.083142 
· 553 .82 

a, = 0.45724--' = 0.45724--------P, 40.8 

= 23 . 758 ( dm3) 2 barjmol2 

b = 0.0778 
RT, = 0.0778 

° ·083 14 . 553 ·8 
= 0.087798 dm3 

P, 40.8 

0.9 1 . 0 
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T 3 5 3 .85 
T, = - = -- = 0.63895 

Tc 5 5 3 . 8  

a ( T) = [ 1 + (0 . 37464 + 1 . 54226w - 0. 26992w2 ) ( 1 - r, s ) r 
a (  T) = [ 1 + (0 . 37464 + 1 . 54226 · 0.2 1 3  - 0 . 26992 - 0. 2 1 32 ) 

_ ( 1  _ 0. 63895° 5 ) r = 1 . 2965 

a ( T) = ac - a ( T) = 23 . 758 · 1 . 2965 = 30.8022 ( dm3 )\arjmol
2 

In the next step, the molar liquid volume has to be determined for which the 
right-hand side of the PR  equation of state gives a value of 1 atm. This can be done 
iteratively or by solving the cubic equation. 

p = RT _ a ( T) 
v - b  v ( v + b) + b ( v - b) 

For the given conditions a molar volume of v = 0. 1 1068 dm3 mol- 1 is obtained. 

0.083 14 . 3 5 3 .85 
P = -------

0. 1 1068 - 0.087798 
30 .8022 

0 . 1 1068 . (0 . 1 1068 + 0.087798) + 0.087798 . (0. 1 1068 - 0.087798) 

P = 1285 .687 - 1 284.681 = 1 .006 bar "" 1 atm 

In  the next step with the help of the molar liquid volume and the molar mass the 
liquid density at the normal boiling point can be calculated: 

84 . 1 6  3 
p = 

0_ 1 1068 
= 760 .38  g dm -

Experimentally, a density of 719  g dm - J  was determined for cyclohexane at the 
normal boiling point [ 3 ] .  This means that the calculated value using the PR  
equation of  state i s  � 6% too high. In Figure 5 . 38 the calculated liquid densities of 
cyclohexane are shown together with the experimental liquid densities for a wide 
temperature range ( T, = 0 .5 -0.8) .  At the same time the experimental and liquid 
densities for five more solvents are shown in this diagram. It can be seen that 

with the exception of water the calculated liquid densities using the PR equation 
of state are too high. The largest density deviations are obtained for the very 
polar compound water. It seems that the difference between the experimental and 
calculated densities is nearly constant. Using the SRK equation of state, even larger 
deviations between the experimental and calculated liquid densities are obtained. 
But a reliable description of the pure component densities is a prerequisite for the 
calculation of reliable mixture densities for multicomponent systems. Peneloux 
et al. [ 33 ]  showed that the results for the liquid densities can be improved by 
introducing a translation parameter c (see Section 2 . 5 . 5 ) .  

I n  Figure 5 . 39  for the temperature range T, = 0 . 5 -0.8 experimental and liquid 
densities for the same solvents as in Figure 5 . 38  are shown. But for the calculation 
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now the volume translated PR equation of state has been used, where the trans­

lation parameter was adjusted to the experimental liquid density at T, = 0.7 (see 

Eq. (2. 178)) .  This ensures that with the volume translation perfect results are 

obtained at T, = 0.7.  Finally, not only for T, = 0.7 ,  but also for other temperatures 

improved results are obtained. From Figure 5 .39 it can be seen that with the 
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Figure 5.39 Experimental and calculated liquid densi t ies  
u sing the volume translated PR equation of state for s ix  d i f­
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Figure 5 .40 Exper i menta l  [3] a n d  ca l c u l ated l i q u i d  heat capac i t i es  u s i n g  VTPR. 

exception of the strong polar compound water very good agreement is  obtained 

between the experimental and calculated densities in the whole temperature range 

covered. For 44 compounds investigated in the temperature range (T, = 0 . 5 -0 .8) a 
relative mean deviation smaller than 2% was obtained. This mean relative deviation 

obtained for VTPR is  much smaller than the deviations obtained for the PR (mean 
deviation approx. 6%) or the SRK equation of state (mean deviation approx. 1 2%) 

for the same 44 compound:;.. 

Equations of s late not only allow to calculate dens ities, enthalp ies of vaporization, 

but also other thermodynamic properties , such as heat capacities , enthalpies , 
entropies, internal energy, Gibbs energy, Helmholtz energy, and other important 

properties ,  for example, Joule-Thomson coefficients, and so on. In Figure 5 .40 

experimental and calculated l iquid heat capacities usmg the VTPR equa tion of state 

for five different solvents in the temperature range 0- 200 'C are shown. As can 

be seen the agreement between experimental and calculated data is within approx. 

2%. The calculated results of course depend on the quality of the heat capacities 

of the ideal gas, the parameters of the a -function, and further parameters. In 

[ 34] and Chapter 2 it was shown that the results can still be improved when 

other thermodynamic data are used in addition for fitting the parameters of the 

a-function. 

5 . 5 . 1  
Fitting of Binary Parameters of Cubic Equations of State 

To describe the behavior of mixtures (enthalpies of vaporization, densities , heat 

capat.ities, phase equilibria, etc) using equations of state, binaty pDrameters 

are requ i red . The different mixing rules suggested were alrrady discussed in 
Section 4 .9 .2 .  While empirical mixing rules, for example, quadratic mixing rules 

cou ld only be Jpplied for nonpolar systems, the range of applicability of equations 
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of state with modern gE -mixing rules was extended to polar systems, for example, 

systems with water, alcohols ,  ketones , and so on. 

It  was shown in Section 4.9.2 that in the quadratic mixing rules a binary 

parameter k 1 2 is required to describe the behavior of the binary system. For fitting 

the binary parameter usually VLE data are used. With the help of all the required 
binary parameters kij (in the case of a ternary system: k1 2 , k1 3 ,  k23 )  the ternary or 

multicomponent system can then be calculated. 

In Figure 5 .41  for the binary system n-butane-C02 the experimental results are 

shown together with the calculated results for k1 2 = 0 and for the fitted binary 

parameter k12 = 0. 1 392.  It can be seen that the agreement is highly improved when 
going from k 1 2 = 0 to k1 2  = 0. 1 392 . Furthermore, it is remarkable that k1 2 seems to 

be temperature-independent over a wide temperature range. It is clear that starting 
from a poor description of the binary system as in the case of k 1 2  = 0, there is no 
chance to obtain good results for a ternary or a multicomponent system. 

For a long time the empirical quadratic mixing rules were used in gas-processing 

or petrochemistry. But poor results were obtained for systems with polar 

compounds . This is exemplarily shown for the systems acetone-water and 

isopropanol-water in Figures 5 .42 and 5 .43 .  I t  can be seen from the diagrams on 

the left-hand side that unsatisfactory results are obtained, if the binary parameter 

k 1 2  of the empirical mixing rules is fitted to these systems. Huron and Vidal [ 35 ]  
carefully investigated the advantages of gE -models and equations of state and 

developed the so-called gE-mixing rules. Now, in gE -mixing rules the parameters 

of a gE -model, for example, of the Wilson, NRTL, or UNIQUAC model are fitted to 

calculate the attractive parameter of the chosen cubic equation of state. For the two 
systems mentioned the results are shown on the right-hand side of Figures 5 .42 
and 5 .43 .  The improvements obtained are significant. The application of the new 
mixing rules now allowed using equations of state also for process simulation in 
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Figure 5 .41 VLE resu l ts for the system n-bu tane ( l ) C02 (2) 
using the b i n a ry parameter k1 2 = 0 and  an  adj usted bi -
nary parameter (• - 2 70 K ;  A - 292 .6  K; + - 3 25 .01  K ;  
• - 3 77 . 6  K) [3 [ .  
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Figure 5.42 Exper imental and ca lcu l ated VLE data for the 
system acetone ( 1 ) -water (2) us i ng  the PR equat ion of 
state with c lass ica l  m ix ing ru les (k1 2 = -0.2428) (a) and 
the Soave- Red l i ch - Kwong equat ion of state with gE ·m ix i ng  
ru l es  (N RTL, tl.g1 2 = 257 .9  ca l /mo l ,  Cl.g21 = 1 069 ca lf mo l ,  
a12  = 0.2) (b )  at 308 ,  323 and 3 3 3  K. 
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Figure 5.43 Experimenta l  and ca lcu lated VLE d ata for the 
system i sopropanol  (1 ) -water (2) us i ng  the PR equat ion 
of state with c lass ica l  m ix i ng  ru les (k1 2 = -0. 1 68) (a) and 
the Soave-Red l i ch - Kwong equat ion of s tate with gE ·mix i n g  
ru les (N RTL, Cl.g1 2 = - 3 39.0 caljmol ,  Cl.g21 = 1 91 4  caljmo l ,  
a1 2  = 0.2) ( b )  at 308, 3 1 8 , 328,  and 3 3 8  K. 

0.5 

chemical industry. Using the binary parameters derived from VLE data equations 
of state directly allow the calculation of all other mixture properties .  

Instead of the binary parameter k1 2  in the case of gE ·mixing rules , the para­
meters of the Wilson, NRTL, or UNIQUAC equation are fitted. Depending on the 
strength of the temperature dependence either constant or temperature-dependent 

parameters have to be fitted. With the help of temperature-dependent parameters 
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Figure 5.44 Experimenta l  and cor­
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temperatu re-dependent pa rameters) ; 

0 E 
:?.. 

w .c: 

� 

900 

600 

300 

0 

1 5  

1 0  

5 

T= 288. 1 5  K 
i --� ---- -,-----�-- --------1 

0.5 1 

x1 

0 +----,.-------,----1 
280 320 360 400 

T ( l · )  
U N IQUAC parameters: a (acetone ,  H20)  = 
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b (acetone ,  H 20) = - 1 . 322 1 , b (H 20 ,  ace­
tone) = 4.43 38 ,  c (acetone,  H 20) = 0.001 25 
(K- 1 ) , c (H20 ,  acetone) = 0.00043 (K- 1 ) .  

even the temperature dependence of the excess enthalpie� can be described with 
the required accuracy. For the system acetone-water the results are shown in 
Figure 5 .44. It can be seen that besides the VLE behavior, the excess enthalpies, 
activity coefficients at infinite dilution and the azeotropic data as a function of 
temperature can be described with the required accuracy. 

With the help of the binary parameters k1 2 or gE -model parameters now the phase 
equilibrium behavior, densities, enthalpies ,  Joule-Thomson coefficient�· .  and so 
on, for binary, ternary and multicomponent systems can be calculated. For the 
calculation of the VLE behavior the procedure is demonstrated in the following 
example for the binary system nitrogen-methane using classical mixing rules. The 
same procedure can be applied to calculate the VLE behavior of multicomponent 
systems and with gE ·mixing rules as well. 

Example 5.1 2 
With the help of the SRK equation of state the syste m pressure and vapor phase 
composition for th<' binary system nitrogen ( 1 )-methane (2) for a liquid mole 
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fraction of nitrogen x1 = 0 .2 1 5 2  at 144.26 K should be calculated. The required 

pure component data and the binary parameter are given below: 

Component T, (K) 

1 26. 1 5  

190.63 

Binary parameter: k1 2 = 0.0267 [36] .  

Solution 

P, (bar) 

3 3 .94 

46. 1 7  

w 

0.045 

0.010 

----- --· -

The calculation has to be performed iteratively. The objective of the iterative 
procedure is to find the pressure and vapor phase composition for which the 

following equilibrium condition is fulfilled: 

( 5 .9)  

for both components . To start with the calculation, first of all estimated values 
for the vapor phase composition and system pressure are required. In this case, a 

vapor phase mole fraction y1 = 0 .6  and a pressure P = 20 bar were chosen. 
During the iterative procedure these values have to be changed until the equi­

librium condition ( 5 .9) is fulfilled. A flow diagram for this procedure is shown in 

Figure 5 .45.  For the considered example the first step of this procedure is described 

in detail below. 
First the pure component parameters for both compounds have to be calculated 

with the help of Eqs. (2 . 1 62 - 2 . 1 64) at the given temperature ( 144.26 K) using the 

critical data P, , T, ,  and the acentric factor w: 

0.083 1 42 . 1 26 . 1 5 2 
a1 1 ( T) = 0.42748 

3 3 _ 94 
aJ (T) 

= 1 . 3856 · aJ (T) (dm3 )2 bar I mol2 

144 .25  
Trl = 

1 26 _ 1 5  
= 1 . 1436 

ai (T) = [ 1 + (0.48 + 1 . 574 · 0.045 - 0. 1 76 · 0.045 2 ) ( 1 - 1 . 1 436° 5 )  r 
a1 ( T) = 0.925 1 

a1 1 ( T) = 1 . 2818 ( dm3f barfmol2 

0.083 1 4 . 1 26 . 1 5  
b1  = 0.08664 = 0.02677 dm3 

3 3 .94 

0.083 142 . 190 .632 
3 2 2 an ( T) = 0.42748 

46 _ 1 7  
a2 (T) = 2 . 3259 a2 (T) (dm ) barfmol 



I nput (N2 - CH4) :  
Temperature, mole  fraction X ;  
(T , 1 44 .26 K ,  x 1 ' 0 . 2 1 52)  

Pure component data: Tc. i • 
Pc , i •  W; 
(Tc •• 1 26 . 1 5  K. 1 90 . 63 K 
P c = 33 .94 bar ,  46. 1 7  bar  
( I )  cc. 0 . 04 5 ,  0.01 0) 

Binary parameters :  k;i 
( k; , c. 0 . 0267) 
I n itial estimation of P and Y; 
(P  .� 20 bar. y1  • 0 . 6 )  

J 
Calculate the mixture 
parameters a and b for the 
liquid phase 
(a , 2 . 2867 bar dm6t mol2 .  
b • 0 . 029 1 0 dm3! mol )  

,.. 

c-

Calculate the molar volume vL and the fugacity 
coefficient q>;L for the l iquid phase 
(vL �. 0 . 04775 dm31mol . <p,L , 2 489. 0 3779) 

t 
Calcu late the m ixtu re parameters a and b for 
the vapor phase 
(a . c  1 . 74 1 7  bar dm0/ mol2 .  b ·' 0.02 796 dm.'lmo!) 

� 
Calculate the molar volume vv and the fugacity 
coefficient q>;v for the vapor phase 

(vv c 0.4600 dm3irnol .  <r,V 0 . 8833. 0 . 7 1  00) 

J 
Calcu late the K-factors: 
X ;  ((>;L = Y; ((>;v 
K; = y ;fx ; = q>;Lfq>;v (K = 2 . 8 1 82 .  0 5323) 

t 
Calculate the sum of mole fractions in the 
vapor phase: 
S = L Y; = L K; X; (S o 1 . 0242 )  

,-

Calculate new 
estimates for the 
pressure and the vapor 
composition:  
Pnew = S Paid Yi.new = K; x;l  S 
(P ,wv. = 20 484 bar 
Y 1  0 592 1 )  

no 

r<1q 
yes 

Result: P ,  Y; 
(P • 20. 733 ba r .  
y ,  0 . 5893) 

Figure 5.45 Flow d iagra m  for the ca lcu lat ion of i sothermal vapor- l i qu i d  equ i l ib r ia  us i ng  the S R K  eq uat ion of state. 
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144.26 
Tr2 = -- = 0.7568 

190.63 

a2 ( T) = [ 1 + (0.48 + 1 . 574 · 0 .01 - 0. 1 76 · 0.01 2} ( 1 - 0 .7568° 5 ) r 
a2 (T) = 1 . 1 3 3 1  

a22 ( T) = 2 .6356(dm3 ) 2 barjmol
2 

0 .083 1 4  . 190.63 3 b2 = 0.08664 
46 _ 1 7  

= 0.02974 d m  jmol 

In the next step, the cross parameter a1 2  and the mixture parameters a and b for the 
liquid phase with the help of the mixing rules (Eqs .  (4.98-4. 100) ) are calculated. 

a1 2 ( T) = a2 1 ( T) = ( 1 . 2818  · 2 .6356)0 5 ( 1 - 0.0267) 

= 1 . 7889 (dm3 )
2 

barjmol2 

a (T) = 0 . 2 1522 . 1 . 2818 + 2 · 0.2 1 5 2  · 0.7848 · 1 . 7889 + 0.78482 . 2 .6356 

= 2 . 2869(dm3 ) 2 barjmol
2 

b = 0.2 1 5 2  · 0.02677 + 0. 7848 · 0 .02974 = 0.0291 dm3 fmol 

With the help of these parameters, the molar volume of the liquid has to be 
determined in a way that the given pressure P = 20 bar is obtained with the SRK 
equation of  state. 

This calculation can be performed iteratively or by solving the cubic equation of 
state. For the given pressure of20 bar a molar liquid volume of0.0477563 dm3 jmol 
is obtained: 

p = 
R T  

_ 
� 

= 
0 .083 14 · 144 . 26 

v - b v( v + b) 0.04776 - 0.029 1 

2 . 2869 
= 20 bar 

0 .04776(0 .04776 + 0 .0291 )  

With the help of  the calculated molar volume and the various pure component 
and mixture parameters of the l iquid phase both fugacity coefficients for the liquid 
phase <p� can be calculated using Eq.  (4. 1 0 1 ) .  For nitrogen ( 1 )  the following value 
is obtained: 

I L l 0.04776 
n IPJ = n 

0.04776 - 0.0291 

_ 2 (0 . 2 1 5 2  · 1 . 2818 + 0. 7848 · 1 . 7889)
ln 

0 .04776 + 0.0291 

0.083 14 . 144 .26 . 0.0291 0 .04776 

0 .02677 
I 

20 · 0.04776 
+ 

0.04776 - 0.029 1 - n 0.08314  · 1 44.26 

2 . 2869 . 0.02677 

+ 0.083 1 4  . 1 44 .26 . 0.0291 2 . ( ln 
0 .04776 + 0.0291 _ 0 .0291 ) 0 .04776 0 .04776 + 0.0291 
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In the same way. the fugacity coefficient for methane (2) is obtained: 

rp} = 0. 3779 

In the next step . the mixture parameters for the vapor phase (y1 = 0.6) have to be 
determined: 

a(T) = 0 .62 
· 1 . 2818 + 2 · 0.6 · 0.4 · 1 . 7889 + 0.42 . 2 . 6356 

= 1 . 7418  (dm3 ) 2 barjmol
2 

b = 0 .6  · 0.02677 + 0.4 · 0.02974 = 0. 2796 dm3jmol 

With the help of these parameters a molar volume of 0.4601 dm3 fmol for the 
vapor phase is obtained for the pressure of 20 bar using the S RK equation of state. 
With this volume and the parameters for the vapor phase the following fugacity 
coefficients are obtained: 

rp'( = 0.8833 

rp'f. = 0 .7100 

With the help of the fugacity coefficients obtained first the K-factors ( Ki = yi /xi) for 

the two components can be calculated using Eq. ( 5 . 17 ) :  

Y 1  rp� 2 .4892 K1 = - = v = -- = 2 .8181  XJ rp1 0.883 3 

Yz rp} 0 . 3779 
Kz = - = v = -- = 0 .5323  

xz rp2 0 .7100 

Then it can be checked whether the equilibrium condition is fulfilled. In equilibrium 
the sum of the mole fractions in the vapor phase should be equal to 1 . 

s = I >jKj = 0 . 2 1 52 . 2 .8181  + 0.7848 . 0 . 5 323  = 0 .6065 + 0 .4177 = 1 .0242 

It can be seen that with the estimated vapor phase composition and pressure the 
equilibrium conditions are not fulfilled. This means that new values have to be 
estimated for the vapor phase composition, for example, by normalizing the vapor 
phase mole fractions: 

0 . 6065 
Y1 = -- = 0. 5922 

1 .0242 

0.4177 
Yz = 

1 .0242 
= 0.4078 

Furthermore , a new pressure is estimated using the K-factor method: 

Pnew = Paid · S = 20.484 bar 
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The iteration can be stopped when the sum of the calculated mole fractions 

only deviates by a small value for example, E = 10- 5 from the desired value of 1 .  
After a few iterations the stop criterion E < 10-5 i s  fulfilled. This means that the 

correct equilibrium composition and pressure are obtained. 

Y1 ,exp Y1 ,calc Pexp (bar) Peale (bar) 

0.2 152  0.5804 0.5893 20.684 20.733  

At these conditions the following fugacity coefficients are obtained for the two 
compounds in the different phases: 

2 .4106 0.3655 0.8803 0.6984 

In Figure 5 .6 ,  the calculated results using the SRK equation of state are shown 
together with the experimental data for different temperatures and the whole 

composition range for the system nitrogen ( 1 ) -methane (2) . 
The whole procedure is given in the form of a flow diagram in Figure 5 .45 .  The 

same procedure shown for the binary system nitrogen-methane can be applied for 
multicomponent systems.  For the calculation besides the critical data T, , Pc , and 
the acentric factors w; of the compounds involved only the binary parameters ku 
for the quadratic mixing rule or the gE -model parameters in the case of gE -mixing 
rules are required. 

For the quaternary system NrCOr H2 S -methanol calculated with the help of 
the SRK  equation of state using binary parameters kiJ respectively gE ·mixing rule 
parameters the calculated and experimental results are shown in F igure 5 .46. From 
the results it can be concluded that in this case only slightly improved results are 
obtained using gE ·model parameters. 

5.6 
Conditions for the Occurrence of Azeotropic Behavior 

At the azeotropic point, the mole fractions of all components in the liquid phase 
are identical with the mole fractions in the vapor phase for homogeneous systems. 
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Figure 5.46 Exper imenta l  [3 ]  and predicted K-factors fo r 
the system N2 -C02 - H 2 S - methano l  at - 1 5  C: -- --- S R K  

+ quadrat ic mixi n g  ru le ;  - - SRK  + gE ·mix i ng no l e  

4 0  

This leads t o  the fact that all K-factors and all relative volatilities show a value 

of 1 a t  the azeotropic po int and that the system cannot be separated by ordinary 

distillation . A reliable knowledge of all azeotropic points for the system to be 

separated is of essential importance for the synthesis and design of separation 

processes. 

For a binary system,  the following relations are valid for homogeneous systems 
at the azeotropic point using the simpl ified Eq. ( 5 . 18)  of Approach B: 

( 5 .46) 

Using an equation of state (Approach A) the following relation is obtained for the 

azeotropic point: 

( 5 .47) 

It  can be seen that starting from Eq. (5 .46) azeotropic behayjor always occurs if 

for a given composition thl.' ratio of the pure component  vapor pressures PU P2 
is identical to the ratio of the activity coefficients yz!y1 • The typical curvature 
of the yz !yrratio in logarithmic form for an azeotrop ic system with positive 

and negative deyjation from Raoult's law at constant temperature is shown in 
Figure 5 .47a,b, respectively. fhe azeotropic composition can directly be obtained 

from the intersection of the straight line for the vapor pressure ratio and the curve 
for the ratio of the actiyjty coefficients yz !y1 . 
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Figure 5.47 Exam i nat ion of the azeotrop ic  behav ior of b i ­
n a ry homogeneous systems  at constan t  temperature (com­
ponent 1 = low boi l i ng  compound) , 1 5 1 

In Y2 

x1 

From Eq. (5 .46) , it can be seen that azeotropic behavior can easily occur in 
a binary system if the vapor pressures of the two components are very similar, 
s ince in this case already very small deviations from Raoult's law are sufficient 

to fulfill the equation and to create an azeotropic point either with positive or 

negative deviation from Raoult's law. I f  the vapor pressures are identical (e.g. , at 

the Bancroft point) , the binary system shows the azeotropic behavior . 
From Figure 5 .47, it can be concluded that the occurrence of azeotropic points 

can be calculated if besides the activity coefficients at infinite dilution the ratio of 
the vapor pressures is known. Azeotropic behavior occurs if the following condition 
for positive resp. negative deviation from Raoult's law is fulfilled (see Figure 5 .47) : 

P. 
ln y 00 > In ......!. 

2 p-� 
positive resp. 

P. 
- ln y "" > ln ......!. 

I p� 
negative deviation from Raoult's law 

(5 .48) 

Since approx. 90% of the systems show positive deviation from Raoult 's law, in 
most cases pressure maximum (temperature minimum) azeotropes are observed. 

The activity coefficients at infinite dilution and the vapor pressures de­

pend on temperature following the Gibbs- Helmholtz (Eq. 5 . 26) and the 
Clausius-Clapeyron equation (Eq.  3 .64) [7] ,  respectively. The result of the 
temperature dependences is that azeotropic behavior can occur or disappear with 
increasing or decreasing temperature (pressure) . lo understand if azeotropic 

1 5) When a strange composition dependence 
of the activity coefficients exists also two 
azeotropes with pressure minimum and 
p ressure maximum can be found in a 

binary system ,  for example , the system 
benzene- hexa fluorobenzene shows this 
Dfhavior. 
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behavior occurs or disappears , only the knowledge of the temperature dependence 
of y200 (for positive deviations from Raoult's law) and the ratio of the vapor 
pressures is required. For the systems ethanol- 1 ,4-dioxane and acetone-water 
lhe experimental azeotropic data are shown in Figures 5 .48 and 5 .49 together 
with the calculated results using the NRTL equation with the parameters given in 
Table 5.9.  While for the first system the azeotropic behavior disappears at higher 
temperature, the opposite is true for the second system acetone-water, where 
azeotropic behavior occurs at temperatures above 70 o c .  As can be seen from 
Figure 5 .49 the occurrence and disappearance of the azeotropic behavior for both 

systems is described reliably "'· ith the NRTL model . 

420 
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Example 5.1 3 
Determine the azeotropic points of the system acetone ( 1 ) -methanol (2)  at 50, 100, 
and 150 c C by the ratio of the activity coefficients and vapor pressures using the 
Wilson equation with the interaction parameters given in the table below. 

For the calculation . the following molar volumes: 
v1 = 74.04 cm3 mol- 1 ; v2 = 40.73  cm 3 mol-

1 
should be used. 

B 
Parameters of the Antoine equation: log P! (mm Hg) = A - -.,------c 

zJ ( C) + c 

Solution 

Compound 

Acetone 

Methanol 

Wilson parameters 

1 
2 

j 

2 

1 

A 

7 . 1327  

8.08097 

- 60.756 

863 .79 

B 

1 2 1 9 .97 

1 582 .27 

-0.06 1 1 4  

- 1 .05 33 

c 

230.65 3 

239 .7  

Exemplarily for the calculation of the ratio of the activity coefficients the following 
composition at a temperature of 1 00 'C is used: x1 = 0. 2 and x2 = 0.8 .  

First the Wilson interaction parameters !-..A if at 100 � C have to be calculated: 

!-..Aif  = aif + bif · T 

!-.. A 1 2 = - 60.756 - 0.06 1 14 · 373 . 1 5  = -83 . 57  cal mol - 1 

6.).. 2 1 = 863 . 79 - 1 .05 3 3  · 373 . 1 5  = 470 .75  cal mol- 1 

Then the Wilson parameters A if can be determined: 

� [ !-..Aif ] A if = � · exp -
RT 

40 .73  [ -83 . 57  ] 
A 1 2 = 74.04

. exp - 1 .9872 1 · 373 . 1 5 
= 0 ·6 1 57  

74.04 [ 470 .75  J A 21 = 
40.73

. exp -
1 .9872 1 · 373 . 1 5  = 

0·9635  

With the help of  these parameters the required activity coefficients can be  calculated. 
Exemplarily the calculation is shown for the activity coefficient of acetone ( 1 ) :  
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In y1 = - In (0.2 + 0 .8 · 0 .61 57) ( 0 .6157  0.9635 ) + 0.8 .  - = 0. 3021 

0 .2 + 0.8 . 0 .6157  0 . 2 . 0 .9635 + 0 .8  

y1 = 1 . 3 5 3  

Similarly the following value i s  obtained for y2 : 

y2 = 1 .024 

With the help of these activity coefficients the ratio can be estimated: 

Yr = 1 . 3 5 3  
= 1 . 3 2 1 3  

y2 1 .024 

Using the Antoine constants given above one obtains for the ratio of the vapor 
pressures Pzl� at 100 oC :  

Pz 
= 

2649 .26 
= 0 .955 

P'� 2774. 1 

For the whole composition range and the different temperatures selected the 
results are shown in Figure 5 . 50. From the diagram it can be seen that a strong 
temperature (pressure) dependence of the azeotropic composition is observed 
(SO 0C: xr .az � 0.8; 150oC :  Xt ,az � 0 .2) . This is mainly caused by the different 
enthalpies of vaporization of the two compounds considered. While acetone shows 
an enthalpy of vaporization of 29.4 kj jmol at 50 C, the value for methanol is 

2 

'1 . 5  

0 .5 

o ���u_�--�-4���--��L-� 
0 0.5 

x, 

Figure 5.50 Rat io of the activ ity coefficients Yl IY2 
and  ratio of the vapor pressures PV Pl of the system 
acetone (1 ) - methano l  (2) for the determ i nation of the 
azeotrop ic po i n ts a t  50 ,  1 00, and 1 50 '' (. 
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36 . 1  kj jmol. The strong pressure dependence observed can be applied in practice 
for the separation of azeotropic systems by pressure swing distillation, this means 
using two distillation columns running at different pressures. S ince the enthalpies 
of vaporization of water are higher than for organic compounds, pressure swing 
distillation is mostly used for the separation of water from organic compounds, as 
for example, the separation oftetrahydrofuran-water, acetonitrile-water, and so on. 

The temperature dependence of the separation factor (see Eq. ( 5 . 1 8) )  and of 
the azeotropic composition of binary systems depends on the type of azeotrope 
(pressure maximum, pressure minimum) , the temperature dependence of the 
vapor pressures, and the composition and temperature dependence of the activity 
coefficients . These dependencies can be described with the help of the heats of 
vaporization and partial molar excess enthalpies following the Clausius-Clapeyron 
respectively the Gibbs- Helmholtz equation [38] (derivation see Appendix C, B9) : 

(Y1 Y2 ) az ( L':. hvl - L':.hv2 + h� - h�) 
RT2 [ 1 - (ilyJ / iJx! ) .J ( a yl ) 

iJ T az 
(5 .49) 

where the expression ( iJ yJ / ih! )az shows values < 1 for systems with pos1t1ve 
deviations from Raoult's law and values > 1 for systems with negative deviations 
from Raoult 's law. In most cases the difference of the enthalpies of vaporization is 
larger than the difference of the partial molar excess enthalpies. 

Example 5.1 4 
Calculate the temperature dependence ofthe azeotropic composition (YJ .az = 0.9) of 
the system ethanol ( 1 ) -water (2) at 70 c C  using Eq. ( 5 .49) . At 70 c C  the compounds 
show the following enthalpies of vaporization: 

L':. hv.ethanol : 39800 j jmol 

L':. hv.water : 42000 J jmol 

Solution 

Besides the enthalpies of vaporization additionally the difference of the partial 
molar excess enthalpies and the slope ayt fiJx1 at the azeotropic point at 70 °C is 
required. This information can be derived from Figures 5 . 1 7  and 5 . 30. For the 

-E -E 
difference of the partial molar excess enthalpies h2 - h1 approximately a value of 
500 J jmol and for the slope a value of 0.9 is obtained. 

U sing these values the temperature dependence can be calculated: ( ay1 ) 
= 

o.9 . 0 . 1 . ( 398oo - 42ooo + 5oo) 
= - 1 . 56 . 10_ 3 K- 1 

iJ T  az 8 . 3 1433  · 343 . 1 52 ( 1 - 0.9) 

This means that the mole fraction of ethanol in the azeotrope will  decrease with 
increasing temperature and that the azeotropic behavior should disappear at a 
lower temperature. This is in agreement with the experimental findings . From the 
enthalpies used for the calculation, it can be recognized that this is mainly caused 
by the higher enthalpy of vaporization of water compared to ethanol. 
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Figure 5 .51  y2"" (-) and  the ratio of 
the vapor pressu res PU P2 i n  logarithm ic  
form ( - - -) as  a funct ion of temperatu re 
for the sy:,tem acetone ( l ) -carbon tetra­
ch loride (2) . 

Depend ing on the s ign of the partial molar excess enthalpies as a function of  

temperature, the activity coefficient y;" can show a maximum or a minimum in 
the considered temperature range following the G ibbs - H elmholtz relation . This 
means that the condition for azeotropic po ints can be fulfilled either only in a small 
temperature range or at low and again at high temperature .  For the maximum 
case the condition is fulfilled for the system acetone-carbon tetrachloride . The 
reason is that the sign of the partial molar excess enthalpy changes because of 

the S -shaped heat of mixing behavior of this system. This results in a maximum 

for Yl"' , so that the condition for azeotropic behavior is fulfilled on ly in a limited 
temperature range . Figure 5 . 5 1  shows the curvature of y;x; and the ratio of the vapor 
pressures in logarithmic form as a function of temperature . The experimental and 
predic ted excess enthalp ies and the exper imental and predicted azeotropic data 
using mod ified UN IFAC are shown in F igures 5 . 52  and 5 . 5 3 .  It can be seen 

that modified UNI FAC (see Section 5 .9 . 3 . 1 )  is able to predict the occurrence and 
d isappl:'arance of the azeotrop ic behavior. 

Instead of gE ·models also equations of state can be used for the determ ination 

of azeotropic behavior of binary or multicomponent systems . In  Figure 5 . 54 the 
experimental and predicted azeotropic points using the group contribution equation 
of state VTPR (see Section 5 .9 .4) for the system ethane-C02 up to pressures of 

80 bar are shown . 
As mentioned before , azeotrop ic behavior always occurs if the compounds to be 

separated have identical vapor pressures ( Bancroft point) . Since the slope of the 
vapor pressure curve, following the Clausius-Clapeyron equation , depends on the 

value of the enthalpy of vaporization , a low boiler may become the high boiler with 
rising temperature, if the enthalpy of vaporization is smaller than the one for the sec­
ond compound . This is shown for ethanol and benzene in F igure 5 . 5 5 .  While ben­
zene is the low boiler at low temperatures, the opposite becomes true at higher tem­
peratures , since the molar enthalpy of vaporization of the polar component ethanol 
is larger than the molar enthalpy of vaporization of benzene (see Appendix A) . 

Even the system water-deuteratecl water shows a Bancroft po int . since deuterated 

water with a higher normal boiling point ( 101 .4  c c  instead of lOO cC) shows a 
larger enthalpy of vaporization than water. For example, at 25 o c  the enthalpy 
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45 °( [3] - pred icted us ing mod ified U N I FAC. 
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Figure 5.54 Exper imenta l  and  predicted 
azeotrop ic  compos i t ion of the system 
ethane  ( 1 ) -C02 (2) a s  a funct ion of p res· 
su re . • experi menta l  [3 ] .  - p red icted 
us i ng  VTPR (see Section 5 .9 .4) . 

Figure 5.55 Vapor p ress u re of 
ethano l  and  benzene as a fu nc­
t ion of the i nverse temperature 
exper imenta l  data [3 ]  ethano l  
4 benzene. 

of vaporization for water is 43 .9 kJjmol and for D20 45 . 35  kJ jmol. The result is 
that at temperatures around 220 oC the vapor pressures of water and deuterated 
water become identical following the Clausius-Clapeyron equation, so that even the 
system water-deuterated water shows azeotropic behavior in a limited temperature 
range (493-495 K) near the Bancroft point, as shown in Figure 5 . 56 .  

Azeotropic behavior is not limited to binary systems only. Also ternary and quater­
nary azeotropic points are observed. For the determination of the azeotropic points 
in ternary and quaternary systems ,  thermodynamic models (gE -models, equations 
of state, group contribution methods) can again be applied [40] . Azeotropic points 
in homogeneous systems can be found with the help of nonlinear regression 
methods . At the azeotropic point all separation factors CXij show a value of 1 in the 
case of homogeneous systems. This means that the following condition has to be 
fulfilled: 

n n 
F = L L [cxij - 1 [ = 0 

j j > i  
( 5 . 50) 

For the azeotropic system acetone-chloroform-methanol, the three possible sep­
aration factor curves with a value of 1 are shown in Figure 5.57. The intersection 
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Figure 5.57 Pred icted contour  l i nes (cxij = 1 ) u s i ng  
modified U N I FAC for t he  terna ry system acetone  
( 1 ) -ch loroform (2 ) - methano l  ( 3 )  a t  a tmospher ic  pres su re) . 

of two of these curves, for example, au = 1 and a 1 3  = 1 leads to an azeotropic 
point, since at the intersection point the criterion for the separation factor a23 is 
automatically fulfilled (see Figure 5 .57 ) .  

In  the case ofheterogeneous azeotropic mixtures a different calculation procedure 
has to be applied. For the ternary system water-ethanol-benzene this is shown 
in Figure 5 . 58. Heterogeneous azeotropic behavior occurs if a pressure maximum 
can be found along the binodal curve . The required pressures can be calculated 
start ing from the composition of the heterogeneous binary system up to the critical 
point . In doing so, one can start from the composition in the organic or the 
aqueous phase. The result is shown on Figure 5 . 58b. I t  can be seen that for both 
procedures a pressure maximum occurs , this means heterogrneous azeotropiL 
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behavior is obtained for this system. In Figure 5 . 58, the temperature dependence 

of the azeotropic composition is also shown. I t  can be seen that the concentration 

of water in the azeotrope increases with increasing temperature (pressure) . The 
main reason for the observed temperature dependence is that the vapor pressure 
of water increases faster than the vapor pressures of ethanol and benzene, because 

of the larger enthalpy of vaporization. 
Azeotropic behavior is also obtained for quaternary systems. But fortunately, 

azeotropic points in quinary or higher systems do not exist, since with increasing 
number of components it  becomes more and more unlikely that for one composi­
tion all the separation factors become exactly unity. 

For a large number of systems experimental (a) zeotropic information can be 

found in a comprehensive data compilation [37] .  The knowledge of the azeotropic 
points is of special importance during the synthesis of separation processes and 
the selection of suitable solvents for azeotropic distillation. 

5.7 
Solubi l ity of Gases in  Liqu ids 

The objective of absorption processes is the separation of gas mixtures or the 
removal of undesired compounds from gas mixtures.  For the selection of the 

optimal solvent or solvent mixture (absorbent) and the design of absorption 
processes a reliable knowledge of the gas solubility as a function of temperature 
and pressure is of special im portance . 1 61 

1 6) The reliable knowledge of gas solubilities 
is also required for the design of gas-liquid 
reactors. 

0.60 
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Industrially important absorption processes are for example the removal of 
sour gases (C02 , H2 S)  from natural gas or synthesis gas, the removal of carbon 

dioxide in chemical plants such as ethylene oxide plants , the removal of S02 
from flue gas, or the absorption of C02 in power plants (carbon capture and 

storage (CCS) ) ,  and so on. One has to distinguish physical and chemical absorption 
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Figure 5.59 Exper imental sol u b i l i t ies [3] of C02 
in methano l  (A )  and aqueous monoethano l am ine  
solut ion (30 mass%) (•) at T = 3 1 3 . 1 5  K .  
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Figure 5.60 Chemica l  react ions  v•h ich h ave to be 
con s idered bes ides the gas so l ub i l ity  for the absorpt ion of  
C02 i n  aqueous  monoethanola rn i n e  so lu t ions .  
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processes. For physical absorption processes , only the knowledge of the phase 
equilibrium behavior is required. For chemical absorption processes, all chemical 
equilibria have to be taken into account in addition to the phase equilibria. Often, 
reaction kinetics and mass transfer has to be regarded as well. In  Figure 5 .59  
the solubility of carbon dioxide in methanol (physical absorption) and aqueous 
monoethanolamine solution (chemical absorption) is shown for a temperature 
of 3 1 3 . 1 5  K. '71 The reactions which have to be considered for the absorption of 
C02 in monoethanolamine are shown in Figure 5 .60. From Figure 5 . 59  it can be 
recognized that chemical absorption shows great advantages compared to physical 
absorption ,  when the partial pressure of the gas to be absorbed is low, as in the case 
of CCS-processes . Physical absorption shows advantages at high partial pressures . 

For the calculation of gas solubilities for physical absorption processes both 
approaches discussed in Section 5 . 1  (Eqs. ( 5 .9) and ( 5 . 10 ) )  for VLE calculations can 
be applied. 

X;tp: = y;cp'( ( 5 .9) 

( 5 . 10) 

While there is no difference for the calculation of gas solubilities in comparison 
to VLE in the case of the equation of state (approach A), for approach B, there is 
the problem that the standard state (pure liquid at system temperature and system 
pressure) used for VLE calculations cannot be used anymore , since supercritical 
compounds are not existent as liquid. This means an alternative standard fugacity 
is required for the y -cp-approach. 

5 . 7. 1  
Calculation of Gas Solubil ities Using Henry Constants 

An alternative is the usage of the Henry constant Hij as standard fugacity J;0. Using 
the Henry constant as standard fugacity , the following expression is obtained for 
the calculation of gas solubilities in a binary system: 

Xj Yt H12 = Yl iPl p 
1 = solute , 2 = solvent 

The Henry constant is defined as 

H1 2  = lim Ji 
X1 ____,.. 0 X1 
x1 -----+ 1 P � P)_ 

( 5 . 5 1 )  

(5 . 52 )  

and is exactly valid only for the case where the partial pressure of the gas is equal 
to zero, this means when the total pressure is identical to the vapor pressure of the 
solvent. 

S ince in the case of gas solubilities normally only a small concentration range 
is covered in the liquid phase, simple expressions for the description of the 

1 7) A temperature of3 1 3 . 1 5  K was chosen to be 
able to compare the solubilities . In practice 

methanol is used as absorbent (Rectisol 
process)  at much lower temperatures. 
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concentration dependence of the activity coefficient Yt like for example, Eq. ( 5 . 53 )  
(so-called Porter equation) can be  applied: 

ln yt' = A (xi - 1 ) ( 5 . 53 )  

The simple expressions used have to  satisfy the asymmetric convention (Yt = 1 for 
x1 --" 0, x2 --" 1 ) .  However, one should have in mind that equations of state have 
significant advantages if Yt is significantly different from unity. The application of 
the Henry constant should be restricted to low solute concentrations x1 < 0.03 ,  so 
that Eq. ( 5 . 5 1 )  reduces to the usually applied form: 

(5 . 54) 

At low pressures the fugacity coefficient also shows values close to unity . so that 
the following simple expression (so-called Henry's law) is obtained: 

( 5 . 55 )  

A comparison of Eq. ( 5 . 55 )  with Eq. ( 5 . 1 6) a t  infinite dilution of  component 1 shows 
that in the subcritical region the Henry constant corresponds to 

( 5 . 56) 

At low pressures the following statements can be derived from Henry's law: 

• the gas solubility is proportional to the partial pressure; 
• the gas solubility is proportional to the reciprocal value of the Henry constant; 
• the temperature dependence of the gas solubility is only determined by the 

temperature dependence of the Henry constant. 

[n comparison to the standard fugacity "pure liquid at system temperature and 
system pressure" used for VLE calculations , there is the great disadvantage of the 

Henry constant that it is not a pure component property, but has to be derived 
from experimental gas solubility data. 

The value of the Henry constant can be very different. I t  strongly depends on the 
properties of the gas (T, ,  P,) and strength of the interactions with the solvent . I n  

Table 5 . 1 2  Henry constants for various gases i n  water are l isted for a temperature 
of 25 · C . [t can be seen that these values differ by orders of magnitude. While for 
the light gases (He ,  Ar, H2 , N2 , 02 , CO, CH4 , S F6 ) Henry constants greater than 
40000 bar are observed, values around 1000 bar are found for C02 , H 2 S ,  C2 H2 
in water, where it is surprising that the Henry constant for the relatively large 
compound SF6 is even greater than for helium. In Table 5 . 1 3 , Henry constants for 
six gases in four solvents are given for a temperature of 25 "C .  The values show that 
also the interactions between the gas and the solvent play an important role. For all 
the gases the values are significantly different between the polar solvent methanol 
and the nonpolar solvent n-heptane, caused by the different intermolecular forces 

between the compounds. Looking at the Henry constant of the sour gases (C02 , 
H2 S ) and methane in methanol , it seems that methanol is a highly selective 
absorbent for the removal of sour gases from natural gas . This effect is realized 
in the so-called Rectisol process r41 ] .  Furthermore, Henry constants show strong, 
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Table 5 . 12 Henry constants of var ious gases  i n  water at 25  'C  (3 ] .  

Gas Hij (bar) 

He 144000 

Ar 40000 

H2 71000 

N2 83500 

02 44200 

H 2 S 580 
co 58000 
co) 1660 

CH4 40200 

C2 H2 1 350 

C2 H4 1 1 700 

C2 H6 30400 

S F& 236000 

Table 5. 1 3  Henry constants (bar) o f  var ious gases i n  d ifferent organ i c  l i qu ids  at  25 c (3 ] .  

H2 N2 02 H2S C02 CH4 

Methanol 6100 3900 2200 3 3 . 5  1 45 1 1 80 

Acetone 3400 1850 1200 1 4. 5  5 0  545 

Benzene 3850 2300 1 260 19 .0 105 490 

Heptane 1450 760 500 2 3 .4 78 2 1 0  

nonlinear temperature dependence. In  Figures 5 . 6 1  and 5 .62 ,  Henry constants for 

various systems are shown as a function of temperature. For the three systems 
helium, nitrogen, and oxygen in water shown in Figure 5 .61  even a maximum of 

the Henry constant is observed. This means that the gas solubility for a given partial 
pressure can increase as well as decrease with increasing temperature depending 

on the temperature range considered. In Figure 5 .62 it is shown that for the systems 

with hydrogen the Henry constant decreases with increasing temperature, while 

the opposite behavior is observed for methane in methanol and carbon dioxide in 

toluene. 
In  process simulators , the temperature dependence of the Henry constants is 

often described by the following expression: 

Hu (T) B12 T E12 
ln -

b
- = Au + - + C12 ln - + D12 T + -2 ar T K T 

(5 .57 )  

Usually the data situation does not justify adjusting al l  parameters .  In  most cases 

only two of them (A, B or A, D) can be fitted. The value of the constant A depends 
on the chosen unit for the pressure. 
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Example 5 . 1 5 
Determine the Henry constant for carbon dioxide ( 1 )  in water (2) with the help of 
the following phase equilibrium data at 50 'C :  

X ]  • 1 03 Pl (kPa) 

0.342 101 . 3 3  

0.683 202.65 
1 . 354  405 . 3  

2 .02 607.95 

2 .66 810 .6  

3 . 3  1 0 1 3 . 3  

3 .93  1 2 1 6  

4 . 5 5  1 4 1 9  

5 . 1 5  1 62 1  

5 .75  1824 

P�20 1 2 . 3  kPa  a t  50 · C, virial coefficients : B1 1 = - 102 cm 3 /mol, 
B12 = - 198 cm3 /mol, B22 = -812  cm3 /mol. 

Solution. 

For the calculation of the fugacity coefficients the total pressure has to be determined 
first. S ince the partial pressure of water is  approximately identical with the vapor 
pressure at 50 C ( 1 2 . 3  kPa) , the total pressure can directly be calculated, for 
example, for p1 = 405 . 3  kPa (data point 3 ) :  

P = 405 . 3  + 1 2 . 3 = 417 .6  kPa  

With these values the vapor phase composition is obtained: 

405 . 3  
YI = 

417 .6  
= 0.9705 

With this information, the second virial coefficient B and the fugacity coefficient 
for carbon dioxide can be calculated using Eq. (4.89) : 

B = 0.9705 2 ( - 1 02) + 2 · 0.9705 · 0.0295 ( - 1 98) 

+ 0 .02952 ( -812) = - 1 08 cm3 /mol 

With Eq. (4.87) follows for the fugacity coefficient: 

4 17 .6  
ln cp 1  = { 2 [0 .9705 ( - 102) + 0.0295 ( - 198) ]  + 108 }  

8 3 14_ 3 3  . 323 _ 1 5  
cpl = 0.9843 

In the next step the fugacity Ji and the ratiofi jx1 can be calculated: 

Ji = Y1 cp1  P = cp1 p 1  = 0 .9843 · 405 . 3  = 398 . 94 kPa 

Ji jx1 = 398.94/0.001 354 = 294600 kPa = 2946 bar 
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Table 5.14 Experimenta l  gas so l ub i l i ty data,  fugacit ies ,  
fugaci ty coefficients and  the rat io Ji fx1 fo r the system 
C02 -water a t  SO "C.  

X ]  • 1 03 

0 . 342 

0.683 

1 . 3 54 

2.02 

2 .66 
3 . 3  

3 . 93  
4 . 55  
5 . 1 5 
5 .75 

P1 (kPa) 

101 .3 3 
202 .65 
405 . 3  

607 .95 
810 .6  

1 01 3 . 3  

1 2 1 6  

1419  

1621  

1824 

(/Jl 

0. '1'1(.0 
0.9920 

0.9843 

0.9768 

0.9693 

0.9618  

0.9545 
0.9471 

0.9399 

0 .9327 

fi (kPa) Ji /xl (bar) 

1 00 .92 295 1  
201 .01  2943 

398.94 2946 

593 .83  2940 
785 .7  2954 

974.63 2953  

1 1 60 .6 2953 
1 344.0  2954 

1 523 .6 2958 
1 701 .2 2959 

For the other data points the fugacity coefficients <PI, fugacities j) and ratios j) jx1 
are given in  Table 5 . 14.  

From a diagram (see Figure 5 . 63a) where the ratio j) jx1 is plotted against the 
liquid nwle fraction of carbon dioxide, the Henry constant can be determined at the 

mole fraction x1 = 0. Besides the ratio j) Jx1 , additionally the ratio pJ /x1 is shown in 

Figure 5 . 6 3 .  While the ratio j) Jx1 stays nearly constant, the values for the ratio p1 jx1 
are distinctly different already at low partial pressures .  But the extrapolation to 
x1 = 0 (p1 � 0) leads to the same value for the Henry constant (Hu � 2950 bar) . 

Another option to determine the Henry constant is the plot of the fugacity j] over 

the mole fraction x1 • That is shown in Figure 5 . 63b.  In  this  diagram the Henry 

3000 
- 2950 bar 

tJ1 /x 1 2950 
""" 

2900 
� £ 2850 

0 t, l x ,  2800 
""" 20 

·; s 
• 1 0  

5 
0 

2 4 6 0 0 .005 0.01 0 .9 0 .95 
x , . 1 03 (b) X 

Figure 5.63 Ji jx1 (p1 jx1 ) resp .  Ji as a funct ion of x1 fo r the 
system C02 ( 1 ) water (2) at  50 ' C. 
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constant is obtained from the straight line through the experimental data at the 
intersection at x1 = 1 .  Both procedures lead to the same value. 

Henry's law is valid exactly only for P = P� . However, the pressure dependence 
of the Henry constant is relatively low, but it can be taken into account by ( a  In H1 2 ) 

a P  r 
( 5 . 58) 

where 11i"X)181 is the partial molar volume of the dissolved gas ( 1 )  in the solvent (2) 
at infinite dilution. Assuming that the partial molar volume is constant , the Henry 
constant at the pressure P can directly be calculated using Eq. (5 . 59) , which is 
known as Krichevsky-Kasamovsky equation. 

V'?' (P - P' ) 
lnH12 (P) = lnH12 ( P2 ) + 1 2 

R T  

For mixed solvents ,  an  empirical logarithmic mixing rule 

' x ln H� L... I bar j I 
Hi,mix 

n -- = --=--
bar L: Xj 

j 

( 5 . 59) 

(5 .60) 

can be applied, where the summation is only carried out for solvents for which the 
Henry constant is known. 

This mixing rule makes sense only in cases where the Henry constants for the 
gases in the highly concentrated compounds of the solvent are known. 

Example 5.1 6 
Calculate the Henry constant of C02 in a liquid mixture of methanol, water and 
trioxane at 25 °C. The concentrations and the Henry constants of C02 in the pure 
solvents are given in the following table: 

Solution 

Methanol 

Water 

Trioxane 

X 

0.39 

0 .6 

0 .01  

Hco2j (bar) at D = 25 °C 

145  

1660 

unknown 

Using Eg .  (5 .60) , one has to take into account that only the concentrations of 
methanol and water are counted , as the Henry constant of C02 in trioxane is not 

1 8) The partial molar volumes at infinite di­
lution can be obtained from the observed 
volume change during absorption .  
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Figure 5.64 Henry constant of C02 i n  the system 
methano l  ( 1 ) -water (2) at 25 ·c - corre lati on ;  
• expenmenta l  dat3 frorn (42] .  

known: 

In 
Hco2 .mix 

bar 

" · I Hco2j L X; n bar j 
L Xj 
j 

0 .39 · In 145 + 0. 6 · In 1 660 

0 .39  + 0.6 

= 6 . 4545 =? Hco2 .mix = 635  bar 

There is an experimental value for Xmethanol = 0 . 3885 and Xwater = 0.61 1 5  a t  
iJ = 25 °C ,  giving Hco2 .m ix = 749 bar [42]. Clearly, the s i m ple mixing rule can 
by far not be taken as exact; however, at least the correct order of magnitude 
is met, which is usually sufficient in process simulation. Figure 5 .64 shows the 
relationship of the Henry constant Hco2 at iJ = 25 oc as a function of the methanol 
concentration .  It  can be seen that in this case the mixing rule works in a qualitatively 
correct way. 

When dissolving a gas in the liquid phase the enthalpy of the gas changes 
similarly to the enthalpy change of vaporization.  The enthalpy of solution at  infinite 
dilution .t.hr'L - the enthalpy difference between the gaseous and the dissolved 
solute - can be expressed with the help of the Henry constant as derived below. 

S tarting from the phase equilibrium condition 

and 

u v  = u ov + RT ln .f;v 
,........ , ,..,... , 1;ov 

( 5 . 6 1 )  

( 5 . 62 )  
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where the standard fugacity is based on the pure component, and 

f-Lr  = 1-L'rL + RT ln (xiyt) ( 5 .63) 

where the standard fugacity is based on the state of infinite dilution, one obtains 

11 0V _ 11 coL X.r:OV ,... , ,.. , 
= Jn _U_;,_ 

RT p 
as y;' becomes unity at infinite dilution. Considering 

H 1. hL 
i mix = lm -' Xl --+ 0 Xi 

one obtains 

and 

11 o, v _ 11 cc,. L H 
_,.._,____,..___:___ = _ In i ,mix 

RT J;ov 

(5 .64) 

(5 .65) 

Using the van 't  Hoff equation (see Appendix C, A?) , d ifferentiation of both sides 
with respect to temperature yields 

h?v - hiL 
RT2 

and therefore 

d in Hi.mix 
7r 

dT 

J;0v 1 dHi.mix - -- - ---

!\heeL = hov _ hooL = RT2 dHi,mix 
' ' ' Hi,mix dT 

1 dHi.mix - -- -- (5 .66) 
Hi.mix dT 

(5 .67) 

The application of Henry's law is recommended especially for systems with a 
single :,olvent, such as the solubility of nitrogen in water or, as shown below, the 
solubility of methane in benzene. In multicomponcnt mixtures with one or more 
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Figure 5.65 Experimental and calcu l a ted Px-data u s i ng  the 
SRK equat ion of state with quad rat ic m ix ing  ru les fo r the 
system n i t rogen ( 1 ) - N M P  (2)  at d i fferent temperatures .  (a) 
k 1 2  = 0 . 3403 ,  (b) k1 2 = -0.07938 · ·  0 .001 297 T. 

0 

,( 

0 0 . 0 1  0 .02 
x1 
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supercritical compounds the use of Henry constants must be examined carefully. 
In this case the use of an equation of state should be preferred. 

5 . 7 .2  
Calculation of Gas Solubi l ities Us ing Equations of State 

As mentioned before, the great advantage of the equation of state approach is that 
for the calculation of VLE no standard fugacity (vapor pressure, Henry constant) 
is required. This means that there is no difference in the calculation procedure 
for VLE and gas solubilities. In Figure 5 .65 typical results are shown for the 
system nitrogen-NMP (N-Methylpyrrolidone) at different temperatures. For the 
correlation the SRK equation of state with quadratic mixing rules was used. It can 
be seen that the results can be slightly improved when a binary parameter k1 2 with 
a linear temperature dependence is used for the temperature range covered. 

Example 5.1 7 
Calculate the Henry constant for methane in benzene at 60 · c  with the help of the 
SRK equation of state (k12 = 0.08 [36] ) .  

Pure component properties 

Solution 

Component 

Methane 

Benzene 

Tc (K) 

1 90 .63 

562.6 

Pc (bar) 

46. 1 7  

49.24 

w 

0 .010 

0 .2 1 2  

The calculation can b e  carried out i n  the same way a s  shown i n  Example 5 . 1 2  
for the system nitrogen-methane. For the calculation only initial values for the 
pressure and vapor phase mole fraction are required. With the calculated fugacity 
coefficients new values for the pressure and vapor phase mole fractions can be 
calculated. This iterative procedure is stopped at a given convergence criterion. For 
a mole fraction of x1 = 0.01 in  the liquid phase in equilibrium the following values 

are obtained: 

y1 = 0.9014 
P = 5 .666 bar 

rp� = 89. 70 rp} = 0 .09 1 5  

rp'( = 0.995 1 rp'{ = 0.9193  

Using these values the Henry constant can be calculated: 

_ Ji _ y1rp'( P _ 0.9014 · 0.995 1  · 5 . 666 _ 

b H12 - - - -- - - 508. 2  ar X] X] 0.01 
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or 

fi x1rp}P  L H1 2 = - = -- = rp1 P = 89.70 · 5 . 666 = 508 .2  bar 
X] X] 

In fact the Henry constant should be calculated for x1 � 0. But when the interaction 
energies are not too strong as in this case, the Henry constant can be used up to a 
few mole-%. 

5 . 7 . 3  
Prediction of G a s  Solubil ities 

If no experimental data are available gas solubilities can be predicted today 
with the help of group contribution equations of state , such as Predictive 
Soave-Redlich -Kwong (PSRK) [43] or VTPR [44] . These models are introduced in 
Sections 5 .9.4 and 5 .9 . 5 .  

Up to  the 1970s, methods based on the regular solution theory and the fugacity 
of a hypothetical liquid were suggested for the prediction of gas solubil ities . This 
procedure can lead to reasonable results as long as only nonpolar components 
are regarded. According to the method of Prausnitz and Shair [45 ] ,  the reduced 
standard fugacity of the solute (hypothetical liquid) is described by the following 
expression: 

];0 ( 1 .0 1 3  bar) 8 .06 
In = 7 . 8 1  - - - 2.94 ln T,1 

Pel �� (5 .68) 

which is valid in the temperature range 0 . 7 < T,1 < 2 . 5 .  Figure 5 .66 shows the 
temperature dependence of the reduced standard fugacity of the hypothetical liquid. 

6 

a..." 
� .0 4 C') 
0 
:::::.. o ·-

2 

2 3 4 

Tr 

Figure 5.66 Tem perature dependence of the reduced sta n ­
da rd fugacity of the so l u te (hypothet ical l i q u id) . 



272 1 5 Phase Equilibria in Fluid Systems 

Table 5 .1 5 Hypothetical l i qu id  mo la r  volumes and sol ub i l i ty pa rameters at tJ = 25 c. 

Gas v; p o-6 m3fmol) � ;  (J/ml )0.5 T, (K) P, (bar) 

N2 32 .4 5279 1 26.2 33 .9 
co 3 2 . 1  6405 1 32.9 35 
02 33 8 185 1 54 .6  50 .4 

Ar 57 . 1  1 0906 1 50.8 48 .7 

CH4  52 1 1 622 190.4 46 

C02 55  1 2277 304 . 1  73 .8  

Kr 65 1 3095 209.4 5 5  
C2 H4  65  1 3505 282.4 50.4 

C2 H6 70 1 3505 305 .4 48.8 

Rn 70 1 8068 377 62 .8 

Ch 74 1 7802 416 .9 79.8 

According to the regular solution theory, the corresponding activity coefficient at 
infinite dilution can be expressed as 

1 oc vl 2 n yl = RT ( 81 - 82 )  
with the solubility parameter ( Llh · ( T) - RT) o.s 

8 , (T) = __ v'--'---'--
v, 

(5 .69 ) 

( 5 . 70) 

For supercritical gases no liquid phase and thus no values for v, and Llhv, exist. 
In Table 5 . 1 5  hypothetical values for the molar liquid volume and the solubility 
parameter for some well-known light gases at fJ = 25°C are listed. As nothing 
better is available, these values are also applied at other temperatures as well . The 
Henry constant can finally be calculated using Eq. ( 5 . 56 ) ,  where instead of the 
vapor pressure the fugacity of the hypothetical liquid is used. 

Exam ple 5 .1 8 
Estimate the Henry constant of methane ( 1 )  in benzene (2) at f) = 60 C using the 
method of Prausnitz and Shair. 

Solution 

The values for the solute from Table 5 . 1 5  are 

vl = 52 . 10-6 m3 /mol 

8 1 = 1 1 622 (Jjm3 )0· 5 

Tel = 190.4 K 
Pel = 46 .0 bar 
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For benzene, the solubility parameter can be determined using the following 
information : 

M = 78. 1 14 gfmol 

� hv2 (60"C) = 408 .7  J /g  

P2 (60' C) = 837 .9 kgfm3 =} v2 = 93 . 22  · 10-6 m3 /mol 

leading to ( 408 .7 . 78. 1 14 - 8 . 3 1433 . 3 3 3 . 1 5 ) 0· 5 
8 - = 1 7685 ( J jm 3 )0 · 5 2 -

93 . 22 . 10-6 

Thus, the activity coefficient of the solute at infinite dilution is calculated via 

v 52  . 10-6 
In Yi"' = ____2_ (8 1 - 82 ) 2 = ( 1 1622 - 17685 ) 2 

RT 8 . 3 143 · 3 3 3 . 1 5  

= 0.6901 =} yt· = 1 .994 

The standard fugacity can be determined with Eq . (5 .68) for 
T,1 = 3 3 3 . 1 5 / 1 90.4 = 1 . 75 :  

0 ( 8 .06 ) ]; = 46 .0 exp 7.81 - - - 2 .94 ln 1 . 75 = 218 . 7  bar 
1 . 75 

The result for the Henry constant at ��  = 6o·· c is 

H12 (60° C) = 218 . 7  bar · 1 .994 = 436 . 1 bar 

The experimental value is approx. 5 1 3  bar [46] . 

5.8 
Liqu id-Liquid Equil ibria 

In Section 5 . 2  it was shown that strongly real behavior leads to the formation of 
two liquid phases with different compositions. The concentration differences of 
the compounds in the different phases can be used, for example, for the separation 
by extraction. As in the case of other phase equilibria , the fugacities in the different 
liquid phases are identical in the case of LLE: 

J/ = !/' i = 1 , 2 , . . .  , n  ( 5 . 7 1 )  

As shown before, the fugacities can either be described using activity coefficients or 
fugacity coefficients . Using activity coefficients the following relation is obtained: 

( 5 . 72) 

Since the standard fugacity f.0 is the same for the two liquid phases , the following 
simple equation results from Eq. ( 5 . 72 ) :  

I I fl II X; Y; = X; Y; ( 5 . 73 )  
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The product x; y; is also called activity a; (see section 4.8) . This means that the 
so-called isoactivity criterion has to be fulfilled in the case of LLE. 

Using fugacity coefficients , a similar relation results : 

( L 1 ( L) 11 X;ip; ) = X;ip; ( 5 .74) 

Two liquid phases always occur in the case of strong positive deviation from 
Raoult' s law. The LLE behavior as a function of temperature only depends on 
the temperature dependence of the activity coefficients . The possible temperature 
dependencies for binary systems at constant pressure"' are shown in Figure 5 .67 in 
the form of the temperature-concentration-diagrams, the so-called binodal curves. 

I n  most cases the mutual solubility rises with increasing temperature until 
the system becomes homogeneous above the upper critical solution temperature 
(UCST) . This behavior is shown in Figure 5 .67a. The other cases shown in 
Figure 5 .67 occur more rarely than this behavior. In case (c) the mutual solubility 
increases with decreasing temperature until the two-phase region completely 
disappears below the lower critical solution temperature (LCST) . Sometimes, even 
both critical solution temperatures occur (case (b) ) .  Finally, there are systems with 
a miscibility gap over the entire temperature range. Cases (a) , (c) , and (d) can be 
regarded as special cases of (b) , as in many cases the binodal line is interrupted by 
the melting curve, the boiling curve, or both. A very complex behavior is found for 
sulfur with aromatic compounds , for example, benzene-sulfur. For this system 
the LLE behavior disappears at the UCST. But at higher temperatures again a 
miscibility gap occurs. 

For the ternary case, the most frequently observed curve shapes are shown in the 
form of triangular diagrams in Figure 5 .68. Like in binary systems, the two-phase 
region is limited by the binodal curve. The two liquid phases in equilibrium are 
connected by so-called tie lines. From the tie line end points the distribution 
coefficient K; between the two phases ' and " can be calculated. 

(5 .75 )  

In so-called closed systems (case (a) ) ,  which are observed for about 75% of the 
systems, only one binary pair shows a miscibility gap. For these systems, a critical 
point C arises , where both liquid phases show the same concentration. Case (b) 
presents a system where two binary pairs show partial miscibility (open system) . 
This behavior occurs in about 20% of all cases. Besides these most important cases , 
however, there are a large number of other possibilities (47] . For example, there 
are systems where all binary subsystems are homogeneous, but a miscibility gap 
(island) is found in the ternary system (see Figure 5 .76) . Additionally, there is the 
chance that three l iquid phases are formed. 

1 9) For not too large pressure differences,  for 
example a few bar. the pressure influence 
can usually be neglected for condensed 

phases. But as shown in Sections 5 .8 .2  and 
8.1 .4, high pressures can have a significant 
influence on the LLE and SLE behavior. 
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Figure 5.68 The most important types of ternary LLE (3] at a temperatu re of 25 C. 
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Figure 5.69 Exper imenta l  [3] and ca lcu l a ted 
partit ion coefficients of ethano l  in the system 
water ( l ) -ethanol (2) -cyclohexane ( 3 )  at 298 . 1 5 K u s i ng 
U N IQUAC. 

The distribution coefficients are not constant. They strongly depend on the con­

centration. For the system water-ethanol-cyclohexane the distribution coefficients 

for ethanol are shown in Figure 5 . 69. lt can be seen that the largest distribution 

coefficients are obtained at infinite dilution. These values at infinite d i lution are 

called Nernst distribution coefficients. 
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Equation (5 .73 )  forms the basis for the calculation of LLE. As can be learned 

from this equation , the concentration and the temperature dependence of LLE is 

described via the activity coefficients . However, the occurrence of two l iquid phases 
and critical solution temperatures cannot be understood alone by this equation 
( isoactivity criterion ) . 

Looking at the concentration dependence of the Gibbs energy, it is eas ier to 
understand the formation of two l iquid phases. For an ideal binary systrm, the 

molar G ibbs energy at a given composition (see Chapter 4) can be calculatd by 

( 5 . 76) 

S ince the mole fractions are always smaller than 1 ,  the last term is negative and 

zero for x1 = 1 and x 2  = 1. Therefore, the molar Gibbs energy as a function of 

composition shows a minimum (see F igure 5 .70 with A = 0) .  However, in case of 

a real system the excess Gibbs energy has to be added: 

( c· . 77) 
(5 .78) 

With i ncreasing positive deviation from Raoult's law the positive contribution of 

the excess Gibbs energy is  enlarged and,  consequently , the molar Gibbs energy 
at the compos ition considered.  This is shown in Figure 5 .70. For example , it  is 
assumed that the contribution of the excrss Gibb� energy can be taken into account 
by Porter's approach (gE / R T  = Ax1 x2 ) .  The resulting curve shape of the molar 
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Gibbs energy for different values of the parameter A is shown in Figure 5 .70. With 
increasing gE -values, this means increasing values of the parameter A. the molar 
Gibbs energy becomes larger. Because of the equilibrium criterion (minimum 
of Gibbs energy) , in the case of strongly real behavior ( i .e . ,  in Figure 5 .70 for 
A = 3) two liquid phases with the concentration x; and x� are formed. At these 
concentrations the molar Gibbs energy of the two phases shows a lower value than 
a homogeneous mixture. For the Gibbs energy for a mole fraction of x1 = 0 .5 ,  
an approximate value of 540 J jmol is obtained for the homogeneous composition, 
while for the heterogeneous composition an approximate value of250 J jmol results . 
In  Figure 5 .70 the values of the molar Gibbs energy for the composition of the 
coexisting liquid phases ' and " are shown by the tangent and for the homogeneous 
composition by the dashed line. 

According to this , the formation of two liquid phases can only occur if the curve 
shape of the Gibbs energy as a function of the composition shows an inflexion 
point, that is ,  there must be a region where the following condition is valid: 

- < 0  
( a2g ) 

iJx2 T.P 

The same criterion can be applied for the Gibbs energy of mixing: ( il 2 t.g ) 
< 0 

iJx2 T. P 

( 5 .79) 

(5 .80) 

In turn, the different gE -models can be used to describe the contribution of the 
excess Gibbs energy or activity coefficients. An exception is the Wilson model . No 
miscibility gap can be represented by this equation because the Wilson equation 
describes a monotone behavior of the composition for each parameter combination, 
that is, ( il 2 L'.gjilx2 > 0) (see Appendix C.  E3 ) .  

I t  is more complicated to  calculate LLE in multicomponent systems accurately 
than to describe vapor-liquid or solid-liquid equilibria. The reason is that in the 
case of LLE the activity coefficients have to describe not only the concentration 
dependence but also the temperature dependence correctly, whereas in the case 
of the other phase equilibria (VLE , SLE) the activity coefficients primarily have to 
describe the deviation from ideal behavior (Raoult' s  law resp. ideal solid solubili ty) , 
and the temperature dependence is mainly described by the standard fugacities 
(vapor pressure resp .  melting temperature and heat of fusion) . 

This is the main reason why up to now no reliable prediction of the LLE behavior 
is possible. Even the calculation of the LLE behavior of ternary systems using 
binary parameters can lead to poor results for the distribution coefficients and the 
binodal curve. Fortunately, it is quite easy to measure LLE data of ternary and 
higher systems up to atmospheric pressure. 

Exam ple 5.1 9 
Calculate the miscibility gap for the system n-butanol ( 1 ) -water (2) at 50 o c  and 
additionally the corresponding pressure and vapor phase composition using the 
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UNIQUAC equation with the help of the UNIQUAC parameters fitted to VLE 

data [6] : 

� u1 2  = 1 29 .7  caljmol, � u2 1 = 489 .6 caljmol 

Pure component properties : 

Solution 

Component 

n-Butanol 

Water 

r; 

3 .4543 

0.92 

q; 

3 .052  

1 . 4  

P;5 (kPa) 

4.61 

1 2 . 3 6  

For  the calculation of the miscibil ity gap the procedure shown in Figure 5 .73 can be 

applied. However, for a binary system the miscibility gap can also be determined 
graphically. For the graphical approach the activity coefficients are evaluated for 

different concentrations. For illustration, the activity coefficient y1 is calculated for 
a mole fraction x1 = 0.05 .  Using the UNIQUAC equation, the values for r12  and 
r2 1 are determined (see Table 5 . 6) : 

- � UJ2 -129 .7  r12  = exp--- = exp = 0. 8 17 1  
RT 1 . 9872 1 · 323 . 1 5  

T2 1 = 0.4685 

Furthermore for the calculation of the combinatorial part the values for V1 and F1 
are required: 

3 .4543 
-:----=-----,---,--,--�-� = 3 . 3 
3 .4543 . 0 .05 + 0.92 . 0 .95 

3 .052 -------- = 2 .0585 
3 .052 . 0.05 + 1 .4 . 0 .95 

Then the combinatorial part of the activity coefficient can be calculated 

In Yl = 1 - vl + ln VI - 5q l  1 - - + ln -c ( V1 V1 ) 
F1 F1 

1 c ( 3 . 3  3 . 3  ) 
n y1 = 1 - 3 . 3  + ln (3 . 3 )  - 5 · 3 .052 1 - -- + In -- = 0.8956 

2 .0585 2 .0585 

In the next step the contribution of the residual part is determined: 
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N <1l 

R I 3.052 . 0.05 + 1 .4 . 0.95 . 0.4685 
In h = - 3.052 · n + 3.052 · 1.4 · 0 .95 

3 .052. 0.05 + 1.4 . 0 . 95 

[ 0.4685 
3.052 . 0.05 + 1 .4 . 0 .  95 . 0 .4685 

0.8171 

] 3.052 . 0.05. 0 .8171 + 1.4 . 0.95 

R 0.7757 ( 0.4685 0.8171 ) 
In y1 = -3.052 ln 1 .4826 + 4.0592 0_7757- 1.45469 

= 1.977 + 0.1716 = 2 .1486 

lny1 = In y1
R + In y1

c = 2. 1486 + 0.8956  = 3.0442 

Yt = 20.99 
In the same way, the activity coefficient of component 2 and the act ivi ties tor 
component 1 and 2 can be ca lcula ted: 

x1 = 0.05 y1 = 20.99 a1 = 1.0495 X1 = 0.95 Y2 = 1.028 a2 = 0.9766 

For other mole fractions x1 the following activities are calculated: 

0.005 0.01 

0.2824 0.4972 

0.9953  0.9913 

0.0015 0.02 
0.6598 0.9801 

0.9878 0.9848 

0.05 

1 .0495 

0.9762 

0.1 

0.9605 

0.9842 

0.2 

0.7253 

1.03 32 

0.4 

0.6141 

1.0951 

0.6 

0.6802 

0.9766 

In the case of a miscibility gap, an intersection is obta ined when the activity 
of component 2 is plotted aga inst the activity of component 1 for different mole 

fractions x1 as in the example considerl!d (see Figure 5.7 1 ). At the intersection the 
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Figure 5.71 G rap h ical determination of LLE fo r  binary sys ­
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Figure 5.72 Expe rimenta l  and  ca lc u la ted VLE and  
azeotropic data u s ing t he U N IQUAC parameter s g iven 
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equilib rium condition (Eq. (5.73))  is fulfilled. This means tha t the same activities 
are obta ined for two different compos itions .  As can be s een, the inters ection is 
ob ta ined a t  approx . x1 = 0.0 15  and x1 = 0 .59 ,  when the a ctivity of component 2 is 
plotted against the mole fraction x1 (Figure 5 .72). 

For the s ys tem n-butanol (1) -water  (2) at 50 nc the following values are obtained 
in equilibrium: 

x1' = 0.01556 Y1' = 43.40 a,'= 0.675 3 x1" = 0.5906 YI" = 1 . 143 a1" = 0.6751 
xz' = 0.9844 yz' = 1.003 az' = 0.9873 xz" = 0.4094 Y2" = 2.4 1 2  az" = 0.9875 

Using these values obta ined for phase ' or phase " directly the corresponding 
pressure and mole fraction in the vapor pha se can be calculated. 

p = X] Yl p; + X2 Y2 � 
p = 0.01 5 56 . 43.4. 4.61 + 0.9844 . 1.003. 1 2.36) 

= 3.113 + 12.204 = 1 5.3 1 7  kPa 
PI 3 . 113 

YI = - = -- = 0.2032  p 1 5 .317 

Becaus e the activities in phase ' and " a re identical, the same res ults are ob tained 
starting from the composition in phase", this means for x1 = 0.5906. 
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For the entire composition range, the VLLE results are shown in Figure 5.72, 
together with the calculated and experimental data for a few isobaric VLE data, the 
calculated azeotropic composition as j(T) and experimental LLE data .201 It can be 
recognized that at atmospheric pressure the system n-butanol( l ) -water(2) shows a 
heterogeneous azeotrope with a mole fraction of approximately Yl.az = 0 .25  and a 
temperature of 366 K. At other pressures , the azeotropic composition will change. 
The change of the azeotropic composition depends not only on the temperature 
dependence of the vapor pressures ,  but also on the temperature dependence of the 
activity coefficients . In Figure 5 .72 the typical temperature dependence is shown in 
the form of isobaric Dey-diagrams. While at atmospheric pressure a heterogeneous 
azeotropic point occurs, homogeneous azeotropic behavior is observed at higher 
pressures (temperatures) .  The temperature dependence of the azeotropic behavior 
is discussed in detail in Section 5.6. 

While the calculation ofbinary LLE can be performed graphically, the calculation 
ofLLE for ternary and higher systems has to be performed iteratively. One possible 
procedure for a multicomponent system is shown in Figure 5.73 in the form of a 
flow diagram. The method takes into account the isoactivity conditions (Eq. (5.73)) 

and the material balance. 
Starting from the mole numbers n; (initial feed stream to the equilibrium stage) 

with a composition in the two phase region, mole numbers n; (composition) are 
estimated for the liquid phase. From the difference n; - n; , the mole numbers 

n;' (composition) in the second liquid phase can be calculated. Then the activity 
coefficients of the components in the two liquid phases are determined. In the next 
step it is checked if the isoactivity condition is fulfilled. Of course, after the first 
step the isoactivity condition will not be fulfilled. Therefore, the estimated mole 
numbers n; have to be changed in the right way. Using the K-factor method, the 
following equation is obtained for the variation of the mole numbers starting from 
Eq. (5.73) and the material balance: 

with 

f I fl II 
X;Y; =X; Y; 

one obtains 
I I  > 

,, 
'

nTyi ni = ni -,-�� nyY; 

resp. 

Taking into account the material balance n;' = n; - n; 

, , n�y;
' 

, , n�y;
' , [ n�y;' ] 

ni - ni == ni -,-,1 � ni == ni + ni -,
-, == ni · 1 + -,-11 

nyY; nyY; nyY; 

new mole numbers in phase ' can be calculated using the following relation: 

20) A comparison of the calculated LLE in 
Example 5 . 1 9  at 50"C with the exper­
imental findings shows a disagreement. 
While 59 mol% butanol were determined 

for the butanol rich phase, experimentally 
less than 50 mol% was found. The reason 
is that parameters fitted to VLE data do not 
describe the LLE behavior correctly. 



Input: 
Total number of moles n; 

temperatu re T 

UNIOUAC parameters 
estimate for n/ activity coefficients 

y/, Y/' 

5.8 Liquid-Liquid Equilibria 1 283 

Result: x/, x/' 

Figure 5.73 Flow d i agram for the ca lc u la t ion  of LLE u s i n g  t h e  K-factor method.  

' 

n
i 

n- = ---,---,,..--�-.. new 1 + y;'n� /y/'n� 

The iteration is stopped when the activities in the different phases are identical 

within a small value t:. If the feed composition is outside the two-phase region , the 
solution will lead to the trivial solution, where the composition of the two liquid 
phases is identical. 

Example 5 .20 

Calculate the LLE composition for the system water (I)-ethanol (2)-benzene (3) 
for the following feed stream : n1 = 1 mol, n2 = 0.3 mol, and n3 = 1 mol at 25 C 
with the help of the UNIQ UAC model. 

UNIQ UAC parameters f).uij(K) fitted to LLE data at 25 cC: 

Compound 

2 

3 

0 

-318.06 

1325.1 

Relative van der Waals properties: 

Compound 

Water 

Ethanol 

Benzene 

r; 

0.9200 

2. 1055 

3.1878 

2 

5 26.02 

0 

302 .57 

3 

309.64 

-91.532 

0 

q; 

1 .400 

1 .972 

2 .400 
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Solution 

To start the calculation, first the mole numbers in phase ' have to be estimated. Let 
us assume that n; = 0.8 mol , n; = 0. 1 mol, and n; = 0. 2 mol are in phase', for the 
given feed n,� = 0.2  mol , n,� = 0 .2  mol , and n� = 0.8 mol remain for phase " . Then 
for these phases in the next step the activity coefficients can be calculated with the 
help of the UNI QUAC equation. 

UNIQUAC parameters ru 

Compound 2 3 

1 

2 

3 

2.9060 
0 .01 1 74 

0. 1 7 1 3  

1 

0 .36247 

0 .35 397 

1 . 3593 

----------- ---- ------

The following composition is obtained for phase ' : x; = 0.8/1 . 1  = 0.7273 ,  
x; = 0.0909, x� = 0 . 1818 .  

For this composition the activity coefficients have to  be calculated. That i s  
exemplarily shown for component 1 :  

f] 
V

I = ___ _:__ __ 

r1x1 + r2xz + r3x3 

0.92 
---------------- = 0.6389 
0.92 ° 0.7273 + 2 .1055 ° 0.0909 + 3 . 1878 ° 0. 1818  

1 . 4  

1 . 4  ° 0.7273 + 1 . 972 ° 0.0909 + 2.4 ° 0. 1818  

= 0.8569 

In 
y1c = 1 - 0.6389 + In (0.6389) - 5 · 1 .4 1 - -- + In --

( 0.6389 0.6389 ) 
0.8569 0.8569 

= 0. 1873 

���2 ���3 

) q1 Xi 'f\2 + q2X3 T32 ql Xi T13 + qzXz T23 + q3X3 
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In Yt = 1 .4 . ( 1 _ In 
1 .4 · 0.7273 + 1 .972 · 0 .0909 · 2 .906 + 2 .4 . 0 . 1 8 18. 0 .01 1 74 

1.4 . 0 . 7273 + 1 . 972 . 0 .0909 + 2 . 4 . 0 . 1818 

1 .4 . 0 .7273 

1 .4 . 0.7273 + 1 . 972 . 0 .0909 . 2 . 906 + 2 .4 . 0 . 1 8 18 . 0 .0 1 174 

1 .972 . 0 .0909 . 0 . 1 7 1 3  

1 .4 . 0 . 7273 . 0 . 1 7 1 3  + 1 . 972 . 0 .0909 + 2 .4 . 0 . 18 18 . 0 . 36247 

2 .4 . 0 . 1 8 18 . 0 . 3 5397 

) 1 .4 . 0 .7273 . 0 . 35 397 + 1.972 . 0.0909 . 1 .3593 + 2.4 . 0.1 818  

= 0. 2640 

lny1 = In y1c + In d = 0. 1873 + 0 .2640 = 0 .45 1 3  

Y1 = 1 . 5 70 

The activity coefficients for all components in both phases are given in the following 
table: 

Phase ' Phase " 

n; X; y; n; x, y, 
0.8 0.7273 1 . 570 0 .2 0 . 1667 8.856 

0.1 0 .0909 0 .2948 0.2 0 . 1 667 0.860 

0.2 0 . 1 8 18  18. 1 1  0.8 0.6667 1 .425 

Using these data improved mole numbers are calculated for phase ' with the 
help of the K-factor method. Then the mole numbers in phase ", the compositions 
and the activity coefficients are calculated again. For n; one obtains 

n� = 
1 

1 . 5 7 . 1 . 2  
= 0.8379 

1+ 
8 .856 . 1.1 

and for all other values :  

Phase • Phase " 

n; x; y, n, x; Yi 
0.8379 0.7458 1 . 18 1  0. 1 621  0 . 1 378 20.99 
0 .2183  0. 1 943 0 .73 1 1  0 .08 1 7  0.0694 0 .5809 
0.0673 0.0600 36 .77 0 .9327 0.7928 1.258 
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Ethanol 

Water Benzene 

Figure 5.74 The fi rst th ree steps of the K-factor method to­
gethe r with the exper imental and c alc u la ted LLE behav io r  of 
the ternary sy ste m  water-ethanol-benzene at 25 'C u s ing 
UNIQUAC. 

After a few steps, convergence-this means LLE -is obtained, since the changes 

of the calculated mole numbers are below a small value£. The final values are: 

Phase ' Phase " 

n; X; )', n, Xj Yi 
0.9799 0 .811 2 1 .053 0 .0201  0.0 184  46 .35 

0 .21 5 3  0 . 1782 1.006 0.0847 0.077 6 2. 3 1 0  

0.01 28 0 .0106  88.49 0.987 2 0 .9040 1 .039 

The results of the first three steps and the final LLE results for the system 

water-ethanol-benzene at 25 ''C are shown in Figure 5.74. It can be seen that 

after three steps the equilibrium composition is nearly reached, also for poor initial 

estimates. 

5.8.1 
Temperature Dependence of Ternary LLE 

The temperature dependence of LLE of ternary systems can be very different, 

as shown for binary systems in Figure 5.67. I n  most cases, the miscibility g:.\p 



Cyclohexane 

72 'C 
64 'C 

Benzene 

Acetonitrile 
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Benzene 

298.15 K 

.. ... .. . ... ..... 16'C 
8'C •• 0 318.15K � .. 

.... �·· ... .... ...... .. .. �,. ""'·� 
Cyclohexane 

Figure 5.75 Qual i tative progress of the tem perature depen­
dence of ternary l i qu id- l iqu id  equi l i b ria. 

� 349.8 K Acetonitrile 

becomes smaller with increasing temperature. For a closed system this behavior is 
shown in Figure 5 .75 . In  the case presented, the mutual solubility increases with 
increasing temperature, this means, the range of concentration where two liquid 
phases coexist decreases more and more until the heterogeneous region disappears 
above the UCST of the binary system AB.  

Figure 5.76 LLE behavior of the  ternary system 
tetrahydrofuran-water-phenol as a function of temperature. 
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0 E M-E � 
w :::.. 

But as mentioned above, the temperature dependence can be much more com­
plex. For the system tetrahydrofuran-water-phenol this is shown in Figure 5 .76. 
At temperatures below 66 "C, only the system phenol-water shows a miscibility 
gap, whereas the other two binaries are homogeneous in this temperature range. 
The binary miscibility gap extends into the ternary area . Above the UCST of the 
system phenol-water, the formation of an island curve is observed, where all binary 
systems are homogeneous while the ternary system is heterogeneous . At approx. 
72 °C, the LCST of the system tetrahydrofuran-water is reached. The binary system 
shows a miscibility gap up to a temperature of about 137 oC. Above the UCST of 
the system tetrahydrofuran-water again an island curve is formed in the ternary 
system. Up to now this complex LLE behavior can not be described with the help of a 
gE-model, even with linear or quadratic temperature-dependent model parameters . 
S ince phenol has a melting point at approx. 41 °C, in Figure 5.76 additionally the 
SLE behavior for the system phenol-water is shown. 

5.8.2 
Pressure Dependence of LLE 

Although it was mentioned at the beginning of Section 5.8 that pressure differences 
of a few bar only have a negligible influence on the LLE behavior, in practice often 
higher pressures are realized. Already a slight volume compression of a liquid 
can lead to very high pressures. In centrifugal extractors often higher pressures 
are observed. The influence of the pressure on the activity coefficients (LLE) 
can be taken into account if the excess volumes are known. The influence can 
directly be calculated using Eq. (5.27). The activity coefficients will decrease with 
increasing pressure in the case of negative partial molar excess volumes, as 
shown in Example 5.7. This means that the miscibility gap becomes smaller with 

0

1
� �sll\ 
.1�/ 
II_____ . ------------ --------

� • 

I 

-1 - ------�-- ------, 

0 0 .5  
x1 

140 , �, --

130 I 
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I 0 110 
� I 
"" 100 I 90 

80 [_ 70 
0 

Figure 5.77 Excess volume> and LLE behav ior of the sys· 
tem tetrahydrofu ran  (1 ) -water (2) [3[ as a funct ion of pres­
su re. 
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100 ---- -· -
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60 

• 
• 
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. . . ..... 
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. ........ 
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• • -1 bar • • • 

•• • 
20i, •• 't 
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x1 

Figure 5.78 Excess  vo l u mes and  LLE behavior of the sys­
tem methano l  (1 ) -n-heptane  (2) [3] a s  a function of pres­
s u re. 

increasing pressure. The opposite is true in the case of positive partial molar excess 
volumes. The influence of the sign of the excess volumes on the LLE behavior is 
exemplarily shown in Figures 5 .77 and 5 .78 for the systems tetrahydrofuran-water 
and methanol-heptane. 

For the system tetrahydrofuran-water, negative excess volumes are observed. 
This results in the fact that the system becomes homogeneous at pressures around 
250 bar. 

In contrast, the miscibility gap becomes larger with increasing pressure for the 
system methanol-heptane (see Figure 5 .78) because of the positive partial molar 
excess volumes for this system. 

5.9 

Predictive Models 

Both approaches (gE-models (y-rp appro.xh) , equations of state (rp-rp approach)) 
allow the calculation of multicomponent �ystems using binary information alone. 
However, often the required experimental binary data are missing. 

Assuming that 1000 compounds are of technical interest, phase equilibrium 
information for about 500000 binary systems are required to fit the required binary 
parameters to describe all possible binary and multicomponent systems . Although 
more than 64500 VLE data sets for nonelectrolyte systems have been published 
up to now, VLE data are available for only 10300 binary systems, since for a 
few systems a large number of data sets were published, for example, for the 
systems ethanol-water, ammonia-water, water-carbon dioxide, methanol-water, 
methane-nitrogen more than 150 data sets are available. This means that only 
for �2% of the required systems at least one VLE data set is available. If  only 
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consistent VLE data are accepted or if more than one VLE data set is desired, the 
percentage even decreases to � 1.2%. If also information about the dilute range 
and the temperature dependence in the form of y00 and hE should be used to fit 
the required model parameters, the percentage of the available systems is less than 
0.2%, although approximately 62500 y00-values and 2 1000 hE -data sets have been 
published, which are stored in the Dortmund Data Bank [31. 

Since the assumption of ideal behavior can lead to very erroneous results and 
measurements are very time consuming, reliable predictive models with a large 
range of applicability would be desirable. 

Because of the importance of distillation processes , first it was the objective to 
develop models only for the prediction of VLE. The first predictive model with 
a wide range of applicability was developed by Hildebrand and Scatchard [48] . 
The so-called regular solution theory is based on considerations of van Laar, who 
was a student of van der Waals and used the van der Waals equation of state to 
derive an expression for the excess Gibbs energy [49] . S ince the two parameters 
a and b of the van der Waals equation of state can be obtained from critical 
data, it should be possible to calculate the required activity coefficients using 
critical data. However,  the results were strongly dependent on the mixing rules 
applied. 

5.9.1 
Regu lar Solution Theory 

Hildebrand and Scatchard [48] showed that better results are obtained, if instead 
of the van der Waals constants a and b molar volumes vi and so-called solubility 
parameters 8i are used instead. For binary systems the following relations are 
obtained for the activity coefficients: 

v1 ct>� (81 - 82)2 
In Y1 = -=---"----RT 

v2<1>� (li1 - li2)2 
In Y2 = -=---'----­RT 

<l>i volume fraction of component i = (xi vi) /  L:xj I) 
lii solubility parameter of component i. 

(5 .81) 

The solubility parameter Di can be calculated using values for the enthalpy of 
vaporization and the molar volume Vi at 298. 1 5  K: 

(5 .82) 

� hvi molar heat of vaporization of component i (calfmol ) .  

For regular solutions the solubility parameters li i  and molar volumes vi can be 
assumed to be constant for a larger temperature range . For a few compounds the 
parameters are given in Table 5 . 1 6. 
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Table 5.16 Molar volumes and solubility parameters for selected compounds. 

Compound v; (cm3fmol) li; (calfcm3f5 

Carbon tetrachloride 97 8.6 

Carbon disulfide 6 1  10 .0 

n·Pentane 1 16 7 .1 

Benzene 89 9.2 

Cyclohexane 1 09 8.2 

Hexene·1 126 7 . 3  

n-Hexane 132 7 .3 

Toluene 1 07 8.9 

n-Heptane 148 7.4 

n·Octane 1 64 7 . 5  

The regular solution theory is not limited to binary systems. It  can directly be 
applied for the calculation of activity coefficients in multicomponent systems: 

V· - 2 ln Yi = R� (8i- 8) (5 .83 )  

where the mean solubility parameter: 

LXiVj8i - "' i 8 = L... <f>i8i = --.-. Lx�vi I • 
I 

can be obtained by summation over all compounds. 

( 5 .84) 

However, the regular solution theory can only be applied for nonpolar systems 
and systems with positive deviations from Raoult's law. 

Example 5 .21 

Estimate the actlVlty coefficients at infinite dilution for the system benzene 
( 1 )-cyclohexane (2) at 3 53 .15 K. 

Solution 

With the values given in Table 5 . 1 6  the values at infinite dilution (<f>2 = 1, <f>1 = 1 )  
can directly be  estimated: 

1 00 89 (9 .2  - 8 .2) 2 
ny1 = 

1 . 98721 ·35 3 . 1 5  
= O.l268 

vto = 1.13 5 

ln 
"" 

-
109 (9 . 2 - 8 .2)

2 
= 0 . 1 5 5 3  y2 -

1.98721 · 3 5 3 .15 

vt = 1 . 168 

Experimentally, higher values were measured (y100 "'=' 1. 3 5 ,  y2"" "'=' 1 .44) [3 ] .  



292 1 5 Phase Equilibria in Fluid Sys: ems 

5.9.2 
Group Contribution Methods 

Group contribution methods do not show these weaknesses discussed for the 
regular solution theory. 

In group contribution methods it is assumed that the mixture does not consist 

of molecules but of functional groups. In Figure 5 .79 this is shown for the 

systems ethanol-n-hexane. Ethanol can be subdivided in a methyl-, methylene­

and alcohol-group and n-hexane in two methyl- and four methylene-groups. It can be 
shown that the required activity coefficients can be calculated if only the interaction 

parameters between the functional groups are known. For example, if the group 

interaction parameters between the alkane and the alcohol group are known, not 
only the activity coefficients (VLE behavior) of the system ethanol-n-hexane, but 

also for all other alkane-alcohol or alcohol-alcohol systems can be predicted. The 

great advantage of group contribution methods is that the number of functional 
groups is much smaller than the number of possible molecules. 

The required equation of the solution of groups concept can be derived from the 

excess Gibbs energy of the groups in the mixture and the excess Gibbs energy in 

the pure compound. 
For the pure compound i built up by functional groups one can derive the 

following expression for the molar (gE) and total Gibbs energy (gE): 

E(i) L = "x(iJ In r(il 
RT � k k 

k 
GE(i) . . 

-- = n(il " v (lJ In r(•l RT � k k 
k 

For a mixture built up by functional groups one can write 

gE(m) 
-- = I:xklnrk RT k 

GE(m) 
- = L(n(illJi)LXklnrk RT ; k 

Figure 5.79 Group contribution concept. 
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From the difference of the excess Gibbs energies for the groups in the mixture 
and in the pure compound (standard state) one can derive an expression for the 
required activity coefficient y;: 

GE . GE(rn) GE(i) 

RT = L nl•l In Yi = 
RT - L RT i i 

= LLn!ilvk!illnrk- LLn!ilvt1Inr�il 

k k 

= � nlil [ � vt1 ( In rk - In rt1)] 
which leads to the equation for the solution of groups concept: 

with 

5.9.3 

group activity coefficient of group k in pure component i 
group activity coefficient of group k in the mixture 

number of groups k in component i 
number of groups in component i 

(i) """"' (i) (i) + (i) (i) 
I) = L l)k = 1)1 1)2 + · · · + Vm 

nlil 
nT = Lnlil 

nlilvlil 
Lnlilvli) 
i 

x!il _ .. i<) k - ul•l L:nln,,tl 
xk = �nl•l.,(•l 

number of moles of component i 
total number of moles in the mixture 

total number of moles of groups of component i 
total number of moles of groups in the mixture 

group mole fraction of group k in compound i 

group mole fraction of group k in the mixture 

UNIFAC Method 

The first group contribution method for the prediction of VLE (activity coefficients) 
was the so-called analytical solution of groups (ASOG) method [50, 51] ,  developed 
within Shell . The ASOG method uses the Wilson model to describe the concentra­
tion dependence of the group activity coefficients required in the solution of groups 
concept .  

In  1975 ,  the U N I FAC group contribution method was published by Fredenslund 
et al. [27 , 52 ,  5 3] .  Like the ASOG method. the UNI FAC method is based on the 
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solution of groups concept. But in the UNIF AC method, the activity coefficients are 
calculated from a combinatorial and a residual part exactly like in the UNIQUAC 
model (see Eq .  (5 .85 ) ) .  While the temperature-independent combinatorial part takes 
into account the size and form of the molecules , that is, the en tropic contribution, 
the residual part considers the enthalpic interactions: 

ln Yi = In Yic +In y,R ( 5 .85) 

The combinatorial part ln Y;c can be calculated using the following equation, which 
is identical to the UNIQUAC model: 

In yc 
= 1 - V + ln V - 5q 

(1 - V
i + In V

i ) ( 5 .86) I I ' I F; F; 
where V, (volumefmole fraction ratio) and F; (surface areajmole fraction ratio) can 
be calculated for a given composition using the relative van der Waals volumes r; 
and van der Waals surface areas q, of the molecules: 

r; 
vi = -- ( 5 .87) L rjxJ 

j 
F - _

qi_ ( 5 .88) 
'- LlliXJ j 

For the UNIFAC group contribution method the relative van der Waals properties 
r; and qi can be obtained using the relative van der Waals group volumes Rk and 
relative van der Waals group surface areas Q�o which can be derived from x-ray 
data. Tabulated values for Rk and 0 can be found by Hansen et al. [5 3]. They can 
also be derived from the tabulated van der Waals properties published by Bondi 
[54]. For selected groups the Rk and 0 values are given in the Appendix H: 

(5 .89) 

(5 .90) 

where vt1is the number of functional groups of type kin compound i. 
The temperature-dependent residual part lnyiR takes into account the interac­

tions between the different compounds. In group contribution methods, this part 
is calculated via the solution of groups concept using group activity coefficients rk 
and f'r1: 

In y,R = L vt
1 (In rk - In f'r1) ( 5 .91 )  

k 

f'k and rlil are the group activity coefficients for group kin the mixture, respectively, 
for the pure compound i. For the description of the concentration dependence of 
the group activity coefficients the UNIQUAC equation is used: 

(5 .92) 
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The surface area fractions (�)m and the group mole fractions Xm of group m can be 
calculated using the following relations: 

(5 .93) 

(5 .94) 

The parameter \llnm contains the group interaction parameter anm between the 
functional groups nand m, for example. between alkanes and ketones: 

( 5 .95 )  

These functional groups are called main groups. They often consist of more 
than one subgroup. For example, in the case of alkanes one has to distinguish 
between CH3-, CH2-, CH-, and C-groups. The different alkane subgroups all 
have different values for the van der Waals properties. The same is true for the 
ketone group, where one has to distinguish between the CH3CO-, CH2CO-, and 
CHCO-group. In the UNIFAC method, for every main group combination two 
temperature-independent group interaction parameters (anm. amn) are required, 
which were fitted almost exclusively to consistent experimental vapor-liquid 
equilibrium data stored in the Dortmund Data Bank [ 3 ] .  Since the interactions 
are defined per area, depending on the subgroup different strong interactions are 
calculated for e.g. CH3-CH2CO and CHrCH2CO pairs. By definition, the group 
interaction parameters between identical main groups (ann• amm) are equal to 0. 
This means that the parameters \llnnand \llmmbecome unity. The van der Waals 
properties and the published group interaction parameters can be found in the 
internet (see Appendix H). 

Example 5.22 
Calculate the VLE of the system n-hexane (1 )-2-butanone (2) at 60 'C for a mole 
fraction of x1 = 0 . 5  with the help of the UNIFAC method assuming ideal behavior 
of the vapor phase. 

Vapor pressures and structural information: 

Component 

n-Hexane 

2-Butanone 

P;• at60°C (kPa) 

75 .85  

5 1 .90 

2 4 
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van der Waals properties: 

Group Rk Qk 

CHl 0.90 1 1  0.848 

CH2 0.6744 0.540 

CH3CO 1 .6724 1.488 

Group interaction parameters anm between the main group alkanes (CH2) and 
ketones (CH2CO): 

Onm(K) 

Solution 

0.0 

26.76 

476.4 

0.0 

First of all the van der Waals properties of the two compounds can be calculated 
with the help of the van der Waals properties of the groups: 

r1 = 2 · 0.901 1 + 4 · 0 .6744 = 4 .4998 

ql = 2 . 0 .848 + 4 . 0. 54  = 3.856 

r2 = 1 . 0 .9011 + 1 · 0.6744 + 1 · 1 .6724 = 3 . 2479 

q2 = 1 ° 0.848 + 1 ° 0 . 54  + 1 ° 1 .488 = 2 .876 

Using these van der Waals properties for x1 = 0 . 5  the following values are obtained 
for V; and F;: 

4.4998 

v1 
= 

o .5 (4.4998 + 3 . 2479) 
= 1 .1616 

3 . 2479 
v2 = 

o.5 (4 .4998 + 3 . 2479) 
= 0·8384 

3.856 
F = = 1 . 1 456 I 

0.5 (3 .856 + 2 .876) 
2 .876 

F2 = 
0.5 (3 .856 + 2 .876) 

= 0'8544 

With the help of these values the combinatorial part can be calculated. For 
n-hexane ( 1 )  

In y1c = 1 - 1 .16 16 + ln1.1616- 5 · 3 .856 1 - -- + ln--( 1 . 16 16  1 .1616 ) 
1.1456 1.145 6  

= -0. 00994 

For 2-butanone (2) the following value is obtained: 
In y[ = -0.001210  
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For the calculation of the group activity coefficients in the mixture first of all the 
parameters Wnm• the group mole fractions and surface area fractions have to be 
determined. For the parameters Wnm the following values are obtained: 

-476 .4 
l¥cH1.cH3co = WcH2,cH3co = exp 

333 .15 
= 0.2393 

-26 . 76 
1¥cH3co.cH3 = WcH3co.cH2 = exp 

333.15  
= 0.9228 

WcH3.cH3 = WcH2.cH2 = l¥cH1co.cH3co = l¥cH2.cH1 = WcH1,cH2 = 1 

The following group mole fractions and surface area fractions are obtained for the 
considered binary system at x1 = 0.5: 

(2 + 1 )  0.5 
XcH1 = = 0.3 3 3 3  

( 6  + 3 )  0 .5 

XcH2 = 
(4 + l) 0.5  

= 0.5556 
(6 + 3)0 .5  

0 .5  XcH3co = = 0. 1 1 1 1  
( 6 + 3 )  0.5 

0 .848 . 0 . 3 3 33  
(�)CHJ = 

0.848 · 0 . 3 333  + 0.54 · 0.5556 + 1 .488 · 0. 1 1 1 1  
= 0·3779 

8cH2 = 0.40 1 1  

8cH1CO = 0. 2210  

Now all values are available to  calculate the group activity coefficients in  the binary 
system: 

In lcH3 = 0.848 [ 1 - In (0. 3779 + 0.401 1 + 0.22 1  · 0 .9228) 

0. 3 779 + 0 .401 1  

0 . 3779 + 0.401 1  + 0.221 . 0 .9228 

0 . 22 1  . 0 .2393 ] 
(0 . 3779 + 0 .401 1 )  0 .2393 + 0.221 

In I c H  3 = 0.080458 

In lcH2 = 0.051235  

In lcH1co = 0.92872 

For the pure compounds the following group mole fractions and surface area 
fractions are obtained: 

For n-hexane ( 1 ) :  

E� 0.848 · 0. 3 3 3 3  

� CHJ = 0.848 · 0. 3 3 3 3  + 0.54 · 0.6667 
= 0.4398 

(�)cH2 = 0.5602 
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For 2-butanone (2) : 

x�1�3 = 0.3333  

0 .848 . 0.3 3 3 3  (·)cH3 = 
0.848 · 0.3 3 3 3  + 0.54 · 0 . 3 3 3 3  + 1 .488 . 0. 3 3 3 3  = 0·2949 

C�)cH2 = 0.1878 

f)cH1CO = 0.5 173  

With these values the group activity coefficients in the pure compounds can be 
calculated. For pure n-hexane ( 1 )  one obtains 

I (I) n fcH 1 = 0.0 

and for 2-butanone (2) 

(I) In r CHl = 0.0 

ln rg�l = 0.848 [ 1 - ln (0.2949 + 0. 1878 + 0.5 173. 0 . 9228) 

0.2949 + 0.1878 

0 .2949 + 0.1878 + 0.5 1 73.0.9228 

0 . 5 173 . 0.2393 ] 
(0.2949 + 0. 1878) 0.2393 + 0. 5 1 73 

I (2) n f CHl = 0.29038 

In rg�2 = 0. 1849 1 

I (2) n f CHJCO = 0.262 

Herewith all values are available to calculate the residual part of the activity 
coefficients following the solution of groups concept and finally to calculate the 
required activity coefficients: 

In y1R = 2 (0 .80458 - 0) + 4 (0.05 1235 - 0) = 0.365856 

In y1 = In y,R + In y1c = 0. 365856- 0.00994 = 0 . 35592 

Y1 = 1 .4275 

In y2R = (0.080458 - 0.29038) + (0.05 1235- 0. 1 8491) 

+ (0.92872 - 0.262) = 0.323 12  

ln Yz = lny2R + In  y2c = 0.323 1 2 - 0.01210 = 0. 3 1 102 

Yz = 1 . 3648 

Assuming ideal vapor phase behavior the knowledge of the activity coefficients 
allows calculating the partial pressures, total pressure, and the vapor phase mole 
fraction: 

P = P1 + P2 = 0 . 5  · 1 .4275 · 75 .85 + 0.5 · 1.3648 · 5 1.9 = 89. 5 5  kPa 
PI 0 .5 . 1 . 4275 . 75 .85 

Y1 = p = 
89_5 5 

= 0.6045 



• 
• 

-� 0.5 

0 

0 0.5 

Figure 5.80 Exper imenta l  and pr ed icted y-x-data for th e 
system n-hexane (l )-2-butanone (2) at 60 C. 
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The results for the whole composition range are shown in Figure 5.80. It can be 

seen that good agreement between experimental and predicted VLE is observed. 

In Figure 5.81 it is shown that good results are obtained not only for the system 
n-hexane-2-butanone, but also for all the other alkane-ketone systems. It can be 

seen that even the azeotropic points are predicted accurately. It is worth mentioning 

that for all systems shown the same two group interaction parameters were used, 

which describe the interaction between the alkane and ketone group. 

Because of the reliable results obtained for VLE and the large range of appli­

cability, the method was directly integrated into the different process simulators. 

However, in spite of the reliable results for VLE, UNIFAC also shows a few 

weaknesses, for example, unsatisfying results are obtained: 

• for the activity coefficients at infinite dilution, 

• for the excess enthalpies, this means the temperature dependence of the activity 

coefficients fol10wing the Gibbs-Helmholtz relation, and 

• for strongly asymmetric systems, this means for compounds very different in 

size. 

For the system 2-butanone-n-hexane the predicted results of the excess enthalpy 

using UNIFAC are shown in Figure 5.82 together with the experimental data. It 

can be seen that the predicted excess enthalpies are not in agreement with the 

experimental values. This means that an extrapolation to high or low temperatures 

will produce incorrect results. The same is true for all other alkane-ketone systems, 
as shown in Figure 5.86. 

All these weaknesses are not surprising, since with the VLE data used to fit the 

required temperature-independent group interaction parameters no information 
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about the temperature dependence (excess enthalpies), very asymmetric systems 
and the very dilute region is used, since VLE data are usually only measured 
between 5 and 95 mol% for symmetric or slightly asymmetric systems.  An extra­
polation to infinite dilution can be very dangerous . However , activity coefficients 
at infinite dilution measured with special techniques (gas stripping or dilutor 
technique, ebulliometry , gas- liquid chromatography) provide the required infor­
mation for the dilute composition range. At the same time systems investigated 
by gas-liquid chromatography are very asymmetric , since the compounds involved 
(stationary phase, solutes) show very different volatility. VLE data measured at 
different temperatures (pressures) deliver an idea about the temperature depen­
dence , but measurements are time consuming . The most accurate information 
about the temperature dependence ic. obta ined from excess enthalpies mea�ured 
by isothermal flow calorimetry. 

5.9.3.1 Modified UNIFAC (Dortmund) 
To reduce the weaknesses of UNIFAC, the modified UNIFAC method was devel­
oped [55 ] . The main differencrs compared to original UNIFAC are: 

• an empirically modified combinatorial part was introduced to improve the results 
for asymmetric systems; 

• temperature-dependent group interaction parameters are used; 
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• 

• 
• 

• 
• 

• . .  

• additional main groups , for example, for cycl ic alkanes, formic acid, and so on , 

were added. 

For fitting the temperature-dependent group interaction parameters of modified 
UNIFAC, in contrast to original UNIFAC, besides VLE data the following data are 
also used : 

• activity coefficients at infinite dilution, 
• excess enthalpy data, 

• excess heat capacity data , 

• LLE data , 
• SLE data of � i mple eutectic systems ,  and 

• azeotropic data .  

The various thermodynamic properties deliver different important informati011 

for fitting reliable temperature-dep, 'ndent parameters. The contributions can he 
summarized as follows : 

• VLE (azeotropic data) provide the information about the activity coefficients for a 
wide composit ion range (5 -95 mol%) ; 

• the required data for the dilute range are delivered by the activity coefficients at 
infinite dilution; 

• at the same time, y oc·values measured by gas-liquid chromatography provide 
reliable information about the real behavior of asymmetric systems. 
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• excess enthalpies (excess heat capacities) deliver the required information about 
the temperature dependence; 

• hE -values at high temperature (often at 140 "C) together with S LE data of simple 
eutectic systems at low temperature are important supporting data for fitting 
reliable temperature-dependent group interaction parameters. 

For fitting the parameters simultaneously to the different types of data, weighting 
factors are used for the different contributions to the objective function: 

F = WVLE L 6VLE + Wy "- L t.yx + WhE L t. hE + we� L t. c; 
+ WLLE L t. LLE + WsLE L t. S LE + WAz D  L t.AZD (5 .96) 

The modifications of modified UNIFAC compared to original UNIFAC are sum­
marized below. The combinatorial part is calculated using the following slightly 
modified empirical equation: 

In Y;c = 1 - v; + 1n v; - Sq; ( 1 - V; + In V; ) F; F; 
for which besides V; the following volumejmole fraction ratio V; '  is used: 

l/4 
V' 

r, 
i = -"'

--'-l:-:/-:-4 -
L..Jj X) ) 

(5 .97) 

( 5 .98) 

To describe the temperature dependence, linear 
dependent parameters were introduced in Eq. (5 .95) : 

or quadratic temperature-

_ ( anm + bnm T + Cnm T2 ) llinm - exp - T ( 5 .99) 

While linear temperature-dependent group interaction parameters are already 
required to describe the VLE behavior and excess enthalpies simultaneously, 
quadratic temperature-dependent parameters are used when the system shows a 
strong temperature dependence of the excess enthalpies . 

Most important for the application of group contribution methods for the 
synthesis and design of separation processes is a comprehensive and reliable 
parameter matrix with reliable parameters. The present status of modified UNIFAC 
is shown in Figure 5 .84. Today parameters are available for 91 main groups .  In 
the recent years new main groups were introduced for the different types of 
amides , isocyanates, epoxides , anhydrides, peroxides, carbonates, various sulfur 
compounds ,  and so on. In the last year the range of applicability was even extended 
to systems with ionic liquids [ 56]. 

Because of the importance of modified UNIFAC for process development 
the range of applicability is continuously extended by filling the gaps in the 
parameter table and revising some of the existing parameters with the help of 
systematically measured data and by using new experimental data published 
and stored in the Dortmund Data Bank [ 3 ] .  For fitting temperature-dependent 
parameters , in particular excess enthalpy data covering a wide temperature range 
are desirable. These data can be measured using for example isothermal flow 



(f) Q) (f) 
C\l co "'0 
0 
(jj .0 E ::J z 

1 2000 

9000 

6000 

3000 

0 
250 

-

.. � 
280 

.� 9 Predictive Models 1 303 

In total 
ca . 20800 data sets 

(January 201 1 )  

Systematic measu rements 
for the fu rther development of 

mod ified U N I FAC 
( - 1 200 data sets) 

Ill J \ n_ ..r1. 
3 1 0  340 370 400 430 

Temperatu re ( K) 

Figure 5.83 Ava i l a b l e  excess en tha lpy data as a fu n ct ion of temperat u re .  

ca lorimetry . But unfortunately most of the published data were measured near room 
temperature (see Figure 5 . 8 3 ) .  To complete the data base and in particular to get the 
required supporting data at high temperature for fitting the temperature-dependent 
group interaction parameters of modified U N I FAC, nearly 1 200 data sets were 
sys tematically measured by isothermal flow ca lorimetry . Additionally, a large 
number of VLE data , SLE of eutectic systems, and activity coefficients at infinite 
dilution were measured systematically in our laboratory. 

Since 1996, further extension ( i . e . ,  revision of the existing parameters, filling of 
gaps in  the parameter matrix or the introduction of new main groups) was ca rried 
out within the U N I FAC consortium. The current status of the complete parameter 
matrix is always available via i nternet [57 ] .  A great part of the mod i fied U N I FAC 
parameters was published by G mehling et al. [58] . fhe publ ished van der Waals 
properties and modified U N I FAC group interaction parameters are given in the 

internet (see Appendix ! ) .  But a great part of the group interaction parameters were 
revised using a larger database to fit the parameters . The rfvi st:d and the new fitted 
parameters are only available for the sponsors of the company consortium (57] .  

Modified U N I FAC is an ideal thermodynamic model for process development. 
With the help of this pred ictive model easily various process alternatives can be 
compared, suitable solvents for separation processes l ike azeotropic distillation, 
extractive distillation ,  extraction can be selected, the influence of solvents on 
chemical equilibrium conversion can be predicted , and so on. 

Modified U N I FAC can also be applied to provide artificial data for fitting the 
missing binary parameters of the parameter matrix of a gE ·model . J ut if the key 
components of a separation step are considered , for the final design an experimental 
examination of the results is recommended. 

The progress achieved when going from U N I FAC to modified U N I FAC can be 
recognized from a comparison of the results for 2200 consistent binary VLE data 
sets. Using the U N I Q UAC equa tio n for the correlation of the 2200 VLE data sets 
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Figure 5.84 Present  status of the m o d i fied U N i fAC meth o d .  

a mean absolute deviation of 0.0058 for the vapor phase mole fraction i s  obtained. 

While for or iginal U N I FAC method a mean deviation of 0 .0141 results, a mean 

deviation of 0.0088 of the vapor phase mole fractions i s  achieved with mod ified 

U N I FAC (see Figure 5 . 8 5 ) .  This means that the deviation with U N I FAC compared 

to a correlation of the VLE data using the U N I Q UAC model was improved by 
nearly a factor of 3 from 0.0083 (0 .0141 -0.0058) to 0.0030 (0 .0088-0 .0058) . As can 

be seen from Figure 5 .8 5 ,  similar improvements are also obtained for the predicted 

temperatures and pressures . 

Not only the results for VLE,  but also for SLE, LLE , excess enthalpies , excess heat 

capacities , activity coefficients at infinite dilution were distinctly improved when 

going from U N I FAC to modified U N I FAC. For excess enthalpies this i s  shown 

in F igure 5 .86.  It can b e  seen that in all cases the predicted results are in good 

agreement with the experimental findings in the case of modified U N I FAC, while 
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Figure 5.86 Exper irr•enta l  [3 ]  and  p red icted excesc. e n ­
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the results of original U N I FAC show strong deviations as already discussed in 
Section 5 .9 . 3 .  

Typical results for VLE ,  excess enthalpies , SLE, activity coeffici<'nts at infinite 

dilution ,  excess heat capacities ,  and azeotropic da ta for systems of alkanes with 
ketones are shown in Figures 5.87 and 5.8� .  While in Figure 5.87 results are 
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presented for the system acetone- n-hexane, in Figure 5 .88 a comparison of the 

predicted and experimental results for VLE, hE , S LE ,  azeotropic data , LLE and 

y"" for different ketones with various alkanes is presented. In  the case of S LE ,  

additionally the curvature assuming ideal behavior is shown by  the dashed lines .  

The improvements obtained when taking into account the real behavior is obvious . 

Of course, the same group interaction parameters are applied for all the preJictions .  

As can be seen in al l  cases, good agreement is obtained for the different phase 

equilibria and excess properties ,  although a wide temperature range ( - 1 00 to 
160 ' 'C) is covered. The correct description of the temperature dependence is 

achieved by the reliable prediction of the excess enthalpies in the temperature 

range covered. 

I n  the meantime the range of applicability of modified UNI FAC was even 

extended to systems with ionic liquids [56] .  I n  Figure 5 .89 the experimental 

and predicted activity coefficients at infinite dilution of various n-alkanes in 

different alkyl-methyl-imidazolium bistrifl.uoromethylsulfonylimides are shown as 

a function of temperature. I t  can be seen that not only the temperature dependence, 

bnt J!so the dependence of the activity coefficients from the number of C-a toms of 

the alkanes and the alkyl rests is properly described. 

Besides the prediction of phase equilibria the group contribution methods 

U N I FAC or modified U N I FAC can be applied for other applications of great 

practical interest, for example, the calculation of octanol-water partition coefficients 
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of persistent chemicals [59] to decide about their fate in the environment, or the 
flash points of flammable liquid mixtures [60] . 

5 .9.3. 2  Weaknesses of the Group Contribution Methods U N I FAC and Modified 
U N I FAC 
As shown before the group contribution method modified UNIFAC is a powerful 
and reliable predictive gE -model. It was continuously further developed in the last 20 
years so that the method provides reliable results and a large range of applicability. 
But in spite of the great advantages compared to original UNIFAC (better results 
for excess enthalpies ,  activity coefficients at infinite dilution, asymmetric systems) 
it shows the typical weaknesses of a group contribution approach. Hence. for 
example 

I somer effects cannot be predicted. This means the same activity coefficients 
are obtained, for example, for o-fm-fp-xylene or phenanthrene/anthracene with 
the different solvents . But at least in the case of VLE or SLE calculation this 
is not a great problem, since the required standard fugacities , that is ,  vapor 
pressure, melting point. and heat of fusion are of much greater importance 
than small differences of the activity coefficients. Similar problems are also 
observed for other predictive models, for example, the quantum chemical ap­
proach. 

• Unreliable results are obtained for group contribution methods in the case, if a 
large number of functional groups have to be taken into account, as in the case 
of pharmaceuticals or when the molecule shows groups such as, -C (Cl) (F) (Br) 
as for example, in refrigerants . But also in these cases similar problems are 
observed for other approaches, for example, the quantum-chemical methods .  

• Furthermore, poor results are obtained for the solubilities and activity coefficients 
at infinite dilution of alkanes or naphthenes in water. This was accepted by the 
developers of modified UNIFAC to achieve reliable VLE results ,  for example, for 
alcoholjwater systems. The reason was that starting from experimental y "" -values 
of approx. 250000 for n-hexane in water at room temperature it was not possible 
to fit alcohol-water parameters which deliver y oc-values for hexanol in water 
of 800 and at the same time describe the azeotropic composition of ethanol 
and higher alcohols with water properly and obtain homogeneous behavior for 
alcohol-water systems up to Cralcohols and heterogeneous behavior starting 
from C4 -alcohols .  To allow for a prediction of hydrocarbon solubilities in water 
an empirical relation was developed [6 1 , 62] , which allows the estimation of 
the solubilities of hydrocarbons in water and of water in hydrocarbons (see 
below) . 

• For the system tert-butanol-water a miscibility gap is predicted, although tertiary 
butanol in contrast to 1-butanol , 2-butanol, and isobutanol forms a homogeneous 
mixture with water. 

As mentioned before, unsatisfying results of modified UNIFAC are obtained for 
the activity coefficients at infinite dilution and the solubilities of hydrocarbons in 
water. Typical results are given in Table 5 . 17. From the listed solubilities it can be 
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Table 5.1 7 Exper imenta l  [3] and p redicted so lub i l i t ies of 
n-hexane and cyc lohexane in water at 25 ' C  using modified 
UNIFAC. 

Hydrocarbon Sol ubi I ity in water Xexp Solubil ity in water Xcalc 

n-Hexane 

Cyclohexane 

2 . 5 . 10-6 

1 . 3 . 10- 5 
1 . 5  . 10-4 

1 . 7  . 10- ] 

Table 5 . 1 8  Parameters for the emp i r ica l  est imat ion of hyd rocarbon 
sol u b i l i t ies in water. 

Hydrocarbon A B c 

Alkanes [62] 1 . 1 04 0.0042 -2 .8 17  

Naphthenes 1 . 3 3 26 0.006427 - 3 .676 

Alkenes 1 . 523  0.00603 -3 .0418  

seen that the solubilities and therewith the activity coefficients at infinite dilution 

are approximately a factor 100 off. 
To obtain satisfying results for the solubility of alkanes the following empirical 

relation was suggested by Banerjee [61 ]  for the temperature range 273 - 373 K: 

-3 

-3.5 (.) -4 Ol .!2 
-4.5 

-5 

-5 .5 

1 Chydrocarbon in water A I ( 5 5 . 56  ) B T C og = · og + · + 
mol l- ! YJ�drocarbon in water at 298. 1 5K'  

*predicted using modified U N I FAC ( 5 . 100) 

• • • 

275 300 

• 
--....--- · •... 

325 
-,·emperature (k.) 

• 

350 

Figure 5.90 Exper imental  [3] and predicted so l ub i l i t ies c 
(molf l )  of a l kanes in water as a funct ion of tem perature us­
ing Eq.  (5 . 1  00) (62] :  + n-pentane; & n-hexane;  • n-hepta ne ;  
• n-octa ne.  
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Table 5 . 1 9  Parameters for t h e  emp i r ica l  est i mat ion o f  water 

sol u bi l i t i es  i n  hyd roca rbons .  

Hydrocarbon A B c 

Alkanes 2 . 3 1 7 1  O .o1 796 - 3 .672 

Naphthenes 0 . 1806 0.0 1532  -7 . 1 72 

Alkenes - 1 . 1 104 O .Dl l -8 .332  

For the different hydrocarbons the parameters A. B, and C were fitted to solubility 
data stored in the Dortmund Data Bank and are given in Table 5 . 18 .  For the 
calculation of the hydrocarbon solubilities only the activity coefficient of the 
hydrocarbon in water at 25 vc predicted using modified UNIFAC is required . 

Typical results for different alkanes are shown in Figure 5 .90. It can be seen that 
the predicted results are in good agreement with the experimental findings . 

For the calculation of the solubility of water in alkanes a similar equation can 
be applied. Also in this case the required parameters A. B, and C were fitted to 
solubility data stored in the Dortmund Data Bank: 

log Xwater in hydrocarbon = A · log ( x 
1 ) + B · T + C 

Y water in hydrocarbon at 298. 1 5  K' 

*predicted using modified U N I FAC (5 . 10 1 )  

The parameters A, B and C for Eq.  ( 5 .101) are given in Table 5 . 19  

Example 5.23 

Calculate the solubilities of n-hexane in water and water in n-hexane at 298.15 K 
with the help of the empirical relations given above. 

Solution 

First the activity coefficients at infinite dilution of n-hexane in water and water in 
n-hexane at 25 cC  have to be calculated. U sing the modified UNIFAC parameters 
given in Appendix I an activity coefficient at infinite dilution of 6618 for n-hexane 
in water and a value of 1 35 .9 for water in n-hexane is obtained. With these values 
directly the solubilities can be calculated: 

lo 
Cn-hexane in water = 1 . 1 04 - log ( 55 . 56 ) + 0 .0042 . 298 . 1 5- 2.8 17 g 

mol l- 1 6618 

= -3.8566 

Cn-hexane in water = 1 . 39 · 10-4 moljl 

Xn-hexane in water ::::0 2. 5 3  · 10-6 
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log Xwater in n-hexane = 2 . 3 171  - log ( 
1 3
�

_9
) + 0 .01796 · 298. 1 5 - 3 .672 

= - 3 .260 

Xwater i n n-hexane = 0.000549 

Experimentally n-hexane solubilities between 9 .44 · 10-5 and 1 . 5 5  · 10-4 moljl are 

reported (see Figure 5 . 90) . As well the water solubility is in very good agreement 
with the experimental values.  

5.9.4 

Predictive Soave- Redl ich - Kwong (PSRK) Equation ofState 

As can be recognized from the results shown before, modified U N I FAC is a very 
powerful predictive model for the development and design of chemical processes, 
in particular separation processes. However, modified U N I FAC is a gE -model . This 
means that it cannot handle supercritical compounds. For supercritical compounds 

either Henry constants have to be introduced or Approach A has to be used. In 
the latter case, an equation of state is required, which is able to describe the PvT 

behavior of both the vapor (gas) and the liquid phase. 
As mentioned in Section 2.5 the first equation of state which was able to describe 

the PvT behavior of the liquid and the vapor phase was developed by van der Waals .  
With only two parameters a and b. the van der Waals equation of state is able to 

describe the different observed phenomena, such as condensation, evaporation, 
the two phase region and the critical behavior. But the calculated densities ,  vapor 

2.4 .---------------, 2 . 0  
325 oc 

1 .5 

� 8. 1 .0 Q 
Ol .2 

0.5 

0 . 8  

0 . 0  
0 . 0  0 5  

x, . y, 

1 . 0 0 .0  

Figure 5.91 Exper imenta l  and  pred icted VLE data us i ng  
PS R K  fo r t h e  systems ethano l  ( 1 } - -water ( 2 )  ( l eft  hand  s ide) 
and  acetone  (1 ) -water (2) ( r ight  hand  s i de) at subcr i t i ca l 
and su percri t ica l  cond i t ions .  

250 oc 

200 oc 

1 50 oc 

0 . 5  � . 0 

x, , y, 
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pressures,  etc. using the van der Waals equation o f  state were only i n  qualitative 
agreement with the experimental findings . 

Therefore today improved cubic equations of s tate like the S RK [ 63 ]  or the 
PR equation [64] are used. But up to 1 979 the application of the equations of 
state approach was limited to nonpolar or slightly polar compounds in particular 
because of the empirical quadratic mixing rules used. Huron and Vidal [35 ]  
combined the advantages of gE-models and equations of state by introducing more 
sophisticated so-called gE-mixing rules (see Section 4.9 .2 ) . With the appl ication 
of original U N I FAC for the prediction of the required gE -values in the mixing 
rule predictive group contribution equations of state were developed [43 ] .  While 
in the approach of Huron and Vidal infinite pressure is taken as reference state, 
in the group contribution equation of state P S R K  (predictive S RK) atmospheric 
pressure i s  used. The great advantage of this approach is that in the PSRK method 
the already available U N I FAC parameters can directly be used. But now the 
U N I FAC parameters can be appl ied at supercritical conditions . For the systems 

• Orig inal U N I FAC parameters 

0 Pub l ished PSRK parameters 

• Parameters only for consortium members 

No parameters f itted 

so2 
NO 
N20 F2 
SFe C l2 
He Br2 
Ne HCN 
Kr N02 
Xe C F4 
HF 03 
HCI CINO 
HBr 
H I  
cos 

F igure 5 .92  C u r r e n t  p a r a m eter m at n x  of t h e  grou p co n t n b u t • o n  e q u a t i o n  of s t a t e  PS R K  
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C02 ( 1 ) + n-Propane (2) 
70. 1 00.  

60. 
80. 

50. 

Cii 40. � 60. 
e e 
a.. 30. a.. 40. 

20. 

1 0. 
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1 20. 
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80. 
1 50.  
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Figure 5.93 Experimental and predi cted VLE data us ing  
PS R K  for var ious C02 -a lkane systems at subcr it ical and 
s u percrit ica l  condi t i o n s .  

4. r--------------T-----. 

C02 ( 1 )  + n-Butane (2) 

C02 ( 1 )  + n-Decane (2) 
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"' Azeotropic data 

Q L_  __ ,__ __ ,__ __ � _ _.J 
0.0 0.5 1 0 

X·, , y, 

(ii' Q.. 

6. 

� 5. 
a.. 

4 .  

Figure 5.94 Exper imenta l  and  pred icted VLE,  azeotrop i c  
and crit ical  data of the  system C02 ( 1 ) ·ethane ( 2 )  us ing  
PS R K  as a function  of tem peratu re. 
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-1 .0 C02 X X I C02 
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3. C02 
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0 .  
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P (bar) 

Figure 5.95 Expe rimen ta l [65] and  p red icted K-factors for a 
1 2 -component  system u s i n g  P S R K  at a temperature of 3 22  K 
as a fu nct ion of press u re and the req u i red pa ra m eter matr ix 
fo r the gro u p  contr i bu t ion  equat ion of state PS RK .  

7 .  n-Pentane 

8. n-Hexane 

9. n-Heptane 

1 0 . n-Octane  

1 1  . n-Decane 

1 2 . n-Tetradecane 

ethanol-water and acetone-water this is shown in F igure 5 . 9 1 .  I t  can be seen that 
the results are very satisfying . 

To use P S R K  for process synthesis and design a large matrix with reliable 
parameters is desirable . The possibil ity to handle systems at supercritical conditions 
all of a sudden allowed including also gases l ike C02 , CH4 , H2 S ,  H2, and so on, 
as new functional groups in the parameter matrix. In total , 30 different gases were 
added as new main groups.  The required parameters for the gases were fitted to 
VLE data of low boiling substances and gas solubilities stored in the Dortmund 
Data Bank [3 ] .  The current P S R K  parameter matrix is given in Figure 5 .92 .  

Typical VLE results for different C02-alkane systems are shown in Figures 5 .93 
and 5 .94. While in  Figure 5 . 93  only VLE data for four different C02 -alkane (propane, 
butane hexane , decane) are shown, for the system ethane' I ) - C02 additionally the 
experimental and predicted azeotropic and critical data are shown . As can be seen, 
excellent results are obtained for all systems considered. This means that the 
group contribution concept can also be applied for the gases included in the PSRK 

matrix. 

Predicted results using P S R K  for a 12 component system at 322 K are shown 
in Figure 5 .95  in the form of the K-factors (Ki = yi /xi) as a function of pressure. 
Using classical mixing rules 66 binary parameters would be required . In the case 
of a group contribution equation of state the number of required parameters in 
this case goes down to 6,  since all alkanes are described with the same group 
interaction parameters . This is a great advantage of group contribution equations 
of state in comparison to the typical equation of state approach, in particular for 
processes such as the gas -to-l iquid process ,  where a large number of alkanes, 
alkenes ,  alcohols besides a few gases have to be handled. 

2 1 )  I n  P S RK. ethane is built  up by two methyl 
groups. 
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P S RK was even extended to systems with strong electrolytes b y  using the 
electrolyte model LI FAC (66] instead of the original U N I FAC method for calculating 
the excess Gibbs energy. The LI FAC method takes into account the middle range 
and long range interactions of the electrolytes by the De bye-H iickel and a modified 
Pitzer term (see Section 7 . 3 . 5 ) .  The P S RK model in combination with the LI FAC 
model allows the prediction of salting in and salting out effect of strong electrolytes 
on VLE and gas solubilities . In Figure 5 .96 the influence of sodium nitrate on the 
solubility of carbon dioxide in water for different salt concentrations at 40 °C and 
lOO '' C is shown. As can be seen not only the salt effect but also the temperature 
dependence for this ternary system is described with the required accuracy. 

5.9.5 

VTPR Group Contribution Equation of State 

The P S RK model [43] provides reliable predictions of VLE and gas solubilities .  
Therefore. P S RK was implemented in most process simulators and is well accepted 
as a predictive thermodynamic model for the synthesis and design of the different 
processes in chemical. gas processing. and petroleum industry. But also PSRK 
shows all the weaknesses of U N I FAC and the S RK equation of state . S ince the S RK 
equation of state is used in the group contribution equation of state PSRK. poor 
results are obtained for liquid densities of the pure compounds and the mixtures. 
Furthermore, poor results are obtained for activity coefficients at infinite dilution ,  
heats of  mixing and very asymmetric systems because of  the use  of  original 
UNI FAC . Ahlers and Gmehling [44] developed a generalized group contribution 

Table 5.20 Ma in  d ifferences between the new group  contr i ­
but ion equat ion of state VT P R  and the PSRK model .  

Module PSRK 

Equation of state Soave- Redlich- Kwong 

a-Function 

M ixing rule for 
the parameter a 

Mixing rule for 

the parameter b 

ff information 

Database 

Generalized Mathias -Copeman 
a aii 

bRT = L; Xj b; RT 

1 ( gE  b ) + - - + "' x,ln ­
A RT L., b; 

A = -0.64663 

(a) original U N I FAC 

(b) temp-depend. P S R K  parameters 

VLE, GLE 

VTPR 

Volume-translated 

Peng- Robinson 

Generalized Twu 

a a.,  gE.R 
b = L; Xj b. + A  
A =  -0.5 3087 

Temp-depend. VTPR 

parameters 

VLE, GLE,  hE . S LE,  y"" 
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equation of state called VTPR, where most of the weaknesses of PSRK were 
removed (see also Sections 2 . 5 . 5  and 4.9.2) . The main differences between PSRK 
and VTPR are summarized in Table 5 . 20. 

A better description ofliquid densities is achieved, by using the volume translated 
PR (Peneloux et al. (33 ] )  instead of the SRK equation of state, which is used in the 
PSRK model. Based on the ideas of Chen et al. [67] an improved gE -mixing-rule 
is used. The prediction of asymmetric systems is improved by using a quadratic 
b mixing-rule with a modified combination rule [67] .  The improvements obtained 
when going from the group contribution equation of state PSRK to VTPR can 
be recognized from the predicted results using these models for symmetric 
alkane-alkane systems shown in Figure 5 .97 and asymmetric alkane-alkane 
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Figure 5.97 Exper imental and pred i cted VLE data  for sym­
metric a lkane-a lkane systems ---- PSRK - VTPR .  
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systems shown i n  Figure 5 .98. For the prediction o f  alkane-alkane systems no 
interaction parameters are required for both models. This means that the results 
mainly depend on the mixing rules used. As can be seen from the Pxy-diagrams 
much better results are predicted using VTPR instead of PSRK in the case of 
the asymmetric systems ethane-dodecane and ethane-octacosane, while nearly 
the same results are obtained for the symmetric systems propane-butane and 
2-methylpentane-n-octane. 

In the case of the group contribution equation of state VTPR, instead of 
temperature-independent group interaction parameters from original UNI FAC, 
temperature-dependent group interaction parameters as in modified UNIFAC 
are used. As for modified U N I FAC, the required temperature-dependent group 
interaction parameters of VTPR are fitted simultaneously to a comprehensive data 
base. Besides VLE data for systems with sub and supercritical compounds, gas 
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Figure 5 .99 Exper i menta l  and p red icted VLE data fo r 
d ifferent C02 -a l kane  systems (a) C02 ( l ) - propane (2) 
(b) C02 ( l ) ·- n-hexane (2) (c) C02 ( 1 ) - n-eicosane(2) 
(d) C02 ( l ) - n·octacosane (2) PS RK  - VTPR group c o n -
tri but ion equat ion of state. 
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Figure 5 . 100 Experi menta l  a nd  predicted VLE data,  
azeotrop ic poi nts and  cr it ica l  data for the system 
C02 (1 ) -ethane  (2) us i ng  VTPR.  
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Figure 5 . 101 Experi menta l  a nd  p re­
d icted excess entha l py data fo r the system 
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Figure 5.1 02 Experi menta l  and pred icted 
SLE  data  for the system ethane  (1 ) -COz 
(2) • expe r i menta l  [3 , 68] -- group contr i ­
but ion equat ion of state VTPR. 
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Methane 
1 25 ,-------------------, 

Nitrogen Ethane 

Figure 5.1 04 Experi menta l  and p red icted LLE data u s i n g  
VTPR for t h e  terna ry  system n itrogen-ethane-methane  at  
1 22 K and  the b i na ry system ethane-n itrogen [3 ] .  

'I 

0.5 Ethane 

x, 

solubilities ,  S LE of eutectic systems, activity coefficients at infinite dilution and 
excess enthalpies covering a large temperature and pressure range are used. 

The results obtained for the different pure component properties and various 
phase equilibria of the new group contribution equation of state are very promising 

[44] . In Figure 5 .99 the predicted VLE results for different alkane-C02-systems 
using P S RK and the group contribution equation of state VTPR are presented . 
While both methods show similar results for the slightly asymmetric system 

COrpropane and C02 - n-hexane, again much better results are achieved for the 
strongly asymmetric system C02-eicosane and COroctacosane with the group 
contribution equation of state VTPR because of the improved mixing rules . 

Using the same parameters, VLE, azeotropic data , critical data and excess 

enthalpies for the system C02 -ethane were predicted. A comparison of the 
predicted and experimental results is shown in Figures 5 . 100 and 5 . 1 0 1 .  It can be 
seen that as in the case of PSRK (see Figure 5 .  94) excellent agreement between the 
predicted results and the experimental findings is obtained. In Figure 5 . 1 0 1  the 
experimental and predicted excess enthalpies for the systems C02 -ethane using 

the group contribution equation of state VTPR are shown. It can be seen that 
nearly a perfect description of the VLE, azeotropic, and the critical line is obtained. 
Furthermore, not only the temperature, but also the pressure dependence of the 
excess enthalpies is described correctly with the group contribution equation of 
state VTPR. Perhaps it  has to be mentioned again that for all the predictions (VLE, 

azeotropic data, critical line, hE ) shown in Figures 5 .99- 5 . 101  the same parameters 
were used to describe the interactions between C02 and alkanes. 

Using the same group interaction parameters,  other phase equilibria can be 

predicted as well. The predicted S LE behavior of the binary system ethane-C02 
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Figure 5 . 106 Experi menta l  and  ca l ­
cu l a ted l i qu i d  dens i ties u s i ng P S R K  
and  VTPR for the quaternary system 
pentane-hexane-benzene-cyc lohexane  at 
298. 1 5  K: .6 PSRK;  + VTPR. 

Figure 5.1 07 Exper imenta l  and predicted 
dens i t ies for the b inary system acetone  
( 1 ) -cyc lohexane (2) at 298. 1 5  K: ---- PS R K; 
-- VTPR.  

using VTPR is shown in Figure 5 . 102 together with the experimental data . It  can 

be seen that the parameters fitted to a comprehensive data base can be successfully 

applied also at very low temperatures. 

The next example (see Figure 5 . 103) shows the results of the group contribution 

equation of state VTPR in comparison to the results of modified U N I FAC for 

different VLE, excess enthalpies, S LE ,  azeotropic data ,  activity coefficients at 

infinite dilution for various alkane-ketone systems. It can be seen that  with the 

group contribution equation of state VTPR similarly good results are obtained 

for the different phase equilibria and excess enthalpies as obtained with modified 

UNI FAC. But, besides the prediction of the different phase equilibria of subcritical 

compounds , the method can directly be applied for systems with supercritical 

compounds , for example, it can directly be applied for the calcula t ion of gas 

solubilities . At the same time various other thermophysical properties (densities, 

enthalpies, for example, enthalpies of vaporization, heat capacities, Joule-Thomson 

coefficients, etc. )  for pure compounds and mixtures for the liquid or gas phase 

can be predicted for the given condition (temperature, pressure, composition) .  The 

main disadvantage is that the available parameter matrix of the group contribution 

equation of state is still limited. But work is in progress to extend it 
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At the same time the group contribution equation of state VTPR in contrast to 
modified UNI FAC can be applied for the prediction of phase equilibria including 
compounds not covered by mod ified UNIFAC, for example, the various gases . 
The predicted LLE results for the ternary system nitrogen-COrmethane at 1 22 K 
and the binary system nitrogen-C02 as a function of temperature are shown in 
Figure 5 . 1 04 together with the experimental data. 

A group contribution equation of state shows in particular great advantages 
compared to the usual equation of state approach in the case of multicomponent 
mixtures, when the multicomponent mixture consists of gases and various alkanes, 
alcohols, alkenes, and so on. The reason is that the same parameters can be used 
for all alkanes, alcohols, alkenes , so that the size of the parameter matrix is small 
in comparison to the typical cqu;.ttion of ::;tate approach. The results of VTPR for 
a 1 2 component system con s istin g of nitrogen-methane- COralkanes are shown 
in Figure 5 . 105 .  As can be seen, excellent results are obtained with the six required 
parameters (66 binary parameters would be required for the classical equation of 
state approach) . 
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As mentioned already several times, using equations of state besides phase 
equilibria also other properties ,  such as densities , heat capacities , enthalpies, 

Joule-Thomson coefficients , and so on, for pure compounds and mixtures can be 
calculated. In Figure 5 . 106 the improvements in liquid densities for a four compo­
nent system are shown, when instead of the PSRK the VTPR group contribution 
equation of state is used. The main reason for the improvements using VTP R  
comes from the fact, that the pure component densities are already much better 
described by the VTPR equation of state. In Figure 5 . 1 07 the predicted densities of 
the PSRK and the VTPR group contribution equation of state are shown together 

with the experimental densities. The improvement when going from P S RK to 

VTPR is significant. 
VTPR can also be applied to correlate experimental data . Then instead of the 

group contribution method a gE ·model , for example, the UNIQUAC, Wilson, or 
N RTL equation can be applied. This is of great interest when reliable experimental 
data are available. For the system acetone-water the correlation results are shown 
in Figure 5 . 108. It can be seen that nearly perfect results are obtained for VLE, 
excess enthalpies and the azeotropic composition. Similarly good results can be 
obtained with the help of a gE ·model (see Figure 5 . 34) . But as can be seen 
from the VLE data, now the model can be applied at supercritical conditions .  
At the same time other properties, for example.  densities, and so on, can be 
calculated. 

An overview about the development of group contribution methods and group 
contribution equations of state for the prediction of phase equilibria and other 
thermophysical properties can be found in [69]. 

Additional Problems 

P5 .  1 Calculate the pressure and the vapor phase mole fraction for the system 
ethanol ( 1 ) -water (2) at 70 "C with the help of the different gE -models 

(Wilson, N RTL, UNIQ UAC) for an ethanol mole fraction of x1 = 0.25 2  using 
the interaction parameters , auxiliary parameters , and Antoine constants 

given in Figure 5 . 30  and assuming ideal vapor phase behavior. Besides total 
and partial pressures and vapor phase composition, calculate also K-factors 
and separation factors .  Repeat the calculation using the quantities defined 

in Eq. ( 5 . 1 5 ) ¢1 = 0.9958 and ¢2 = 1 .0070.  
P5 . 2  Regress the binary interaction parameters of  the UNIQ UAC model to  the 

isobaric VLE data of the system ethanol ( 1 ) - water (2) measured by Koj ima 
et al. at 1 atm and listed below. As objective function, use: 
a .  relative quadratic deviation in the activity coefficients 
b.  quadratic deviation in boiling temperatures 
c.  relative quadratic deviation in vapor phase compositions 
d.  relative deviation in separation factors . 
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Adjust the vapor pressure curves using a constant factor to exactly match 
the author's pure component vapor pressures. 

Y1 T (K) X] Y1 T (K) 

0.0000 3 73 . 1 5  0 .5500 0.6765 352 . 57  

0 . 3372  363 . 1 5  0.6000 0.6986 352.28 
0.4521  3 59.08 0.6500 0.7250 352.00 

0.5056 357 . 12  0. 7000 0.7550 3 5 1 .75 

0 .5359  35 6.05 0.7500 0.7840 3 5 1 .57  

0.5589 355 .29 0.8000 0 .8167 3 5 1 .45 

0 .5794 3 54.67 0.8500 0.8591  3 5 1 . 3 7  

0. 5987 354 . 14  0.9000 0.8959 3 5 1 . 3 5  

0.61 77 3 5 3 .67 0.9500 0.9474 3 5 1 . 39  

0.6371  353 .25  1 . 0000 1 . 0000 3 5 1 .48 

0 .6558 352 .90 

-- ·  --- ---- -

Reference: Koj ima, K .. Tochigi.  K . .  Seki, H . .  Watase, K . .  and Kagaku, Kogaku ( 1 968) 32.  1 49- 1 5 3 .  

P5 .3  Compare the experimental data for the system ethanol-water measured at 
70 oC (see Figure 5 . 30  resp. Table 5 . 2) with the results of the group contri ­
bution method modified UNI FAC and the group contribution equation of 
state VTPR. 

P5 .4 Calculate the Pxy-diagram at 70 · · c  for the system ethanol ( 1 )-benzene(2)  
assuming ideal vapor phase behavior using the Wilson equation. The 
binary Wilson parameters i\ 1 2 and i\ 21 should be derived from the activity 
coefficients at infinite dilution (see Table 5 .6 ) .  Experimentally the following 
activity coefficients at infinite dilution were determined at this temperature: 

YJX = 7 .44 Yt" = 4 .75 

P5 .5  Determine the azeotropic composition of the following homogeneous 
binary systems 
a. acetone-water 
b. ethanol- 1  ,4-dioxane 
c. acetone- methanol. 
at 50, 100, and 150 '' C using the group contribution method modified 
U N I FAC. 

P5 .6  In  the manual of a home glass distillery (s .  Figure P5 . 1 )  the following 
recommendation is given: "After some time liquid will drip out of the 
cooler. You are kindly requested to collect the first small quantity and 
not to use it, as first a methanol enrichment takes place. "  Does this 
recommendation make sense? The purpose of the glass distillery is to 
enrich ethanol . Consider the wine to be distilled as a mixture of ethanol 

(1 0 wt%) , methanol (200 wt ppm) . and water. The one stage distillation 
takes place at atmospheric pressure. 
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Figure P 5 . 1 1 I ome glass distillery 

Calculate the percentages of methanol and ethanol removed from 200 g 

fC'cd,  when 10  g of the distillate is withdrawn. For the calculation the 

modified U N I FAC method should be a pplied. The constants for the Antoine 

equation for ethanol and water can directly be taken from Figure 5 . 30. For 

metha nol the vapor pressure constants and the molar mass are given in 

Appendix A .  For the calculation ideal vapor phase behavior should bf' 

assumed. 

P 5 .  7 Calculate the VLE behavior, hE data , azeotropic data,  and activi ty coefficients 

at infinite dilution for the system rr-pentane-acetone at 373 K ,  398 K, and 

423 K using mod ifif'd U N IFAC. The results are sho'>'. n gr�ph ically i n  
Figure 5 . 103 .  
The vapor pressure constants arf' given in Appendix A .  Experimental data 

can be downloaded from the textbook material page on www.ddbst.com. For 
the calculation by modified U N I FAC ideal vapor phase behavior should be 

assumed. 

P 5 .8  Using the free l:xplorer Vers iOn of D D B j D D B S P ,  search for mixturf' data 

for the system acetone- rr-hexane.  

a .  Plot the experimental pressure as  function of l iquid and vapor phase 

composition togt>ther with the predictions using U N I FAC, modified 

UNI FAC, and P S R K  for the data sets at 318 K and 338 K. 



Additional Problems 1 329 

b. How large are the differences in the azeotropic composition as shown 

in the plot of separation factor vs . composition? 

c .  Plot the experimental heats of mixing data as function of liquid phase 

composition together with the predictions of U N I FAC, modified UNI ­

FAC,  and PSRK for the data sets a t  243  K. 253  K.  and 298  K. Interpret 

the linear part in some of the calculated heat of mixing curves. 

d . Plot the experimental LLE data together with the results of UNIF  AC and 

modified U N I FAC. What led to the improved results in case of modified 

U N I FAC? 

P5 .9  Using the free Explorer Version of DDBJDDBSP ,  search for mixture data 

for the systems C02 -n-hexane and C02 - hexadecane. Plot the experimental 

high pressure VLE data ( H PV) together with the predictions using PS RK. 

Compare the results to those of VTP R  (Figure 5 .99d) and examine the 

results for S L E  in the binary mixture COrn-hexane. 

P S . l O  Calculate the activity coefficients i n  the system methanol ( I )- toluene (2 ) 

from the data measured by Ocon et al. [71 ]  at atmospheric pressure as­

suming ideal vapor phase behavior. Try to fit the untypical behavior of 

the activity coefficients of methanol as function of composition using tem­

perature independent gE -model parameters (Wilson , NRTL, UNIQUAC) . 

Explain why the activity coefficients of methanol show a maximum at high 

toluene concentration. 

The vapor pressure constants are given in Appendix A. Experimental data 

as well as molar volumes, r and q values can be downloaded from the 

textbook page on www.ddbst. com. For the calculation, ideal vapor phase 

behavior should be assumed. 
P5 . 1 1  Predict the Henry constants of methane, carbon dioxide , and hydrogen 

sulfide in methanol in the temperature range -50 to 200 "C with the help 

of the group contribution methods P S R K  and VTPR. 

Compare the predicted Henry constants with experimental values from the 

textbook page on www.ddbst.com. 
P5 . 1 2  Predict the solubility o f  methane, carbon dioxide, and hydrogen sulfide in 

methanol at a temperature of - 30 "C for partial pressures of 5 bar, 10  bar, 

and 20 bar using the P S RK and VTPR group contribution equations of 

state. Compare the results with the solubilities obtained using Henry's law 

and the Henry constants predicted in problem P S . l l .  
P5 . 1 3  I n  the free DDBSP Explorer Version, search for data for all subsystems of 

the system methanol-methane-carbon dioxide. 

a .  Compare the available gas solubility data with the results of the PSRK 
method via the data prediction option in DDB S P .  

b. Plot the available high pressure VLE data ( H PV) for the system 

methanol-carbon dioxide together with the predicted curve using the 

P S RK method. Examine and familiarize yourself with the different 

graphical representations .  
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c .  Regress the dataset 2256 using the Soave-Redlich - Kwong equation of 
state with the quadratic mixing rule and a gE mixing rule with activity 
coefficient calculation via the UNIQ UAC model. Explain the differences . 

P 5 . 1 4  In  the free DDBSP  Explorer Version, search for all mixture data for the 
system benzene-water. Calculate the solubility of benzene in water from 
the experimental activity coefficients at infinite dilution and compare the 
results to the experimental LLE data . 

P 5 . 1 5  Examine with the help of the regular solution theory, U N I FAC and 
modified UNI FAC if the binary systems benzene-cyclohexane and 
benzene-n-hexane show an azeotropic point at 80 ;C .  In case of the 
regular solution theory , calculate the solubility parameter from the 
saturated liquid density and the heat of vaporization using Eq. ( 5 .70) . All 
required data are given in Appendices A. H, and I .  
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