5
Phase Equilibria in Fluid Systems

Conventional chemical plants can usually be divided into a preparation, reaction,
and separation step (see Figure 5.1). Although the reactor can be considered as the
heart or the central unit of the chemical plant, often 60-80% of the total costs are
caused Dby the separation step, where the various thermal separation processes are
applied to obtain the products with the desired purity, to recycle the unconverted
reactants and to remove the undesired by-products. Because of the many advantages
(energy used as separating agent, high-density differences between the two fluid
phases (liquid, vapor)) in 90% of the cases distillation processes are applied in the
chemical or the petrochemical industry, whereas in the pharmaceutical industry
crystallization processes are far more important [1].

Different aspects have to be considered during the synthesis of separation
processes. As the preliminary step the chemical engineer has to decide which
separation processes should be used. Then he has to find out if separation problems
occur. In the case of distillation these problems are typically azeotropic points, which
donot allow separation by ordinary distillation. To understand distillation processes,
the knowledge of residue curves and boundary lines is quite helpful. In the case of
azeotropic points the engineer has to find an alternative way (e.g. separation at low
or high pressure or by pressure swing distillation), or to select suitable solvents for
the separation of the considered system (e.g. azeotropic or extractive distillation)
or to choose a hybrid process (i.e., by combination of the distillation step with
another separation process, for example, membrane separation, adsorption, etc.).
Furthermore, the engineer has to design the equipment (e.g. to determine the
number of theoretical stages needed or the height of the packing of the separation
column) and in addition, he has to choose the optimum separation sequence. To
treat the different aspects mentioned above, a reliable and detailed knowledge of the
phase equilibrium behavior as a function of temperature, pressure, and composition
for the multicomponent system, which has to be separated, is required.

The knowledge of the phase equilibrium behavior is not only important for the
design of separation processes, but also for other applications, like the design of
biphasic reactors, for example, gas-liquid reactors, the estimation of the fate of
persistent chemicals in the environment, and so on.

In consequence, the typical question asked by the chemical engineer in the
design phase is: “What is the composition and the pressure in phase S, when
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Figure 5.1

phase 8 is in equilibrium with phase « at given composition and temperature?”’
(see Figure 5.2). In most cases, multicomponent systems with nonpolar, polar,
supercritical compounds, and electrolytes have to be considered. For example, for
the system ethanol-water—sodium chloride-CO; several questions can be raised

from Figure 5.2, such as:

Simplified structure of a conventional chemical plant.

How strong does sodium chloride influence the solubility of CO; in the system

ethanol-water?

Does the system ethanol-water still show azeotropic behavior in the presence of

sodium chloride?

How is the solubility of sodium chloride in water influenced by the presence of

ethanol and CO,?

Can the presence of sodium chloride cause a miscibility gap in the system

ethanol-water?

How strong is the pH-value influenced by the presence of CO,?

» Which solvent can be applied to separate the azeotropic system ethanol-water
by azeotropic or extractive distillation?

* Or can carbon dioxide directly be used for the separation of ethanol and watcr by

supercritical extraction?

Temperature  Tynical vapor-liquid equilibrium problem:

Pressure
CoHsOH
H>O
COs /l
AT T ] Na* v CO,
i H20
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z% 2%, cr CoHsOH
|

Figure 52 Equilibrium stage and typical separation problem.
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Figure 5.3 Seven liquid phases in equilibrium with the

4_“_’_ vapor phase [2].

Heptane

Aniline

Water

Perfluorokerosene

Phosphorus
Gallium

Mercury

However, the number of phases is not limited to two only. Forexample, inthecase
of hetero-azeotropic mixtures like butanol-water or ethanol-water—cyclohexane
already two liquid phases exist besides the vapor phase. Hildebrand showed that
in the system water—heptane-perfluorokerosene-aniline-phosphorus—gallium-
mercury even seven liquid phases are in equilibrium with the vapor phase [2] (see
Figure 5.3).

Depending on the state of the phases @ and B vapor-liquid equilibria (VLE),
liquid-liquid equilibria (LLE), solid-liquid equilibria (SLE), and so on, can be
distinguished. In the case of VLE the phase equilibrium behavior is shown in
Figure 5.4 as a Pxy-diagram for the binary system ethanol-water at 70 C. For a
given composition in the liquid phase the system pressure and the composition in
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Figure 54 Pxy-diagram for the system ethanol (1)-water (2) at 70 C [8].



180

5 Phase Equilibria in Fluid Systems

375

P=101.3 kPa

365

X
- 355

345

335

X1 Y1

Figure 5.5 Illustration of the law of opposite lever arms on
the basis of the binary system methanol (1)-water (2) at
101.3 kPa.

the vapor phase can be obtained from the diagram. Furthermore, it can be seen
that at high ethanol concentrations the composition in the liquid phase is identical
to the composition in the vapor phase, which makes a separation impossible by
ordinary distillation.

In Pxy- and Txy-diagrams, the law of the opposite lever arms can be applied
to determine the amount of vapor and liquid in the two-phase region. This is
demonstrated in the Txy-diagram of the system methanol-water at 101.3kPa (see
Figure 5.5).

Consider a binary liquid mixture with the concentration z, and the temperature
To. If the mixture is heated up, the bubble point line is reached in point A, and the
first bubble is formed. When the mixture is further heated up, a further increase of
temperature is obtained and more vapor is formed. At point B, the mixture consists
of a liquid with the composition x5 and a vapor with the composition yg. At point
C, all liquid has been vaporized. Using nr as the total number of moles, the mass
balance yields for point B

nrzo = (n" +nY)zo = ntxp + n'yp (5.1)

which is equivalent to

L
n  ys—2o

= 5.2
n zp—xp (-2)

Therefore, the ratio between the amounts of vapor and liquid corresponds to the
ratio of the lever arms located on the opposite side of the tie line.

From Figure 5.4 it can be seen that at 70 °C both compounds exist as liquids.
Often the system temperature is above the critical tempcrature of one or more
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Figure 5.6 Pxy-diagram for the system nitrogen (1)—methane (2) at different temperatures.

components of the system considered. This is shown in Figure 5.6 for the binary
system nitrogen—methane. Here the two phase regions do not cover the whole
composition range for temperatures above the critical temperature of nitrogen
(T, = 126.2 K). Obviously now the binary system shows a critical point, where the
length of the tie lines becomes zero.

But by applying the Pxy-diagram again the pressure and composition in the
vapor phase for a given temperature and the corresponding composition in the
liquid phase can be determined.

Often also the K-factors (K; = yi/x;) are plotted as a function of the pressure,
as shown in Figure 5.7 for the system nitrogen—methane. From this diagram the
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Figure 5.7 K-faciors for the binary system nitrogen
(1)—methane (2) as a function of pressure at different tem-
peratures.
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Figure 5.8 Isothermal Px-diagram for the binary system methane (1)-ethane (2) at 250K.

K-factors for component 1 and 2 can be read directly for a given temperature
and pressure. While for the low-boiler N, K-factors larger than one are obtained,
K-factors smaller than one are observed for the high-boiler CHy. At the same time
the critical pressure of the mixture can be determined as the pressure where for
a given isotherm both K-factors for the considered nonazeotropic system show
a value of 1. This point can be found for all the isotherms above the critical
temperature of nitrogen (T, = 126.2 K).

With the help of an isothermal Pxy-diagram (see Figure 5.8) different phenomena
which occur near the critical point, such as retrograde condensation or reirog:ade
evaporation, can be explained.

For mole fractions lower than xz the VLE behavior is similar to subcritical
systems. Also in the range R—Caliquid and a vapor phase is obtained. But the vapor
phase now is depleted of the low boiling component with increasing pressure from
CCto C.

For compositions on the dew-point line in the range between C and C Ca pressure
decrease leads to the formation of a liquid phase. If the pressure is lowered further
the amount of liquid phase will increase by condensation. At line P; the largest
amount of liquid is found according to the law of the opposite lever arms. Below
CC the system shows VLE behavior like subcritical systems again. This means
vaporization instead of condensation is observed when the pressure is decreased,
until the dew-point line is reached again and thus only vapor exists.

The lower limit of the region of retrograde condensation CC is often called critical
condensation point. At CC the highest concentration of the low boiler in the vapor
phase is obtained in equilibrium with the liquid phase. At this point the dew-point
curve runs vertically and thus the slope for a given temperature is

(i’i> - (5.3)
dyr cc_ '



5 Phase Equilibria in Fluid Systems

100

>

P (bar)

0
250 300 350 400 450 500 550
T(K)

Figure 5.9 Experimental vapor pressures of ethane

and heptane and experimental PT-data of the system
ethane(1)-heptane (2) with different fixed compositions
[3]—vapor pressure, e liquid, A vapor, --- critical locus,
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The upper limit of the retrograde region is the critical point C, which satisfies the
following condition at constant temperature:

dp
) —o .
<le>c G4

The phenomenon that a liquid is formed by lowering the pressure at constant
temperature or, respectively, by increasing the temperature at constant pressure is
called retrograde condensation.

Retrograde condensation plays an important role in technical applications, for
example, in oil production, high-pressure pipelines, refrigeration processes and in
natural gas reservoirs, where temperature and pressure are high enough to produce
critical conditions.

The region in which vapor and liquid may coexist in a binary system is limited by
the vapor pressure curves of the pure components and the critical line. In Figure 5.9
the vapor pressure curves of the pure compounds of the system ethane—heptane
are shown together with the PT-curves of different fixed compositions of the liquid
and the vapor phase. The intersections of the dew point and the bubble point curve
fora given temperature and pressure mark the VLE for the chosen compositions in
the liquid and the vapor phase. The critical points of a binary system can be found
where a loop in Figure 5.9 is tangential to the envelope critical curve, also called
critical locus.

The typical VLE behavior of a binary system above the critical temperature
of one of the compounds looks like the behavior also shown in Figure 5.6
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Figure 5.10 VLE behavior of the following binary systems
near the critical point: (a) ethane (1)-heptane (2); (b) CO,
(1)—ethane (2) experimental data taken from [3].

for the system nitrogen—methane. Other examples are CO,-propane and
argon-krypton.

In a few cases a different behavior is observed. In particular, this can happen if
the system, for example, shows negative deviation from Raoult’s law or a pressure
maximum azeotrope. For the isobaric data of the system ethane-heptane and
the isothermal data of the system CO,—ethane this is shown in Figure 5.10. As
can be seen for the system ethane—heptane, closed curves like islands appear at
pressures of 68.9 and 86.2 bar. The reason is that at these pressures both compo-
nents are supercritical (ethane: P, = 48.8 bar, T, = 305.4 K; heptane: P, = 27.3 bar,
T. = 540.3 K) but the mixture is subcritical, which means coexisting liquid and
vapor phase. For the system CO,—ethane, the isotherms at 293 K and 298 K show
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Figure 5.11 Ternary phase equilibrium diagram for the
system ethanol-water—benzene at atmospheric pressure,
® — azeotropic points.

two critical points, one on the right and the other on the left-hand side, and thus
no coexisting phases in the medium concentration range between the two critical
points. This is caused by the fact that the system shows a pressure maximum
azeotrope.

For multicomponent systems, the phase equilibrium behavior can become
much more complicated. The phase equilibrium behavior of the ternary system
ethanol-water—benzene at atmospheric pressure is shown in Figure 5.11. It can
be seen that a ternary azeotrope exists besides three binary azeotropes. The binary
system benzene—water shows a large miscibility gap, which results in a miscibility
gap in the ternary system. In the diagram the binodal curve and a few tie lines
are shown. The tie lines connect the two liquid phases in equilibrium. While
the azeotropes ethanol-water and ethanol-benzene are homogeneous, the binary
azeotrope benzene—water and the ternary azeotrope are heterogeneous azeotropes.
The ternary azeotrope shows the lowest boiling point. This can be used to separate
the azeotropic system ethanol-water by the so-called azeotropic distillation" (see
Section 11.4). After condensation, the ternary azeotrope forms two liquid phases,
a benzene and a water-rich phase. The compositions of the two liquid phases are
marked in Figure 5.11 by the arrows. The occurrence of azeotropic behavior and
the selection of suitable solvents for azeotropic distillation are discussed in more
detail in Sections 5.6 and 11.4. In Figure 5.11 additionally the so-called boundary
residual curves are shown. While in binary systems the azeotropic point cannot be
crossed by ordinary distillation, boundary lines in ternary systems, and boundary

1) Nowadays. benzene is no more used be-
cause of its toxicity. In commercial plants,
it has been widely replaced by cyclohexane.
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Figure 5.12 PT-diagram of a natural gas mixture consisting
of 85.11 mol% methane, 10.07 mol% ethane, and 4.82 mol%
propane [4].

surfaces in quaternary systems have the same consequences. How these residual
curves are calculated is discussed in Section 11.3 in detail.

A natural gas is a typical multicomponent mixture;thus, a diagramlike Figure 5.8
is not appropriate for illustration. Therefore, often PT-projections of phase dia-
grams, which are valid for a fixed overall concentration, are used (see Figure 5.12).

5.1
Thermodynamic Fundamentals

While a large number of phase equilibrium data are available for binary systems,
much less data have been published for ternary systems and almost no data
can be found for multicomponent systems. Of course the various phase equilib-
ria for binary and multicomponent systems can be measured as a function of
temperature or pressure and composition. Today highly sophisticated, reliable,
and often computer-driven lab facilities are available to do so. Nevertheless, the
measurement of the phase equilibrium behavior of multicomponent systems is
very time consuming. For a ten component system, the number of experimental
VLE data required is listed in Table 5.1, assuming the data are taken at constant
pressure (e.g., atmospheric pressure) in 10 mol%-steps. For the pure components
this means that only 10 normal boiling points have to be measured. Then there
are 45 binary systems for which nine data points between 10 and 90 mol% are
measured, so that in total 405 data points have to be measured. A= can be seen in
‘Lable 5.1 there are additionally 120 ternary, 210 quaternary, 252 quinary, and many
higher systems. For the 10-cornponent systcm only one data point with 10 mol%
of every component has to be experimentally determined. A total number of 92378
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Table 5.1  Number of experimental data required for a
ten-component system at a given pressure (e.g., atmospheric
pressure), when the data are measured in 10 mol% steps.

Number of Number of Data points/ Total number of Total number of
components systems system data points/system data points

1 10 1 10 10

2 45 9 405 415

3 120 36 4320 4735

4 210 84 17640 22375

5 252 126 31752 54127

6 210 126 26460 80587

7 120 84 10080 90667

8 45 36 1620 92287

9 10 9 90 92377
10 1 1 1 92378

data points results, which have to be measured. If 10 data points can be measured
per working day, the measurements would last ~37 years [5].

Because of this time consuming effort reliable thermodynamic models are
required, which allow the calculation of the phase equilibrium behavior of mul-
ticomponent systems using only a limited number of experimental data, for
example, only binary data. From Table 5.1 it can be concluded that in this case
only 42 days are required to measure all pure component and binary data of a
ten-component system (in total 415 data points). Since a lot of binary VLE data can
be found in the literature [3, 6], even less than 42 days of experimental work would
be necessary.

Following Gibbs, phase equilibrium exists if the components show identical
chemical potentials in the different phases ¢ and B:

ud = wh (4.71)

1

The chemical potential is a thermodynamic quantity, which was first introduced
by Gibbs. It is not an easily imaginable quantity. Later it was shown by Lewis
(see Section 4.7.2) that the phase equilibrium condition given in Eq. (4.71) can be
replaced by the following so-called isofugacity condition:

f=f (4.75)

At low pressures, except for strongly associating compounds the fugacities of the
pure compounds are approximately identical to the vapor pressure or sublimation
pressure depending on the state (liquid or solid). In case of mixtures, at low
pressures the fugacity is nearly identical with the partial pressure of the compound
considered.

For practical applications, Eqs. (4.71) and (4.75) are not very helpful, since the
connection to the measurable quantities T, P and the composition in the liquid and
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vapor phase is missing to be able to calculate the required K-factors K; or separation
factors aj; for the design of the different separation processes.” Therefore, auxiliary
quantities such as activity coefficients y; and fugacity coefficients ¢; have been
introduced.

The fugacity coefficient ¢; of component i can be defined as the ratio of the fugacity
in the liquid phase L (vapor phase V) to the product of the mole fraction x; (y;) and
system pressure P. In the vapor phase the product y,P can be substituted by the
partial pressure p;:

L 5.5
O =P (5:3)
v v
¢ = f—,, =1 (5.6)
Yi pi
The activity coefficient y, is defined as follows:
Vi = J (5.7)

x,'f;O

whereby the standard fugacity i’ can be chosen arbitrarily.

Using the different definitions for the fugacities two different approaches can
be derived for the description of phase equilibria. Starting from Eq. (4.75), the
following relations for VLE are obtained [7}:

fr=£ (5.8)
Approach A:

xip; = yig) (5.9)
Approach B:

xvf® = yip! P (5.10)

In Approach A, the fugacity coefficients of the liquid ¢! and vapor phase ¢! are
needed. They describe the deviation from ideal gas behavior and can be calculated
with the help of equations of state, for example, cubic equations of state and reliable
mixing rules. [n Approach B, besides the activity coefficients y; a value for the
standard fugacity f° is required. In the case of VLE usually the fugacity of the pure
liquid at system temperature and system pressure is used as standard fugacity. For
the calculation of the solubilities of supercritical compounds Henry constants are
often applied as standard fugacity (see Section 5.7).

2) In the case of distillation K; is defined as
the ratio of the vapor phase mole fraction to
the liquid phase mole fraction (K; = y;/xi).

and the separation factor «j; is the ratio of
the K-factors (aj; = Ki/K;).
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Using Egs. (5.8) and (5.6), the fugacity of the pure liquid at system temperature
can directly be calculated, since the pressure is identical with the vapor pressure of
the pure liquid which is in equilibrium with pure vapor:

ST PY) = o Py = ) P} = f P (5.11)

where the fugacity coefficient in the liquid or vapor phase in the saturation state ¢}
or ¢ can be replaced by the fugacity coefficient at saturation pressure ¢*.

To get the fugacity of the pure liquid not at the vapor pressure P}, but at
system pressure P, the compression or expansion of the pure liquid from the vapor
pressure to the system pressure has to be taken into account. This can be done
using Eq. (2.71):

91ln fL L
(‘ n/ ) _ 4 (5.12)
aP ) RT

With the assumption that the molar liquid volume v! is constant in the pressure

range covered, Eq. (5.13) is obtained for the standard fugacity at system temperature
and system pressure, where the exponential term in Eq. (5.13) is called Poynting
factor Poy;:

- (P—P)

0 S ps Yi
0T, P) = ¢S P
j: ( ) = ¢; P} exp RT

Combining Egs. (5.10) and (5.13) leads to the following relation for the description
of VLE with the help of activity coefficients:

— ¢ P*Poy, (5.13)

xiyip} PiPoy; = yip\' P (5.14)
Introducing the auxiliary quantity ¢; gives

SPo
xiyipiP; = y;P with ¢ = ‘p'(p—vy’

If the pressure difference P — P? is not too large, the value of the Poynting factor is
approximately 1. This is shown below for the system ethanol-water at 70 ‘C.

(5.15)

Example 5.1

Calculate the Poynting factor for ethanol and water at 70 "C for pressure differences
of 1, 10 and 100 bar. At 70 'C, the following molar volumes can be used:
ethanol: 61.81 cm?/mol, water 18.42 cm? /mol.

Solution

For a pressure difference of 1 bar (e.g. system pressure P = 5 bar, vapor pressure
P} = 4 bar) the following Poynting factors are obtained for ethanol and water:

0.06181 -1
PO¥etmanol = XP (231433 - 343,15 — 002

o 0.01842 - 1 L0006
=&XP—537 35 .5 . = L.
Ywater = &XP 0031433 - 343.15

189
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In the same way the following values are obtained for a pressure difference of 10
and 100 bar:

10 bar: PoYeihane = 1-022, Poypier = 1.006
100 bar: POYethanol = 1.242, Poyyaier = 1.067

It can be seen that at typical pressure differences (e.g., P — P{ < 1bar) in
distillation processes the Poynting factors show values near unity. Because of the
larger molar volume of ethanol, the deviation from unity is larger for ethanol than
for water.

Besides the Poynting factor, the real vapor phase behavior has to be taken into
account in Egs. (5.14) and (5.15). This can be done with the help of equations
of state. Since only the vapor phase nonideality has to be considered, simple
equations of state, for example, the virial equation of state can be applied, which
are only able to describe the PvT behavior of the vapor phase. For moderate
pressures the use of second virial coefficients is sufficient. In the case of systems
with strong associating compounds such as carboxylic acids or hydrogen fluoride
this approach cannot be applied any more. In this case the deviation from
ideal gas behavior caused by the strong interactions — comparable to chemical
reactions — has to be taken into account by so-called chemical contributions (see
Section 13.2).

Example 5.2
Calculate the fugacity coefficients ¢!, ¢, and the auxiliary quantity ¢; for the
system ethanol-water at 70°C using the virial equation. At 70°C the following

second virial coefficients should be used for the system ethanol(1)—water(2):

By = —1100cm?/mol
By, = —850cm?/mol
Bzz = —650 cm3/mo]

The following liquid molar volumes can be used for the calculation of the
Poynting factors: water 18.42 cm®/mol and ethanol: 61.81 cm?/mol.
Solution

The calculation procedure for the system ethanol (1)-water (2) is demonstrated for
the data point x; = 0.252,y; = 0.552, and P = 62.39 kPa listed in Table 5.2.
Using Eq. (4.97) for the calculation of the fugacity coefficients in the vapor phase:

P
IngY=|2> yBj-B|—-= (4.97)
- RT
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Table 5.2 Vapor-liquid equilibrium data for the system
ethanol (1)-water (2) at 70 C [8].

x Y, P (kPa)
0.0 0.0 31.09%
0.062 0.374 48.33
0.095 0.439 53.2
0.131 0.482 56.53
0.194 0.524 60.12
0.252 0.552 62.39
0.334 0.583 64.73
0.401 0.611 66.34
0.593 0.691 70.11
0.680 0.739 71.23
0.793 0.816 72.35
0.810 0.826 72.41
0.943 0.941 72.59
0.947 0.945 72.59
1.0 1.0 7233

and for the pure compounds:
B;:P

Ingf = —L 2.10
n g; RT (2.108)

where the second virial coefficient B of the mixture can be obtained using the
following relation:

B=) ) vyBs (4.89)
i
Using Eq. (4.89) the following virial coefficient is obtained for the given vapor
phase composition:

B = 0.552% - (—1100) + 2 - 0.552 - 0.448 - (—850) + 0.448% - (—650)
= —886 cm*/mol

Using this value the fugacity coef ficient of ethanol can be calculated directly using
Eq. (4.97):

62.39
In @y = [2(0.552 - (—1100) + 0.448 - (—850 886) —————
ney=[2( (-11000+ (=850) + 886) 31433 343,15
= —0.0238
@Y =0.9764
3) Unfortunately, in [8] the pure component the available constants for the Antoine
vapor pressures were not measured. There- equation (see Figure 5.30).

fore, these values were added by using
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The fugacity coefficient of ethanol (1) in the saturation state is obtained as

~1100- 72.30
s 20 0e 0278
In¢t = 831433 343.15 787
¢ = 0.9725

In a similar way, the following values are obtained for water (2):

@, = 0.9862
@5 = 0.9929

With the Poynting factors

0.06181 - (0.6239 — 0.723)
0.0831433 - 343.15

0.01842 - (0.6239 — 0.3109)
0.0831433 - 343.15

the following ¢; values are obtained for this data point:

0.9725 - 0.9998

= 0.9998

POYelhanol = exp

Poywater = €xp = 1.0002

¢ethanol 0.9764
po L 0992910002 oo
water — 0.9862 =1

For the whole composition range the ¢;-values are shown in Figure 5.13. It can be
seen that in the whole composition range, the ¢;-values are between 0.98 and 1.01.

As shown in Example 5.2, for nonassociating compounds in contrast to strongly
associating compounds such as carboxylic acids or HF the fugacity coefhcients
in the vapor phase ¢ and in the saturation state ¢{ show very similar values at
moderate pressures, so that ¢;-values around unity are obtained. This means that
for nonassociating systems the following simplified relation can often be used to

describe the VLE behavior:
xiyi P} ~ y;iP (5.16)

Using the different approaches, the following relations are obtained to calculate
the required K-factors K; and relative volatilities (separation factors) a;;:

L L,V

i (pi K; i/ Xi ‘P,ﬂo
K=t_% G _h_wa_ s (5.17)

Xio¢ K vl el

: i P K; i/ %i i P}
K’izlf\"“.ayl ag:—:uwy' (518)

xi P K vi/5  vF

As can be seen later, both approaches allow the calculation of the VLE behavior of
multicomponent systems using binary data alone.

When the advantages and disadvantages of different approaches are compared,
approach A (¢—¢ approach) shows various important advantages over Approach B,
for example, that the same auxiliary quantities are used to describe the real behavior
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Figure 5.13 ¢;-values for the system ethanol(1)-water (2) at 70 C.

in the liquid and vapor phase. No additional model is required to account for the
real behavior of the vapor phase. Furthermore, no problem arises with supercritical
compounds, since no standard fugacity (vapor pressure) is required. At the same
time densities, enthalpies (including heats of vaporization), heat capacities, and
so on, as a function of temperature, pressure, and composition can be calculated
for both phases, which are required as additional information in Approach
B - the so-called y —¢-approach (see Section 5.2). The disadvantage is that for the
calculation a computer is required. On the other hand, the strength of Approach
B is its relative simplicity and the opporiunity to have independent correlations for
each quantity, which can be fitted as accurately as possible and as necessary.

5.2
Application of Activity Coefficient Models

The equation of state approach is very attractive for the calculation of VLE. But it
requires an equation of state and reliable mixing rules, which are able to describe
the PvT behavior not only of the vapor but also of the liquid phase with the required
accuracy. In spite of the progress achicved in the last 20 years, up to now there is
no universal equation of state and mixing rule which can be successfully applied to
all kind of systems in a wide temperature and pressure range for pure compounds
and mixtures.

For the calculation of VLE with Approach B often the simplified Eq. (5.16) is
applied. Then besides the activity coefficients as a function of composition and
temperature only the vapor pressurcs of the components are required for the
calculation.
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Using Eq. (5.16) the required activity coefficients and the excess Gibbs energies
can directly be derived from complete experimental VLE data. This is shown in
Example 5.3 for the binary system ethanol-water measured at 70 °C.

Example 5.3

Calculate the activity coefficients and the excess Gibbs energies for the system
ethanol (1)-water (2) at 70°C as a function of composition using Eq. (5.16) and
Table 5.2.

Solution

For the system ethanol (1)—water (2), the calculation of the activity coefficients and
the excess Gibbs energy is demonstrated for a mole fraction x; = 0.252.

Using the simplified Eq. (5.16), the activity coefficients can be calculated by the
following relation:
~ M
- Xi P?

Vi

For the selected composition the following activity coefficients are obtained for
ethanol (1) and water (2):

05526239
Yi= 0.252-7230
0.448 - 62.39
yp =~ 9527 9 202
0.748 - 31.09

With the help of these activity coefficients the excess Gibbs energy can be calculated
using Eq. (4.80).

gE = RT (X] ln-y; + x; In }’2)
gE = 8.31433 - 343.15(0.252 In 1.890 + 0.748 In 1.202) = 850.2 ]/mol

E
g—T = 0.252In 1.890 + 0.748 In 1.202 = 0.298

For the other compositions the activity coefficients, the excess Gibbs energies
and the dimensionless excess Gibbs energies (gE/RT) are listed in Table 5.3.
Furthermore the values are shown in the graphical form in Figure 5.14 together
with the correlation results using the Wilson model (see Chapter 5.3).

Depending on the values of the activity coefficients y; and y, and the vapor
pressures P} and P5, a very different VLE behavior is observed. In Figure 5.15,
the vapor phase composition y,, the activity coefficients In y;, the pressure P at
isothermal conditions and the temperature T at isobaric conditions as a function of
the mole fraction of component 1* in the liquid (vapor) phase are shown for binary

4) In the case of binary VLE the low boiling
substance is always designated as compo-
nent 1.
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Table 5.3  Experimental data (8] for the system ethanol
(1)-water (2) at 70 'C and the derived activity coefficients
and excess Gibbs energies.

x n P (kPa) n V2 g* ()/mol) g5IRT
0 0 31.09 1.000 0 0
0.062 0.374 48.33 4.032 1.037 345.0 0.1209
0.095 0.439 53.2 3.400 1.061 483.9 0.1696
0.131 0.482 56.53 2.877 1.084 594.6 0.2084
0.194 0.524 60.12 2.246 1.142 753.2 0.2640
0.252 0.552 62.39 1.890 1.202 850.2 0.2980
0.334 0.583 64.73 1.563 1.304 929.2 0.3257
0.401 0.611 66.34 1.398 1.386 940.9 0.3298
0.593 0.691 70.11 1.130 1.712 831.1 0.2913
0.68 0.739 71.23 1.071 1.869 703.3 0.2465
0.793 0.816 72.35 1.030 2.069 495.5 0.1737
0.81 0.826 72.41 1.021 2.133 459.3 0.1610
0.943 0.941 72.59 1.002 2.417 148.6 0.0521
0.947 0.945 72.59 1.002 2.423 138.9 0.0487
1 1 72.3 1.000 0 0

6

5

4
T - ~

@
3 w
[« )
2 —
1 -
0 0.5 1.0

X '

Figure 5.14 Concentration dependence of the activity coeffi-
cients and of the dimensionless excess Gibbs energy for the
system ethanol (1)-water (2) at 70 'C [8] — Wilson model.

systems with very different real behavior. [n the two diagrams on the right-hand
side the pressure and temperature are not only given as a function of the liquid
phase (continuous boiling point line) but also as a function of the vapor phase
composition (dashed dew-point line).

While the first system benzene—-toluene shows nearly ideal behavior (y; = 1), the
aclivity coefficients for the next three systems steadily increase (positive deviation
from Raoult’s law). The influence of the activity coefficients can particularly be
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Figure 5.15 Different types of vapor-liquid equilib-
rium diagrams for the following binary systems: (1) ben-
zene (1) -toluene (2); (2) methanol (1)-water (2); (3)

1 propanol (1)-water (2); (4) 1-butanol (1)-water (2);
(5) dichloromethane (1)-2-butanone (2); (6) acetone
(1)—chloroform (2).
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recognized from the pressure as a function of the liquid phase mole fraction
x; at a given temperature. While a straight line for the pressure is obtained
in the case of the nearly ideal system benzene-toluene following Raoult’s law,
higher pressures than the values obtained using Raoult’s law are observed for
the system methanol-water (y; > 1). With increasing activity coefficients as in
the case of the system 1-propanol-water (y; > 1) the pressure even shows a
maximum. At the same time a minimum of the temperature is observed in the
isobaric case. At the pressure maximum (respectively minimum of the temper-
ature) the boiling point line and the dew-point line meet. This means that the
composition in the liquid and the vapor phase becomes identical and in the
y—x-diagram an intersection of the 45 line is observed. These points are called
azeotropic points. Systems with an azeotropic point cannot be separated by ordinary
distillation.

Whenthe values of the activity coefficients further increase, twoliquid phases can
occur, as in the case of the system 1-butanol—water. If the two liquid phase region
(shown by the horizontal line) intersect the 45" line in the p—x-diagram, a so-called
heterogeneous azeotropic point occurs. In the case of heterogeneous azeotropic
points the condensation of the vapor leads to the formation of two liquid phases. [n
the system 1-butanol-water a butanol-rich and a water-rich phase is formed. The
pressure (temperature) and the vapor phase composition show constant values for
the binary system in the whole heterogeneous region.

Besides the large number of systems with positive deviation from Raoult’s
law (y; > 1), sometimes systems with negative deviation from Raoult’s law
(vi < 1), are observed. In Figure 5.15, the systems dichloromethane-2-butanone
and acetone—chlorof orm were chosen as examples. Because of the strong hydrogen
bonding effects between the two compounds, associates with low volatility are
formed in these systems. This results in the fact that the pressure above the liquid
mixture is lower than the pressure assuming ideal behavior (y; = 1). Depending
on the vapor pressures azeotropic behavior can also occur in systems with negative
deviations from Raoult’s law, as in the system acetone-chloroform. However, in
contrast to systems with positive deviations from Raoult’s law, in these systems
azeotropic points with a pressure minimum (temperature maximum) are formed.
Binary systems with negative deviation from Raoult’s law (y; < 1) cannot show
two liquid phases. The occurrence and disappearance of binary azeotropes are
discussed in more detail in Section 5.6.

53
Calculation of Vapor-Liquid Equilibria Using gt-Models

As discussed in Section 5.1, besides the vapor pressure of the pure compounds
an activity coefficient model is required, which allows the calculation of the
VLE behavior using only binary experimental data. Using Eq. (4.85) an analytical
expression for the activity coefficients can be derived if an expression for the excess
Gibbs energy is available. By definition, the expression for the excess Gibbs energy
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must obey the following boundary condition:
gE - 0 for x;, > 1

For the binary case the excess Gibbs energy gt shows a value of 0 for x; = 1 and
x; = 1. The simplest expression which obeys the boundary conditions is the Porter
equation [9]:

E
g
2 = Ax)x 5.19
RT 1% (5-19)
In this equation, A is a parameter which can be fitted to experimental data. Using
Eq. (4.85) an analytical expression for the activity coefficients can be derived directly
from Porter’s expression [9]. For the derivation it is advisable to replace the mole
fractions by the mole numbers:

(n + nz)gE N GE _ Anqn;

RT RT ni+n
aGE/RT Any (n; + ny) — Anny
nyy = —F— = 2
am T.P.ny (n + ny)
Iny; = Axf

In the same way, the following expression is obtained for component 2:
Iny, = Ax?

Porter’s equation can be applied if g& shows a symmetric curvature, this means an
extreme value at equimolar composition (x; = 0.5). This behavior is only observed
for chemically similar compounds of similar size.

Forthe description of gt/ RTforallother binary systemsamore flexible expression
is required. The simplest way is the introduction of further adjustable parameters,
as in the Redlich—Kister expansion [10]:

E

%=x1x2[A+B(xl—x2)+C(x1—x2)2+~~] (5.20)

With the help of the flexible Redlich—Kister expansion all kinds of concentration
dependencies of g& for binary systems can be described. The contribution of
the different parameters to the value of the excess Gibbs energy is shown in
Figure 5.16. However, both the Porter and the Redlich—Kister model can only
be used for binary systems. Furthermore, the correct temperature dependence
of the activity coefficients cannot be described using temperature-independent
parameters.

In practice, gE-models are required which allowthecalculation of the real behavior
of multicomponent systems in the whole composition and a wide temperature
range using binary data alone. The largest part of the VLE data (88.5%) has
been published for binary systems. Only 10.3% of the VLE data published are for
ternary and approx. 1% for quaternary systems [3]. This means there is nearly
no chance to find the required experimental VLE data for quaternary and higher
systems.
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Figure 5.16 Contribution of the different
parameters of the Redlich—Kister expansion
A to the value of the excess Gibbs energy.
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A sophisticated thermodynamic model should take into account the various
contributions to the excess Gibbs energy to be able to describe not only the
concentration, but also the temperature and pressure dependence correctly:

gt = hE — TsF = uf + pvE — TsF (5.21)

Most of the excess properties are available experimentally. While the gE-values can
be obtained from VLE measurements (see Example 5.3), the excess enthalpies hE are
obtained from calorimetric and the excess volumes vE from density measurements.
When the excess properties mentioned before are known, other excess properties,
for example the excess entropy st, can directly be derived, as shown in the next
example.

Example 5.4

Construct a diagram with the thermodynamic excess properties g€, hE, and —Ts"
for the system ethanol (1)-water (2) from the VLE data of Mertl (8] (Tables 5.2 and
5.3) and the excess enthalpies [11] in Table 5.4.

Solution

The gE-values can directly be calculated from the activity coefficients derived from
the experimental VLE-data. The values for g&/RT were already listed in Table 5.3.
At a concentration of x; = 0.252 the following value for the excess Gibbs energy is
obtzined:

gE = 8.31433 343.15-0.298 = 850.2 ] /mol.
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Figure 5.17 Excess Gibbs energy, excess enthalpy, and
—Tst for the system ethanol (1)-water (2) at 70°C.

The value for — Tt can be calculated from the difference g&—hF:

_TE = gE — BE

For the whole composition range the results are shown in Figure 5.17.

When the excess properties are known, the values of the activity coefhicients
can be extrapolated to other conditions. Applying the van't Hoff equation (see
Appendix C), the following temperature and pressure dependences of the excess
Gibbs energy are obtained:

(gE/T)) _ B

(a

oT T?

respectively:

3(g%/T) _
s/D /.

E
(ég_) .
opP Tx

and

(5.22)

(5.23)

(5.24)
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The temperature dependence of the molar excess enthalpy can be expressed by the
molar excess heat capacity cf.

(z>h5> . (5.25)
- =cC :
aT Jp, "

With the help of these expressions, the temperature and pressure dependence of
the activity coefficients can be derived directly:

—E

0 11’1 Yi o
(3 (1/T))p_x _ (5.26)
dlny l_/l-E
( ap”) = (5.27)
T.x

The partial molar excess properties vary with composition. They can be derived
directly from the curvature of the excess enthalpies ht or excess volumes vE as a
function of the mole fraction. How the partial molar properties can be determined
by the tangent line for the excess enthalpy and a composition of x; = 0.252 is
shown in Figure 5.17. Using the partial molar excess values ﬁfand VF the activity
coefficient at a different temperature or pressure can be determined. But it has
to be considered that these partial molar excess properties do not only depend on
composition but also on temperature and pressure.

While the pressure influence on the activity coefficient can usually be neglected
in the case of VLE, the temperature dependence should be considered. This is
shown in Example 5.5.

Example 5.5

Estimate the activity coefficients for x; = 0.252 at 50°C for the system ethanol
(1)-water (2) using the activity coefficients given in Table 5.3 and the experimental
excess enthalpy data from Table 5.4. Simplifying, it should be assumed that the
excess enthalpy hF is constant in the temperature range considered.

Activity coefficients at 70 °C:

y1 = 1.890
Y2 = 1.202
Solution

For a mole fraction of x; = 0.252, the following values for the partial molar excess
enthalpy can be read from Figure 5.17:

Kl
|

= 725 J/mol
—335J/mol

iy
N
1

201



202 | 5 Phase Equilibria in Fluid Systems

Table 5.4  Excess enthalpy data [11] for the system ethanol (1)-water (2) at 70 'C.

x| hE ()/mol) x hE ()/mol)
0.0303 -108.7 0.3962 61.6
0.0596 -173.7 0.4502 101.3
0.0896 —-200.1 0.4980 129.7
0.1238 -194.0 0.5802 151.3
0.1239 -196.4 0.5889 153.3
0.1697 -160.9 0.6976 135.8
0.1905 -149.9 0.7439 115.0
0.2402 -92.2 0.8022 84.0
0.3021 -24.8 0.8457 62.0
0.3514 228 0.8957 393

While for the partial molar excess enthalpy of ethanol (1) a positive value is obtained,
a negative value is obtained for water (2) for this composition. Following Eq. (5.26)
one obtains with the help of these values

—E

I y(Ty) = Inye(Ty) + 7o (2 ])
n yi(Ty) = In yi( 1)+R L T)

the values for the activity coefficients at 50 “C can be calculated:

In 1(323.15K) = In 1.890 + — 2> - ] )
n 3 = In 1. -
A ) 831433 (323.15  343.15
¥1(323.15K) = 1.920
335 1 1
I 15K) = In 1.202 — _
fa323 BRI 8.31433 (323.15 343.15)

y2(323.15K) = 1.193.

It can be recognized that different temperature dependencies are observed for
the two compounds involved, caused by the different sign of the partial molar
excess enthalpies. While the activity coefficient for ethanol decreases, the activity
coefficient for water increases with increasing temperature in the temperature
range covered. But as can be seen from Figure 5.17 the temperature dependence of
the partial molar excess enthalpies strongly depends on composition. For example,
for compositions x; < 0.1 negative partial molar excess enthalpies for ethanol
would result.

Example 5.6

Calculate the activity coefficient at infinite dilution of ethanol (1) in n-decane (2) at
353.15 and 433.15 K from the y;* value at 338.65 K [3]:
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assuming that the value of the partial molar excess enthalpy of ethanol
_.E’ .
h, * = 19000 J/mol [3] is constant in the temperature range covered.

Solution

Using Eq. (5.26), the following activity coefficients result:

19000 1 1
In ¥°(353.15K) = In15.9+ -
8.31433 \ 353.15  338.65

= 2.7663 — 0.2771 = 2.4892
Yre (353.15K) = 12.05

19000 [ 1 1
In y°(433.15K) = In 15.9 -
Vil )= 159+ =1ass (433.15 338.65)

= 2.7663 — 1.4722 = 1.2941
y° (433.15K) = 3.65

It can be seen that the activity coefficient at infinite dilution of ethanol in n-decane
decreases by a factor greater than 4 when the temperature is increased from 338 to
433 K.

From these results it can be concluded that the temperature dependence cannot
be neglected. While positive values of the partial molar excess enthalpies lead to
a decrease of the activity coefficients with increasing temperature, negative values
of the partial molar excess enthalpies lead to an increase of the activity coefficients
with increasing temperature. The variation of the molar excess enthalpy with
composition and temperature is often very complex. In the system ethanol-water
around 70 °C even the sign changes with composition, as shown in Figure 5.18.

1200 A
800
400

0¢

hE (J/mol)

400 1

800 1

1200 -, . .

Figure 5.18 Selected excess enthalpy data at different tem-
peratures for the system ethanol-water [3].
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Figure 5.19 Excess volumes of the system ethanol (1)-water (2) at 20 °C [3].

Example 5.7

Estimate the difference between the sum of the volumes of the pure compounds
and the volume of the resulting binary mixture of 0.4 mol ethanol and 0.6 mol
water at 20 °C. Additionally please check the influence of a pressure difference of

2 bar on the activity coefficient qualitatively.
In the table below the densities at 20°C and the molar masses are given {3).

(see also Example 4.1)

Compound Density (g/cm?) Molar mass (g/mol)
Ethanol 0.7893 46.069
Water 0.9982 18.015

The excess volumes for the system ethanol (1)-water (2) at 20°C are shown in
Figure 5.19.

Solution

To determine the volume of the pure compounds first the masses have to be

calculated:
18.43

0.7893

10.81
1081 _ 1083 cm?
0.9982

Methanol = 0.4 - 46.069 = 18.43 g~ Vethanol = =23.35 cm’

my,0 = 0.6-18.015=10.81 g VHZO =
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This means that the total volume of the pure compounds under ideal conditions is
34.18cm?.

For the calculation of the correct mixture volume the excess volume has to be
known. From Figure 5.19 an excess volume of —1.10 cm? /mol for a composition of
x; = 0.4 can be read. Using this value the volume of the mixture can be calculated
using Eq. (4.57):

V= E x;v;, + vE

v=34.18 — 1.10 = 33.08 cm’/mol

This means that the volume of the mixture is approx. 3.2% lower than the volume
of the pure compounds, this means starting from 100 cm? only 96.8 cm® remain.

For x; = 0.4 for both components a partial molar excess volume of —1.1 cm?/mol
(intersection at x; = 0 and x; = 1 of the slope at x; = 0.4) is obtained. Using this
value the following change of the activity coefhicients is obtained, when the pressure
is increased by 2 bar:

i (P vE ~0.0011 -2
n e S (P-P))= ——— = —_9026-10"°
vi(P1)  RT 0.0831433 - 293.15
(P
vitP2) _ 4 9999
Yi(P1)

Because of the negative sign of the partial molar excess volume the activity
coefficient decrease with increasing pressure. But it can be seen that in contrast
to the temperature influence caused by hE, the pressure influence on the activity
coefhicients is negligible for typical pressure differences observed for VLE. But
for large pressure differences the effect has to be taken into account. This is
demonstrated in Section 5.8 for LLE.

The excess properties hE and vE do not only depend on temperature but also
on pressure. This is shown in Figure 5.20 for the excess volumes of the system
ethanol-water at 298 K. While for an equimolar mixture approximately a value of
—1 cm’/mol is observed at low pressures, the excess volume decreases to values
smaller than —0.3 cm?/mol at pressures above 2000 bar.

The temperature dependence of the excess Gibbs energy and the activity coefhi-
cients can be derived from a gf—~hE-diagram (Figure 5.21). Depending on the sign
of the excess properties gt and hE four quadrants are obtained.”

5) However, following Eq. 5.26 not the excess molar excess enthalpies can be obtained,

enthalpy but the partial molar excess
enthalpy is the determining property to
describe the temperature dependence
of the activity coefficients. Depending
on the curvature of hf as a function
of composition for positive (negative)
values of hE negative (positive) partial

for example, if an S-shaped curvature
occurs as shown in Figure 5.18. Therefore,
the following statements are only valid
conditionally. But in most cases the sign
of the partial molar and the molar excess
enthalpy are identical (exception for
S-shaped curves).
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Figure 520 Excess volume of the system ethanol (1)-
water (2) at 323K as a function of pressure [3, 12].

Athermal mixture (hE = 0)

Y
el ,.o1q
vi>1 g Yi>
i/ AT>0 wi/oT<0
4 Regular solution
P theory (s&=0)
1l /
hE
i<
dyi/aT>0 .~
vi<1
E)yi/BT <0
" v

Figure 5.21 Representation of the temperature dependence
of the activity coefficients in a gf—hE-diagram.

For positive deviations from Raoult’s law (g > 0, y; > 1), depending on the sign
of the excess enthalpy two cases can be distinguished. In the case of endothermic
behavior (hE > 0), the excess Gibbs energy and therewith, the values of the activity

coeflicient decrease with increasing temperature.
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Most of the binary systems belong to quadrant [, this means they show positive
deviations from Raoult’s law and endothermic hE behavior. This means that these
systems become more ideal with increasing temperature. In the case of exothermal
behavior (quadrant II), the activity coefficient will increase with temperature;
this means stronger deviation from Raoult’s law is obtained with increasing
temperature. Only a few systems belong to quadrant I1 (g€ > 0, hE < 0).9 Just these
systems, for example, alcohol-water-, alkyl amine—water systems, and so on, are
of great technical importance. Systems with negative deviation from Raoult’s law
(8% < 0 (quadrants III and [V)) are significantly more rare. In these systems the
interaction energies between diff erent components are stronger than those between
the pure components, as for example, in the system acetone-chloroform. Because
of the strong hydrogen bondings complexes are formed, which are less volatile.
The systems which belong to quadrant III become more ideal, since for the excess
Gibbs energy less negative values are obtained with increasing temperature. For
systems in quadrant IV stronger negative deviation from Raoult’s law are observed
with increasing temperature. In Figure 5.21 also the lines for the so-called athermal
mixture (hf =0, i.e.. gt = —TsF) and the regular solution (st = 0, i. e.,g¥ = hF)
are shown.

It would be desirable to apply analytical expressions for the activity coefficient,
which are not only able to describe the concentration dependence, but also
the temperature dependence correctly. Presently, there is no approach completely
fulfilling this task. But the newer approaches, as for example, the Wilson [13], NRTL
(nonrandom two liquid theory) [14], and UNIQUAC (universal quasi-chemical
theory) equation [15] allow for an improved description of the real behavior of
multicomponent systems from the information of the binary systems. These
approaches are based on the concept of local composition, introduced by Wilson
[13]. This concept assumes that the local composition is different from the overall
composition because of the interacting forces. For this approach, different boundary
cases can be distinguished:

Because of the very similar interacting forces, the local composition is identical
with the macroscopic composition (random mixture, almost ideal behavior
vi=1).

Two liquid phases are formed, since molecule 2 has no tendency to locate near
molecule 1 and vice versa (strong positive deviation from Raoult’s law, y; > 1).
The interacting forces between the different molecules are much larger than
those between the same molecules, so that complexes are formed (negative
deviation from Raoult’s law, y; < 1).

The different equations are represented in detail in the literature. To derive a
reliable g&- resp. activity coefficient model using Eq. (4.85) the different excess
properties (hE, st, vE) should be taken into account. Flory [16] and Huggins
[17, 18] independently derived an expression for gt starting from the excess entropy

6) Sometimes only in a limited concentration
range (see Figure 5.18).
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of athermal polymer solutions that means hE = 0 using the lattice theory. In these
mixtures with molecules very diff erent in size, volume fractions ¢; instead of mole
fractions are used. In binary systems the volume fraction can be calculated by the
following expressions using the molar volumes v;:

¢ . X1 _ X Vy (5 28)
T xav + vy 2T v+ xav ‘

Using the expression for the excess entropy:

s£=—R (x1 n & x; In 42) (5.29)

X1 X2

an expression for the excess Gibbs energy can be derived,

g8 = —TsE = RT (x] In o +xIn ¢—2) (5.30)

X1 xX)

which can be used to derive an expression for the activity coefficients y; with the
help of Eq. (4.85) for an athermal solution (hf = 0, see Figure 5.21):

my=m%4i1-% (5.31)
Xi X

With the help of this expression it can be shown that strong negative deviations
from Raoult’s law result for systems with compounds very different in size. From
Eq. (5.31) it can easily be understood why the removal of the remaining monomers
from polymer solutions is much more difficult than expected.

Example 5.8

Calculate the activity coefficient of the monomer in a polymer using the athermal
Flory—Huggins equation. For the calculation the following volumes should be
used:

v; =70 cm®/mol v, = 70000 cm? /mol

Solution
The calculation is performed for a mole fraction of x; = 0.2. For this composition
the following volume fractions are obtained:

0.2-70
~ 0.2-70+ 0.8- 70000
Using these values the activity coefficient y; can be calculated directly:

oy =2499.10"* ¢, =0.99975

2.499.107* 2.499.107*
n +1-—-
0.2 0.2
3.39.1073

= —5.686

Iny

4!

For the whole composition range the activity coefficient of the monomer (1) as a
function of the weight fraction of the polymer is shown in Figure 5.22. It can be
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Figure 5.22 Calculated activity coefficients of the monomer
and resulting system pressures as a function of the weight
fraction of the polymer for a polymer solution using the
Flory—Huggins equation.

seen that the volatility (activity coeflicient) of the monomer drastically decreases
with decreasing composition of the monomer.

To beable to account for contributions caused by the excess enthalpy hE, a simple
one parameter term was added to the Flory—Huggins equation:
E
g ¢ $2
== In — In —= 5.3
RT = 9™ + %3 In % + $192x {5.32)

Starting from Eq. (5.32) the following expression is obtained for the activity
coefficient of the monomer:

ol &

Inyr=1In=+1-=—+x¢3 (5.33)
X1 X1

Wilson started from a similar equation as Flory and Huggins for the derivation of
his equation for arbitrary mixtures apart from polymers [13]. However, instead of
the true volume fractions Wilson used the so-called local volume fraction &; in the
cxpression for the excess Gibbs energy:

E
8 N
o = Zx, In . (5.34)

Local mole fractions were introduced by Wilson to define the local volume fraction,
where the deviation from the macroscopic concentration is taken into account with
the help of interaction energies between the different compounds using Boltzmann
factors. With the introduction of the auxiliary quantities A;; the equations for gF and
yi can be derived.” The great advantage of the Wilson ¢quation is that only binary

7) 'the detailed derivation of the expression equation starting from Eq. (5.34) is given
for the activity coefficients of the Wilson in Appendix C, E1.
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and no ternary or higher parameters are required for the calculation of the
real behavior of multicomponent systems. But the Wilson equation has the
disadvantage, as in contrast to other gE-models it cannot be applied to calculate LLE
(see Appendix C, E3).

Example 5.9
Compare the experimental vapor phase mole fractions published by Hiaki et al. [19]
for the system acetone (1)—chloroform (2)-methanol (3) at 1 atm with the calculated
ones using the binary Wilson parameters A\ listed in Table 5.5 assuming ideal
vapor phase behavior.

For the calculation, the following molar volumes:

v, = 74.04 cm® mol™': v, = 80.67 cm® mol ': v; = 40.73 cm® mol ™'

and constants for the Antoine equation (log P{(mm Hg) = A — B/(9("C) + C)
should be used to calculate the vapor pressures.

Component A B C
Acetone 7.1327 1219.97 230.653
Chloroform 6.95465 1170.97 226.232
Methanol 8.08097 1582.27 239.7

Solution

The calculation should be performed for the following composition at
T =331.42K:

x = 0.229,x; = 0.175,x3 = 0.596, y; = 0.250, y, = 0.211, y; = 0.539.

Using the Wilson interaction parameters listed in Table 5.5 at 331.42 K the following
values for Aj;; are obtained:

AXqy = 375.2835 — 3.78434 - 331.42 4+ 0.0079107 - 331.42% = —10.02 K

Table 5.5 Wilson interaction parameters (K) for the ternary
system acetone (1)-chloroform (2)—-methanol (3) (definition
of ay, by, c;, see Eq. (5.35).

i J a(K aji (K) b bj cj (K7) Gi (K7)

1 2 375.2835 —-1722.58 —3.78434  (.405502 7.91073E-03  -7.47788E-03
31.1208 747.217 -0.67704  —0.256645 8.68371E-04 —1.24796E—-03
2 3 -1140.79 3596.17 2.59359 —6.2234 3.10E-05 3.00E-05
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[n the same way one obtains
Axy; = —421.03K, Ax3 = —97.88K, Ar3;= 525.08K,
Aryy = —277.82K, Ar3; = 1536.91K.

In the next step the Wilson parameters A; used in Table 5.6 can be determined:

v A
Ay: ;J -exp[— T :l

]

80.67 [ 10.02

=
2= 200 9P| 33142

In the same way the other Wilson parameters are obtained:

:| =1.1230

Ay =3.2695
A13=0.7391, A3 = 0.3728
A3 =1.1675, A3; = 0.01918

With the help of these parameters A, the required activity coefficients can be
calculated. For y; one obtains
XA
1A + %A +x3A13
XA n B x3A 3
x1An + %A n +x3A3  x1A5+XAn+x3A,

In Y1 = — In (i Ay + x,A1; -+-x31\13) +1-

For the selected composition of x; = 0.229, x, = 0.175, and x3 = 0.596 the follow-

ing activity coefficient is obtained:
Iny; = —1n (0.229 +0.175 - 1.123 4+ 0.596 - 0.7391)
0.229

©0.229 +0.175-1.123 + 0.596 - 0.7391
0.175 - 3.2695

0.229 - 3.2695 + 0.175 4 0.596 - 1.1675
0.596-0.3728

©0.229-0.3728 + 0.175 - 0.01918 + 0.596
v = 1223

+1

= 0.2016

Similarly the other activity coefficients are calculated as
Y2 = 1.101, y3 = 1.205

For the vapor pressures one obtains at the measured temperature of 331.42K:

B;
P = loAl_ v+ G
1219.97
P} = 10 5827+ 230.653 = 813.25 mm Hg, P; = 689.91 mm Hg,

P§ = 589.94 mm Hg
Then the partial pressures and the total pressure can be calculated:

pi=xi-vi P

m



212

5 Phase Equilibria in Fluid Systems

P=0.229-1.223-813.25 4+ 0.175-1.101 - 689.91 + 0.596 - 1.205 - 589.94
P =227.76 4+ 132.93 + 423.68 = 784.37 mm Hg

The vapor phase composition is obtained from the ratio of the partial and the total
pressure:

"= T 78437

= 0.2904, y, = 0.1694, y; = 0.5402

Since the calculated pressure is greater than the constant experimental pres-
sure of 760 mm Hg the calculated temperature has to be decreased in the next
step until the experimental and the calculated pressure are identical. For the
liquid composition considered this is fulfilled at a temperature of 330.60K,
where nearly the same values are obtained for the vapor phase mole frac-
tion.

In the same way the vapor phase mole fractions can be calculated for all other
data published by Hiaki et al. [19]. The experimental and calculated values are
shown in Figure 5.23.

It can be seen that nearly perfect agreement between the experimental and cal-
culated vapor phase mole fractions is obtained. Furthermore, the complex topology
and the ternary saddle point are predicted correctly, as shown in Figure 5.24.

This means that the Wilson equation based on the local composition concept
allows the prediction of the VLE behavior of multicomponent systems from binary
data.

Later, further gE-models based on the local composition concept were published,
such as the NRTL [14] and the UNIQUAC [15] equation, which also allow the
prediction of the activity coefficients of multicomponent systems using only binary
parameters. In the case of the UNIQUAC equation the activity coefficient is calcu-
lated by a combinatorial and a residual part. While the temperature-independent
combinatorial part takes into account the size and the shape of the molecule, the
interactions between the different compounds are considered by the residual part.
In contrast to the Wilson equation the NRTL und UNIQUAC equation can also be
used for the calculation of LLE.

The analytical expressions of the activity coefficients for binary and multi-
component systems for the three gf-models are given in Table 5.6. While
for the Wilson and the UNIQUAC model two binary interaction parameters
(AX12, AXy; resp. Auyy, Auyy) are used, in the case of the NRTL equation besides
the two binary interaction parameters (Agi,, Ag1) additionally a nonrandomness
factor &1, is required for a binary system, which is often not fitted but set to a
defined value. For the Wilson equation additionally molar volumes and for the
UNIQUAC equation relative van der Waals volumes and surface areas are required.
These values are easily available.
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Table 5.6 Important expressions for the excess Gibbs
energy and the derived activity coefficients.

Model Parameters  Expressions for the activity coefficients

Wilson [13] Zx, In or === —Zx. In ij i

/\12 An
A)p° Iny; = —In (x; + A1x) + x -
12 n 1 12% 2 P Wy

A1 An
AX Iny, = -In (% + Ayx —x( - )
2 Y2 2 21%1) — %1 o A haum
N XA
Ahji Iny=-ln | YA, | +1-Y =———
v ' ( ) ! U) k ijfAki
In )/13" =1—-1In A];) - A21
Iny>=1-InAxn—Au
F G
g Zj i Gji%;
NRTL(14] =) L
RT Z ‘ Z,- Gjixj
G i 112G12
Agia Iny =x5 fz( ) +
Bt 217 % + Gy (%3 + x1Gy3)?
Ag
" Iy =2 | o ( G2 )2 . 721Gy
1 x; + x1G12 (xy + x2G21)2
i TiGjix; x,Gi; X, Ty G
Agy.ay Iny = > TiGji%; N  Gij (Tij— D XnTwy "J)
Sk Grxi F > Guyxi >k Gixe
UNIQUAC [15] gE =g+ g™t
ﬁ = Zx, ln + Zq,x, ln —
gER
T = 2o amin | 34
1 j
Auy© Iny =Ilnyt +InyR
Vi v
Auz] lny,czl—V1+an,—Sq,(l——+l 1)
F Fy
InyR = —gq In qix1 + @x21
! qix1 + 2%z
+ ‘11‘]2362[ b - i ]
qix1 + %t QixiTi2 + 2%

Iny; =lnys +Inyf

. V, V;
lnyz(‘zl—V2+an2—5q2(1——+l 2)
F; F

X + gax
InyR = —g;1n fxte T @x
qix1 + 42%2
712 1
+q192%1 [ - :‘
QX112 + X2 Q1% + Q2X2721

(continued overleaf)
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Table 5.6  (continued)

Model Parameters Expressions for the activity coefficients

Auy Iny;=Iny+InyR

In yC _1—v.+1nv.—54l( —% nF—‘

Y gt
In R _ 1-1In JU J‘J
v =4 L, 9% Lk axi Ty

v,
YAy = Vilexp(—A).,,/T), Aw=1;
v; molar volume of component i*;
Al interaction parameter between component i and j (K).

br,'J = Agy/T,ti =0: G, = exp(—ajjTij), Gii = 1
Agy; interaction parameter between component i and j (K):
@, nonrandomness parameter: o, = «,.

‘¥ combinatorial part of the activity coefficient of component i;
yX residual part of the activity coefficient of component i;
Ty = exp(—Au,/T), i = 1.
Au; interaction parameter between component i and j (K)
r, relative van der Waals volume of component i
qi relative van der Waals surface area of component i
vV, = )fr'l;_!; volume fraction/mole fraction of component i
J
Fi= 254;,7, surface area fraction/mole fraction of component i

J

While for the interaction parameters AX;, Agy, Au; the unitK can be used,
often for the published interaction parameters, for example, given in [6] the unit
of a molar energy can be found. That is the case when in the denominator of
the exponential term RT instead of T is used. The unit then depends on the
choice of the unit of the general gas constant R (J /mol K, cal/mol K, etc.). When a
large temperature range is covered, temperature-dependent parameters have to be
used to describe the temperature dependence of the activity coefficients with the
required accuracy, this means, following the Gibbs—Helmbholtz relation the excess
enthalpies resp. partial molar excess enthalpies in the temperature range covered.
In this textbook the following temperature dependence of the binary interaction
parameters is used:

Ax(T) = Agy(T) = Auy(T) = @ + byT + ¢y T* (5.35)
The application of the gf-models is also explained in Appendix C, E2.
8) In practice usually constant, this means

temperature-independent molar volumes
v; are used.
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Figure 5.23 Experimental [3, 19] and calculated vapor
phase mole fractions for the system acetone (1)—chloroform
(2)—methanol (3) at atmospheric pressure.
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Figure 5.24 Experimental Tx-data [3, 19] and

calculated Tx behavior of the ternary system
acetone—chloroform—methanol at 1atm using binary Wilson
parameters.
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5.4
Fitting of gt-Model Parameters

The quality of the design of a distillation column by solving the MESH equations”
mainly depends on the accuracy of the K-factors (separation factors) [1). Using
one of the gf-models given in Table 5.6 these values can be calculated for the
system to be separated, if the binary parameters are available. However, for the
proper design binary parameters have to be used which describe the K-factors resp.
separation factors a;; of the system to be separated over the entire composition and
temperature range considered reliably.

The separation factors mainly depend on composition and temperature. The
correct composition dependence is described with the help of activity coefficients.
Following the Clausius—Clapeyron equation presented in Section 2.4.4 the temper-
ature dependence is mainly influenced by the slope of the vapor pressure curves (en-
thalpy of vaporization) of the components involved. But also the activity coefficients
are temperature-dependent following the Gibbs—Helmholtz equation (Eq. (5.26)).
This means that besides a correct description of the composition dependence of the
activity coefficients also an accurate description of their temperature dependence
is required. For distillation processes at moderate pressures, the pressure effect on
the activity coefficients (see Example 5.7) can be neglected. To take into account the
real vapor phase behavior, equations of state, for example, the virial equation, cubic
equations of state, such as the Redlich-Kwong, Soave-Redlich—Kwong (SRK),
Peng—Robinson (PR), the association model, and so on, can be applied.

Assuming ideal vapor phase behavior in phase equilibrium calculations, besides
carefully chosen binary gE-model parameters only reliable vapor pressures are
needed. The simple calculation procedure for the isobaric case is shown in
Figure 5.25. In the isobaric case initial values for the temperature are required.
During the calculation the temperature has to be changed in away that the difference

9) MESH equations: these are the resulting equilibrium conditions (E), summation
balance equations for the ideal stage conditions (S), and the heat balance (H).
concept for the material balance (M),
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Figure 5.26 Flow diagram for

Input : the calculation of isothermal VLE
Temperature and mole fractions x, taking into account the nonideal
gF-model parameters behavior of the vapor phase.

pure component data: P#, v, r; g;
equation of state of parameters

Ialculation of the activity coefficients y,»|

¥

’ Assumption: ¢, = 1 |

[

Calculation of the total pressure and the
mole fractions in the vapor phase:

Pe X nia P
_ Xy ¢, 'PIS
= p

Y

Calculation of new values for ¢,

1. iteration ?

Pnew_PoId <&

] Result: P, y,

between the calculated and the desired pressure is smaller than a chosen value ¢.
The calculation for the isothermal case is still simpler, since the temperature does
not have to be guessed and then adjusted by iteration. The calculation procedure
shown in Figure 5.25 can also be applied for multicomponent systems.

If the real vapor phase behavior and the Poynting factor have to be taken into
account, the procedure is a little more complicated. The procedure is shown in
Figure 5.26. As input, information about the molar volumes and the real vapor
phase behavior is required additionally, for example, the parameters of the equation
of state chosen, the parameters for the association constants, and so on. With the
help of this information, the Poynting factors and the fugacity coefficients for the
mixture and the pure compounds are calculated.

A prerequisite for the correct description of the real] behavior of multicomponent
systems is a reliable description of the binary subsystems with the help of the fitted
binary gE-model parameters.
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For fitting the binary interaction parameters nonlinear regression methods are
applied, which allow adjusting the parameters in such a way that a minimum
deviation of an arbitrary chosen objective function F is obtained. For this job,
for example, the Simplex—Nelder—Mead method |21] can be applied successfully.
The Simplex—Nelder—Mead method in contrast to many other methods [22] is a
simple search routine, which does not need the first and the second derivate of
the objective function with respect to the different variables. This has the great
advantage that computational problems, such as “underflow” or “overflow” with
the arbitrarily chosen initial parameters can be avoided.

As objective function for fitting the required gF-model parameters different
types of objective functions and experimental or derived properties X, for example,
vapor phase mole fraction, pressure, temperature, K-factor K;, separation factor
a2, and so on, can be selected, where either the relative or the absolute deviation
of the experimental and correlated values (pressure, temperature, vapor phase
composition, etc.) can be minimized,

1 2 | I
F= ; Z Z (Xcak,i,_; - Xexp,ij) =Min

1 !

o 5 T s - el L1t
! M]Z L i
e n Z Z [ Xexp,i,j — M

i n Z Z ’ Xexp,i.j Min

In the case of complete data, this means VLE data, where P, T, x;, y; is given, also
the deviation between the experimental and predicted activity coefficients or excess
Gibbs energies can be used to fit the required binary parameters. Furthermore the
parameters can be determined by a simultaneous fit to different properties to cover
properly the composition and temperature dependence of the activity coefficients.
For example, the deviation of the derived activity coefficients can be minimized
together with the deviations of the activity coefficients at infinite dilution, excess
enthalpies, and so on. Accurate activity coefficients at infinite dilution measured
with sophisticated experimental techniques are of special importance, since they
deliver the only reliable information about the real behavior in the dilute range
[23],' for example, at the top or the bottom of a distillation column. Excess
enthalpies measured using flow calorimetry are important too, since they provide
the most reliable information about the temperature dependence of the activity

10) With the required care it is quite simple compounds, for example, water in ethylene

to measure reliable activity coefficients at
infinite dilution of a low boiling substance
in a high boiling compound, for example,
with the help of the dilutor technique,
gas—liquid chromatography, ebulliometry,
Rayleigh distillation, and so on. It is much
more difficult to measure these values for
high boiling components in low boiling

oxide, NMP in benzene, etc. But these
values are of special importance for the
proper design of distillation columns. In
the case of positive deviation from Raoult’s
law the greatest separation effort is re-
quired for the removal of the last traces of
the high boiling compounds at the top of
the column.
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coefficients via the Gibbs—Helmholtz equation (see Eq. (5.26)), and thus for the
separation factors and K-factors.

In the past in different papers e.g. [70] the maximum likelihood method was
recommended. In this method the experimental errors of all measured quantities
are taken into account in the objective function. But later it was found out that this
procedure did not improve the results for ternary, quaternary, and higher systems
using the fitted binary parameters.

The impact of inaccurate gf-model parameters can be very serious. The pa-
rameters have a major influence on the investment and operating costs (number
of stages, reflux ratio). The influence of the gE-model parameters on the results
is especially large if the separation factor is close to unity. Poor parameters can
either lead to the calculation of nonexisting azeotropes in zeotropic systems (see
Section 11.1) or the calculation of zeotropic behavior in azeotropic systems. Poor
parameters can also lead to a miscibility gap which does not exist.” In the
case of positive deviation from Raoult’s law a separation problem often occurs
at the top of the column, where the high boiler has to be removed. since at
the top of a distillation column the most unfortunate separation factors are
obtained.

Starting from Eq. (5.18), the following separation factors at the top and the
bottom of a distillation column (low boiler: component 1) are obtained:
top of the column (x; — 1):

PS
x _ _ 11
SR
bottom of the column (x; — 1):
o yloL P?
oS = -
12 PE

From these equations it can easily be seen that for positive deviation from Raoult’s
law (y; > 1) the smallest separation factors and therewith the greatest separation
problems occur at the top of the column. To determine the separation factor at the
top of the column, one divides by a number larger than unity (y5°), while in the
bottom of the column one multiplies with a number larger than unity (). While,
for example, for the system acetone—water separation factors a little above unity
are obtained at the top of the column at atmospheric pressure, separation factors
greater than 40 are observed at the bottom of the column (see Chapter 11). In the

11) Process simulators often contain exten- check the pure component data and mix-

sive data banks with pure component and
mixture parameters. for example, default
gE-model parameters. This allows for gen-
erating the required input very fast. But the
user should use these data and parameters
with care. Even the simulator companies
mention that these default values should
not directly be used for process simulation.
The user should ask the company expert
for phase equilibrium thermodynamics to

ture parameters carefully. In Figures 5.31
and 5.34itis shown what can happen when
the default values provided by the process
simulator companies are used. An addi-
tional example for bad default values is
given in Appendix F.

In Section 11.1 it is shown how the ther-
mophysical properties should be checked
prior to process simulation.
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Table 5.7  Type of VLE data published.

Type of VLE data Measured values Percentage of
the published
X; Yi P T VLE data
Isothermal complete v J J constant 18.33
Isobaric complete Y Vi constant J 2837
Isothermal Px data J - J constant 29.66
Isobaric Tx data J - constant Vi 9.11
[sothermal xy data J J - constant 3.12
Isobaric xy data J J constant - 2.03
Isothermal yP data = v J constant 0.54
Isobaric yT data = v constant v 0.16
Isoplethic PT data constant - J J 6.84
Complete data J J v J 1.85

case of negative deviations from Raoult’s law the separation problem usually occurs
at the bottom of the column.

Published VLE data are often of questionable quality. For fitting reliable gE-model
parameters accurate experimental VLE data should be used. An overview about the
different types of VLE data published together with the proportion of such data
from all published VLE data is given in Table 5.7.

In most cases the measurements are performed at isothermal or isobaric
conditions. Occasionally measurements are also performed at constant compo-
sition. Sometimes none of the properties is kept constant. In less than 50%
of the cases all values (x;, y;, T, P) are measured. The reason is that any
three of the four values (xi, y;, T, P) are sufficient to derive the fourth quan-
tity. Because of the greater experimental effort required, seldom dew-point
data (T, P, y;) are measured. But these data are of special importance to de-
termine reliable separation factors for high boiling compounds (e.g., water)
in low boiling compounds (ethylene oxide) at the top of the column, which
at the end mainly determine the number of stages of a distillation column
(see Chapter 11).

As can be seen from Table 5.7, the measurement of complete isobaric data is
very popular. The reason is that a great number of chemical engineers prefer
isobaric data, since distillation columns run at nearly isobaric conditions. But the
measurement of isobaric data shows several disadvantages compared to isother-
mal data. This was already discussed in detail by Van Ness [24]. For example,
the temperature dependence of the vapor pressure P} has to be taken into ac-
count. At the same time the temperature and composition dependence of the
gE-model has to be regarded. Therefore Van Ness [24] comes to the following
conclusion:
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In the early unsophisticated days of chemical engineering VLE data were taken
at constant pressure for direct application in the design of distillation columns,
which were treated as though they operated at uniform pressure. There is no longer
excuse for taking isobaric data, but regrettably the practice persists. Rigorous
thermodynamic treatment of isobaric data presents problems that do not arise
with isothermal data. Their origin is the need to take into account not only
the composition dependence of the excess Gibbs energy but also its temperature
dependence.

Since the measurement of temperature and pressure is more accurate than con-
centration measurements, Van Ness recommended the measurement of Px-data at
isothermal conditions. [ndeed, today mainly isothermal Px-data are measured. In
the cell of the static equipments the precise liquid composition is usually achieved
by injection of the degassed liquids with the help of precise piston pumps. The
change of the feed composition by evaporation can easily be taken into account,
when the volume of the cell and the pressure is known. Depending on the vapor
volume the change of the feed composition is smaller than 0.1 mol% at moderate
pressures. By this method a much more precise determination of the liquid com-
position is achieved than by analytical measurements. The measurement of the
pressure and the temperature can be realized very precisely.

5.4.1
Check of VLE Data for Thermodynamic Consistency

Not in all cases, the quality of the published data is sufficient. The quality of
complete data (P, T, x;, yi) can be checked with the help of thermodynamic
consistency tests. A large number of consistency tests have been developed. Most
often the so-called area test is applied. The derivation of the required equations for
the area test is started from the following equation (see Section 4.3):

dGE dGE/RT dGE/RT dGE/RT
_=(—/) dp+('—/ dT+Z(_/_ dn;
RT ap Ty aT P, an; T.P.ny#n,

(5.36)
By substitution
aGE
(—) =VE (5.37)
aP T,
aGE)T HE
— 53
( aT )Pn T2 (5-38)
dGE/RT
(_/_) =Iny (5.39)
an; T.P.nj#n;
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and applying of molar properties, the following relation is obtained for a binary
system (dx; = —dx;,).

E | E KE "

— = —dP— —dT +1In—d 5.40
RT ~ RT RIZ. T, 5-40)
After integration from x; = 0 to x; = 1 an expression is obtained, which can be
applied for the graphical examination of complete VLE data'® for thermodynamic
consistency.

x1=1 d E xy=1 x1=1 hE x1=1 _E
f % =/ In X dx, —/ —ZdT-l-f L dp=0 (5.41)
a=0 RT  Jy=o Z) =0 RT xq=0 RT

[n the case of isothermal or isobaric data one term in the equation above can be
cancelled. Since the pressure dependence can usually be neglected, in the case of
isothermal VLE data the following simple relation can be used for checking the
thermodynamic consistency of VLE data:

x1=1
/ InZdx; =0 (5.42)
x1=0 Y2

The consistency test (Redlich—Kister test) is performed by plotting the logarithmic
value of the ratio of the activity coefficients as a function of the mole fraction x;. If
the VLE data are thermodynamically consistent the area above and below the x-axis
should be equal.

In the case of isobaric data the excess enthalpy part has to be taken into account.
This can be done if the excess enthalpies for the system investigated are known.
Since the excess enthalpies are usually not known, in the area test the contribution
is taken into account empirically using the quantity | as suggested by Redlich and
Kister [25]:

J= 150|AT—maX|(%) (5.43)

min

The value of | strongly depends on the temperature difference ATp,,. In the case
of zeotropic systems this is the difference of the boiling points.
In the DECHEMA Chemistry Data Series [6] a deviation of D < 10% is allowed
to pass the thermodynamic consistency test successfully,
_|A-B]

D= 100(2 44
At 000 Bh

where A is the area above the x-axis and B is the area below the x-axis.

12) As well isothermal VLE data, where only checked for thermodynamic consistency
the liquid and vapor phase mole fractions, with the help of the area test, since the
this means K-factors are measured (e.g., system pressure cancels out when the ratio

by headspace gas-chromatography) can be of the activity coefficients is calculated.
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" Figure 5.27 Check of isothermal complete VLE
ln?e T= 34315 K data of the sy}stem e?hanol (1)l-water (2) (8] for
o Mertl thermodynamic consistency with the help of the
area test.
1.0
A
o O
B
-1.0 1 B}
p=148 100%
A+B
~2%
I
0 0.5 1
X4

While in the isothermal case a deviation of D < 10% is accepted, in the isobaric
case a larger area deviation is allowed to take into account the contribution of the
excess enthalpy by Eq. (5.43):

D—]<10%

Example 5.10

Check the isothermal VLE data of the system ethanol (1)-water (2) measured by
Mert! [8] at 70 “C (see Table 5.3) for thermodynamic consistency using the area test.

Solution

For the judgm::nt of the quality of the VLE data the logarithmic values of the ratio
of the activity coefficients In y;/y; have to be plotted against the mole fraction of
ethanol. The required activity coefficients are given in Table 5.3. For example, for a
mole fraction of %; = 0.252 the following ratio is obtained:

1.890
N 22— 0453
Y2 1.202

For thewhole composition range the values are shown in Figure 5.27. It can be seen
that the areas above and below the x-axis are nearly identical (= 2% deviation). This
means that the data published by Mertl [8] can be considered as thermodynamically
consistent.

In

Another option to check complete VLE data for thermodynamic consistency was
developed by Van Ness et al. [26] resp. Fredenslund et al. [27). In this consistency
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Xy W T P Regression oé the coefficients of
a flexible g=-polynomial to fit
isothermal Px-data

F= Z (Pcalc— Pexp)2
Peac= Z Xy, P?

[

Calculation of vapor phase
composition y; using the fitted
parameters

Bl

Comparison of exp. and calc.
vapor phase compositions

[

Ay <0.01

— Data are consistent

Figure 5.28 Flow diagram of the consistency test of Van
Ness et al. [26] and Fredenslund et al. [27).

test only a part of the redundant phase equilibrium data, usually the TPx-data,
are used to fit the gf-model parameters of a flexible gf-model, such as the
Redlich—Kister expansion to minimize, for example, the deviation in pressure.
In the next step the fitted parameters are used to calculate the data, which were
not used for fitting the parameters, this means the corresponding vapor phase
compositions. When a mean deviation between the experimental and calculated
vapor phase mole fraction of <0.01 is obtained, the VLE data are considered as
thermodynamically consistent. A flow diagram of this consistency test is shown in
Figure 5.28.

Often isothermal Px-data are measured (see Table 5.7). They cannot be checked
for thermodynamic consistency. But if the data can be described very accurately
with the help of a consistent gE-model, these VLE data can also be considered as
thermodynamically consistent. The same is true for other incomplete VLE data
listed in Table 5.7.

With the help of the gE-model only the deviations from Raoult’s law should be
described. The correct deviations from Raoult’s law can only be obtained, if the
exact values of the pure component vapor pressures are used during the fitting
procedure. This is shown below for fitting the NRTL parameters for the nearly ideal
but nevertheless azeotropic system 2-propanol-tert-butanol simultaneously to two
isothermal Px-data sets measured at 40 °C. The very different results of the fitting
procedure are shown in Figure 5.29. Obviously, the two data sets show a systematic
small difference in the pressure measurement. While a correct description of the
Px-data and the azeotropic VLE behavior is obtained, if the vapor pressure data of
the authors are used for fitting the parameters. Total disagreement is observed if
the VLE calculation is performed using the vapor pressures calculated by Antoine
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Figure 5.29 Results for the binary system
2-propanol (1) —tert-butanol (2) at 40°C.
(a) Using Antoine constants for both com-

pure component vapor pressures of the au-
thors (Agr2 = —54.254 cal/mol, Agn =
26.41 cal/mol, a1, = 0.3680) for fitting the

pounds (Agi2 = —37.984 cal/mol, Agn = NRTL-parameters.

29.94 cal/mol, a1, = 0.3642), (b) using the

constants from literature. From Figure 5.29 it can directly be seen that of course
for the objective function F:

F= Z (Pexp,i - Pcalc.i>2
i

Pexp,i

a much lower value is obtained, if the pure component vapor pressures given by
the authors are used.

For a large number of binary systems the required binary g&-model parameters
for the Wilson, NRTL, and UNIQUAC equation and the results of the consistency
tests can be found in the VLE Data Collection of the DECHEMA Chemistry Data
Series published by Gmehling et al. [6]. One example page is shown in Figure 5.30.
It shows the VLE data for the system ethanol and water at 70 °C published by
Mertl [8]. On every page of this data compilation the reader will find the system,
the reference, the Antoine constants with the range of validity, the experimental



(1) ETHANOL

+++++ ANTOINE CONSTANTS REGION +++++

o 811220 1592864  226.184 20- 93C
@ 807131 1730630  233.426 1- 10C
TEMPERATURE = 7000 DEGREE C

LIT: MERTL |., COLLECT.CZECH.CHEM.COMMUN. 37,366(1972).

CONSTANTS: A12 A21 ALPHA12
MARGULES
VAN LAAR
WILSON
NRTL -121.2691 0.2974
UNIQUAC -30.1929
EXPERIMENTAL DATA RGULES

P MM HG X1 Y1 DIFF Y1

362.50 0.0620 0.3740 1

399.00 0.0950 0.4390

424.00 0.1310 0.4820

450.90 0.1940 0.5240

468.00 0.2520 0.5520

485.50 0.3340 0.5830

497.60 0.4010 0.6110

525.90 0.5930 0.6910

534.30 0.6800 0.7390

54270 0.7930 0.8160

543.10 0.8100 0.8260

544.50 0.9430 0.9410

544.50 0.9470 0.9450

MEAN DEVIATION :

MAX. DEVIATION :

log P° [mmHg]=A- ————
9[°Cl + C

|A12 = A 1 resp.Agq, resp.Auq,

Figure 5.30 Example page of the VLE Data Collection [6].
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v; = 58.69 cm¥mol i M T 5 =7.24
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VAN LAAR WILSON NRTL UNIQUAC
DFF P DIFF Yi DIFF P DIFF Yi DIFF P DIFF Y1 DIFF P DIFF Y1
-0.0097 -125  -00149 427  -0.0084 326 -00098
-0.0118 421 -00083 482 -00117 444 00117
-0.0127 663  -00043 331 -0.0136 358  -0.0125
-0.0158 752 -00057 151 -0.0174 242 00156
-0.0144 780  -00063 217 -0.0160 320  -0.0143
-0.0131 667  -0.0096 314 -0.0142 394  -00131
-0.0082 590  -0.0081 412 -00088 464  -0.0083
-0.0070 417 -00112 524  -00063 521 -00072
217 -0.0084 377 -00043 361 -00051
097  -0.0015 291 -0.0003 265  -0.0007
039 -0.0035 234 -00028 207  -0.0031
-0.44 0.0006 074  -0.0009 055  -00007
-034 0.0007 079  -0.0008 060  -00006
373 0.0064 301 00081 309 00079
0.0158 60 0.0149 524 00174 5.21 0.0156
cal/mol
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VLE data, the results of two thermodynamic consistency tests, and the parameters
of different gE-models, such as the Wilson, NRTL, and UNIQUAC equation.
Additionally, the parameters of the Margules [28] and van Laar [29] equation are
listed.” Furthermore, the calculated results for the different models are given. For
the model which shows the lowest mean deviation in vapor phase mole fraction the
results are additionally shown in graphical form together with the experimental
data and the calculated activity coefficients at infinite dilution. In the appendix of
the data compilation the reader will find the additionally required pure component
data, such as the molar volumes for the Wilson equation, the relative van der Waals
properties for the UNIQUAC equation, and the parameters of the dimerization
constants for carboxylic acids. Usually, the Antoine parameter A is adjusted to A’
to start from the vapor pressure data given by the authors, and to use the gt-model
parameters only to describe the deviation from Raoult’s law." Since in this data
compilation only VLE data up to 5000 mm Hg are presented, ideal vapor phase
behavior is assumed when fitting the parameters. For systems with carboxylic
acids the association model is used to describe the deviation from ideal vapor phase
behavior.

In practice almost exclusively VLE data are used to fit the required parameters.
Since a distillation column works nearly at constant pressure, most chemical
engineers prefer thermodynamically consistent isobaric VLE-data in contrast to
isothermal VLE-data to fit the model parameters. But that can cause problems, in
particular if the boiling points of the two compounds considered are very different
[24], as for example, for the binary system ethanol-n-decane. The result of the
Wilson equation after fitting temperature-independent binary parameters only to re-
liable isobaric data at 1 atmis shown in Figure 5.31 for the system ethanol-n-decane,
where the sum of the relative deviations of the activity coefficients was used as
objective function.

From the results shown in Figure 5.31 it can be seen that already for VLE
poor results are obtained. In particular large deviations are obtained at low
ethanol concentrations. This is not only true for the Txy behavior, but also for
the activity coefficients, although the activity coefficients were used to fit the
Wilson parameters. The reason for the observed large deviations is that with
temperature-independent parameters the observed temperature dependence can-
not be described correctly. This conclusion can also be drawn when looking at the
calculated excess enthalpies shown in Figure 5.31. Reliable gE-model parameters
should be able to describe the excess enthalpies following the Gibbs—Helmholtz
equation. Apparently, excess enthalpies are obtained which strongly deviate from
the experimental values (3], in particular at 90 and 140°C. Of course wrong
hE.-values will mean an incorrect temperature dependence of the activity coeffi-
cients. For the activity coefficients of ethanol at infinite dilution this is shown in
Figure 5.31.

13) Both models (Margules, van Laar) are Antoine constants used reliable vapor pres-
hardly used for process simulation today. sures are obtained as can be seen from
14) Unfortunately, Mertl [8] has not given the Figure 5.4

pure component vapor pressures. But with
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Figure 5.31 Result of the fit of the same system using the fitted parame-

ters — Wilson (Wilson parameters: Aly; =
1284.12 cal/mol, AXy = 1172.85 cal/mol,
v; = 58.68 cm3/mol, v, = 195.92 cm?®/mol)
e experimental [3].

temperature-independent Wilson parameters
to consistent isobaric VLE data at T atm of
the system ethanol (1)-n-decan: (2) and
calculated results for the excess enthalpies
and activity coefficients at infinite dilution for

In the case of isobaric data the temperature will change with composition. In
particular at low ethanol concentrations the temperature alters drastically. It can
be seen that the temperature change between x; = 0 to x; = 0.1 is nearly 100 K.
Since the system ethanol (1)-n-decane (2) shows strong endothermi: behavior
with large positive values of the partial molar excess enthalpies for ethanol
(EEOQ 2 19000 ] /mol, see Figures 5.31 and 5.32), which results in a decrease of
the activity coefficient of ethanol with increasing temperature (see Example 5.6)
following the Gibbs—Flelmholtz equation. This lcads to a maximum value of y; at
a mole fraction of approx. x; = 0.1 for the isobaric data as shown in Figure 5.31.
It can easily be understood that this curvature can not be fitted correctly using
temperature-independent parameters.
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Figure 5.32 Calculated results for the VLE at 1atm,
activity coefficients y;, excess enthalpies as a function

of composition and activity coefficients at infinite dilu-

tion as f(T) for the system ethanol(1)-n-decane(2) using
temperature-dependent Wilson parameters fitted simultane-
ously to VLE, hE and y* data @ & —experimental [3].

To obtain the correct values at infinite dilution and the correct temperature
dependence resp. excess enthalpies, besides VLE data further reliable thermody-
namic information should be taken into account for fitting temperature-dependent
gE-model parameters. Temperature-dependent Wilson parameters fitted simulta-
neously to VLE, excess enthalpies and activity coefhicients at infinite dilution of
the system ethanol-n-decane are given in Table 5.8. The results for VLE, activity
coefficients as a function of composition and at infinite dilution and excess en-
thalpies obtained using these parameters are shown in Figure 5.32 together with
the experimental values. It can be seen that with the temperature-dependent binary
Wilson parameters (recommended values) not only the VLE behavior, but also the
activity coefficients and the excess enthalpies as a function of composition and
temperature are described correctly.
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Table 5.8 Temperature-dependent Wilson pa-
rameters for the system ethanol (1)-n-decane (2)
Arjj (cal/mol) = aj + b T + ¢;T2.

ajj by Cij* 104
Ariz 4841.1 -7.9999 2.7050
Ary 1276.8 —2.1230 5.4421

100 T~

Error in minimum number of stages (%)

-40 T T T T T T 1
5 4 -3 -2 -1 0 1 2 3

Error in separation factor (%)

Figure 5.33 Influence of the error of the separation factor
on the minimum number of theoretical stages calculated us-
ing the Fenske equation.

Already small deviations between the experimental and calculated separation
factors can lead to a very different number of stages required for a given separation
problem. This is especially true if the separation factor is not far away from unity.
For three different separation factors the influence of an error on the minimum
number of theoretical stages calculated by the Fenske equation [30] is shown in
Figure 5.33,
log %;7“

Nitomin =
th,min log o

where d is the distillate and b the bottom product. Froin Figure 5.33 it can be
recognized that for a separation factor of 1.1 an error of —4.5%, the minimum
number of theoretical stages is nearly doubled. In the case of a separation factor of
2.0 the minimum number of theoretical stages is increased by less than 7%.
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5.4.2
Recommended gt-Model Parameters

As discussed in the chapters above reliable mode] parameters are most important.
While mainly VLE data are used in the chemical industry, it is recommended
to use all kinds of reliable data (phase equilibrium data (VLE, y>, azeotropic
data, SLE of eutectic systems, etc.), excess enthalpies) for fitting simultane-
ously gE-model parameters, which often have to be temperature dependent. To
account only for the deviations from Raoult’s law, it is recommended to use
the pure component vapor pressures measured by the authors for every data
set. This can be done by multiplying the vapor pressure with a correction
factor, for the Antoine equation, this corresponds to changing the parame-
ter A to A. Sometimes a large number of experimental data are available.
Then of course the data used should be distributed equally over the whole
temperature (pressure) range. Since often a lot of VLE data at atmospheric
pressure are reported, perhaps some of the data have to be removed or at
least a lower weighting factor for the numerous data should be used. The
same is true for excess enthalpies. Most authors have measured excess en-
thalpies around room temperature. For fitting temperature-dependent model
parameters the whole temperature range should be covered. While consis-
tent VLE data (azeotropic data) provide the information about the composition

Table 5.9 Recommended NRTL interaction parameters
(cal/mol) for different binary systems.

an an by, by a2 o a2
(cal/mol) (calfmol) (cal/(mol K)) (cal/(mol K)) (cal/(mol K?)) (cal/(mol K2))

Acetone (1)-cyclohexane (2)

1423.8 2880.0 —2.9548 -10.136 0.0008073 0.011832 0.4212
Acetone (1)—benzene (2)

—16.064 110.25 0.37896 0.6426  —0.0004859  —0.0004819 0.6991
Benzene (1)-cyclohexane (2)

1403.1 8.4201 —7.5455 1.8632 0.01316 —-0.006295 0.3
Acetone (1)-water (2)

833.97 —3146.5 0.83106 17.457 —-0.0037816  —0.013622 0.5466
Ethanol (1)-1,4-dioxane (2)

412.58 13349 0.41917 —3.7148 - - 0.3548
Acetone (1)-chloroform (2)

5563.9 —12824.0 —43.308 83.358 0.061888 -0.11637 0.0850
Acetone (1)-methanol (2)

477.04 327.46 0.03815 —0.73193  —0.002931 0.0018051 0.7

Chloroform (1)-methanol (2)
5378.5 —1471.6 6.37397 —13.015 —0.032724 0.032599 0.055
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dependence of the activity coefficients, excess enthalpies deliver the most important
information about the temperature dependence. Accurate activity coefficients at
infinite dilution deliver the only reliable information about the dilute compo-
sition range. In the case of simple eutectic systems, also SLE data can be
used. SLE data of eutectic systems deliver supporting data at low tempera-
ture, while excess enthalpies at high temperature can be used as supporting
data at high temperature, to fit reliable temperature-dependent parameters for
the temperature range covered. For fitting the parameters simultaneously to
all kind of data, weighting factors w; are used, so that the objective function
looks like

F=uwyie 3 AVLE+wy~x Y Ay™ +w, ) ARF

RYLE ny-x nhE
+wie ) ALLE + wsie ) ASLE + wazp 3 AAZD (5.45)
RLLE ns|E naAzD

For several binary systems recommended model parameters for the gE-models
Wilson, NRTL, and UNIQUAC are given in Tables 5.9-5.11. Typical results for the
system acetone—water using the NRTL model are shown in Figure 5.34. It can be

Table 510 Recommended Wilson interaction parameters
(cal/mol) for different binary systems.

an an by, b 2 o
(cal/mol) (cal/mol) (cal/(mol K)) (cal/(mol K)) (cal/(mol K?)) (cal/(mol K?))

Acetone (1)-cyclohexane (2)

3109.2 1670.7 -10.622 —4.5189 0.013757 0.0012266
Acetone (1)-benzene (2)

—-113.72 201.96 2.5292 -1.5516 —0.0035364 0.0026447
Benzene (1)-cyclohexane (2)

1558.96 —203.7 —8.2383 3.2140 0.012856 —-0.0075245
Acetone (1)-water (2)

—1305.7 1054.9 1.4341 3.4522 0.009414 —0.005907
Ethanol (1)-1,4-dioxane (2)

1404.7 136.80 —3.3856 0.82783 - -
Acetone (1)-chloroform (2)

375.28 -1722.6 —3.7843 6.4055 0.0079107 —-0.0074779
Acetone (1)-methanol (2)

—60.756 863.79 —0.06114 —1.0533 S =
Chloroform (1)-methanol (2)

—1140.8 3596.2 2.5936 -6.2234 0.000031 0.000030

Ethanol (1)-n-decane (2)
4841.1 1276.8 -7.9999 —2.123 0.0002705 0.0005442
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Table 511  Recommended UNIQUAC interaction parameters
(cal/mol) for different binary systems.

an an byz bxn €12 &
(cal/mol) (cal/mol) (cal/(mol K)) (cal/(mol K}) (cal/(mol K?)) (cal/(mol K?))

Acetone (1)—cyclohexane (2)

259.18 560.82 -1.0167 0.041374 = .
Acetone (1)—benzene (2)

—75.46 120.20 —0.10062 0.44835 —0.0008052 0.0004704
Benzene (1)-cyclohexane (2)

566.78 —-116.17 —3.8155 2.2017 0.006297 —0.004641
Acetone (1)-water (2)

2619.0 33.80 —6.3149 —4.6102 0.0008817 0.012937
Ethanol (1)-1.4-dioxane (2)

—27.083 762.43 0.47646 —-1.9128 - =

Acetone (1)—chloroform (2)
101.70 —853.91 —4.4866 6.9067 0.010999 —0.013211

Acetone (1)-methanol (2)
324.48 59.98 1.2457 —-0.8408 —0.003207 0.0013662

Chloroform (1)-methanol (2)
3561.3 —416.85 —9.4697 —0.33196 0.0073773 0.002515

seen that nearly perfect agreement between experimental and correlated VLE data,
activity coefficients at infinite dilution as f(T), azeotropic composition as f{T) and ex-
cess enthalpies as f{T) is obtained. In Figure 5.35 the results for default values given
in a process simulator are shown. The difference in quality can easily be recognized.
For all properties much better results are obtained using the recommended NRTL
parameters. This is especially true for the excess enthalpies and as consequence
for the temperature dependence of the activity coefficient at infinite dilution. But
reliable activity coefficients at infinite dilution are of particular importance for the
design of distillation columns, where at the top (bottom) the last traces of high (low)
boiler have to be removed. As described the separation factors at infinite dilution
mainly influence the number of theoretical stages required for a distillation column.
The procedure for fitting recommended temperature-dependent gt-model param-
eters is described in more detail by Rarey—Nies et al. [31] and Tochigi et al. [32].
For some binary systems the use of temperature-dependent parameters is es-
sential, since with temperature-independent parameters excess enthalpies above
certain values cannot be described anymore with the chosen gf-model (Novék [20])
using temperature-independent parameters. Problems can also arise if systems,
such as alkane-alcohol systems, show strong deviations from Raoult’s law, this
means large activity coefficients at infinite dilution, but no miscibility gap. Typical

233



T(K)

234| 5 Phase Equilibria in Fluid Systems
15 4
380 Acetone in water
1 atm
2
.
360 |\
., A
aso-| ® . .
Soge \ Water in acetone
'.'.. oo h
320 - . . 0~ T T u
0 05 1 280 320 360 400
““. 3z T(K)
550 — 900
4 T=363.15K 9}”‘(&
500 — 600 3 2005
0° oo 0
PTER
300 A
450 - —o'
£
SE
400 — W
=
—300
350
600
T=28815K
300 T | 900 - : :
0 0.5 1
0 0.5 1
Y1az x

Figure 534 Results for acetone (1) -water (2) using
recommended temperature dependent NRTL parameters fit-
ted simultaneously to consistent VLE, hE, and y> data.

examples are ethanol-decane or cyclohexane—1-propanol. When the activity coef-
ficients at infinite dilution are described correctly with the NRTL or the UNIQUAC
model a miscibility gap is calculated. As long as homogeneous behavior is described
with these models, tvo low activity coefficients at infinite dilution result (Novik
[20]). Only with the Wilson equation the correct activity coefficients at infinite
dilution and homogeneous behavior can be described as shown before.

In Section 11.1 the importance of reliable g&-model parameters for the synthesis
and design of extractive distillation processes is demonstrated for the separation of
cyclohexane from benzene using NMP as entrainer. Furthermore for the system
acetone—water it is shown how default values can lead to poor separation factors or
even not existing azeotropic points at the top of the column (¥acetone = 1)
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Figure 5.35 Results for acetone (1)—water (2) using the
NRTL parameters provided by the process simulator.

5.5
Calculation of Vapor-Liquid Equilibria Using Equations of State

As mentioned before, Approach A (also called ¢—¢ approach) compared to
Approach B (also called y—p approach) has the great advantage that supercritical
compounds can be handled easily and that besides the phase equilibrium behavior
various other properties such as densities, enthalpies including enthalpies of va-
porization, heat capacities and a large number of other important thermodynamic
properties can be calculated via residual functions for the pure compounds and
their mixtures. For the calculation besides the critical data and the acentric factor
for the equation of state and reliable mixing rules, only the ideal gas heat capacities
of the pure compounds as a function of temperature are additionally required. A
perfect equation of state with perfect mixing rules would provide perfect results.
This is the reason why after the development of the van der Waals equation of state
in 1873 an enormous number of different equations of state have been suggested.
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Figure 5.36 Experimental 3] and calculated vapor pressures
for selected solvents using the PR equation of state and the
Twu-a-function.

In principle, for the calculation of VLE any equation of state can be used
which is able to describe the PvT behavior of the vapor and the liquid phase,
for example, cubic equations of state, further developments of the virial equation,
or Helmbholtz equations of state. Most popular in chemical industry are further
developments of the cubic van der Waals equation of state. Great improvements
were obtained by modification of the attractive part, by introducing the temperature
dependence of the attractive parameter with the help of a so-called e-function and
the development of improved mixing rules, the so-called gt-mixing rules, which
allow the applicability to asymmetric systems and systems with polar compounds.

Exemplarily a few typical results of cubic equations of state used in practice
are shown below. A prerequisite for the reliable description of VLE data of binary
and multicomponent systems is the reliable description of the pure component
vapor pressures. With the introduction of an a-function for the description of
the temperature dependence of the attractive parameter a(T) and the usage of the
acentric factor w as third parameter the results for pure component vapor pressures
were significantly improved. In Figure 5.36 the experimental and calculated vapor
pressures for five solvents are shown, where the PR equation of state with the
Twu a-function was used. [t can be seen that nearly perfect agreement is obtained
in the wide temperature range covered. Even the slopes are described reliably.
This means that following the Clausius—Clapeyron equation also the enthalpies
of vaporization are described correctly. From the slopes it can be concluded that
the enthalpies of vaporization increase from benzene to the alcohols, and then to
water. This leads to the fact that in binary systems, for example, acetone—methanol,
or ethanol-benzene the low boiler at low temperature can become the high boiler
at higher temperatures.

In Figure 5.37 the experimental and calculated enthalpies of vaporization using
the SRK and the volume translated PR equation of state for 11 different compounds
in a wide temperature range up to the critical temperature are shown. It can be
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Figure 5.37 Experimental [3] and calculated enthalpies of
vaporization using the Soave—Redlich—Kwong and the vol-
ume translated PR equation of state.

seen that both equations of state provide excellent agreement with the experimental
findings. That is not surprising, since with the reliably calculated vapor pressures
and volumes of the vapor and liquid phase, reliable enthalpies of vaporization
should be obtained following the Clausius—Clapeyron equation (see Eq. (2.86)).

Example 5.11

Calculate the liquid density of cyclohexane at the normal boiling point
(Tp = 353.85 K, P =1 atm) with the help of the PR equation of state.
Pure component properties:

Component M (gmol™) T (K) P, (bar) )

Cyclohexane 84.16 553.8 40.8 0.213

Solution

For the calculation of the liquid density at the normal boiling point for cyclohexane
first the parameters a and b of the PR equation of state have to be determined from
the critical data and the acentric factor using Egs. (2.167)—(2 169).

R2T? 0.083142 - 553.82

a, = 0.45724——= = 0.45724
P, 40.8

= 23.758 (de)Z bar/mol?

RT, 0.08314 - 553.8
b =0.0778 P S = 0.0778T = 0.087798 dm’

c
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T 35385
T, = L3385 _ 63805
T. ~ 5538

2
o) = [1+ (037464 + 1.542260 — 0.269926?) (1 — 1)

a(T) = [1 +(0.37464 + 1.54226 - 0.213 — 0.26992 - 0.213%)
2
(1-0.63895°%) | = 1.2965

2
a(T) = ac - (T) = 23.758 - 1.2965 = 30.8022 (dm’)  bar/mol’

In the next step, the molar liquid volume has to be determined for which the
right-hand side of the PR equation of state gives a value of 1atm. This can be done
iteratively or by solving the cubic equation.

RT a(T)

P T Vv n) +b(v=p)

For the given conditions a molar volume of v = 0.11068 dm’ mol™" is obtained.

_0.08314-353.85
"~ 0.11068 — 0.087798

30.8022
"~ 0.11068 - (0.11068 + 0.087798) + 0.087798 - (0.11068 — 0.087798)

P = 1285.687 — 1284.681 = 1.006 bar = 1 atm

In the next step with the help of the molar liquid volume and the molar mass the
liquid density at the normal boiling point can be calculated:

8416
~0.11068

Experimentally, a density of 719g dm~3 was determined for cyclohexane at the
normal boiling point [3]). This means that the calculated value using the PR
equation of state is ~6% too high. In Figure 5.38 the calculated liquid densities of
cyclohexane are shown together with the experimental liquid densities for a wide
temperature range (T, = 0.5-0.8). At the same time the experimental and liquid
densities for five more solvents are shown in this diagram. It can be seen that
with the exception of water the calculated liquid densities using the PR equation
of state are too high. The largest density deviations are obtained for the very
polar compound water. It seems that the difference between the experimental and
calculated densities is nearly constant. Using the SRK equation of state, even larger
deviations between the experimental and calculated liquid densities are obtained.
But a reliable description of the pure component densities is a prerequisite for the
calculation of reliable mixture densities for multicomponent systems. Peneloux
et al. [33] showed that the results for the liquid densities can be improved by
introducing a translation parameter c (see Section 2.5.5).

In Figure 5.39 for the temperature range T, = 0.5-0.8 experimental and liquid
densities for the same solvents as in Figure 5.38 are shown. But for the calculation

P =760.38 gdm ™
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Figure 5.38 Experimental and calculated liquid densities us-
ing the PR equation of state for six different solvents in the
temperature range T, = 0.5-0.8.

now the volume translated PR equation of state has been used, where the trans-
lation parameter was adjusted to the experimental liquid density at T, = 0.7 (see
Eq. (2.178)). This ensures that with the volume translation perfect results are
obtained at T, = 0.7. Finally, notonly for T, = 0.7, but also for other temperatures
improved results are obtained. From Figure 5.39 it can be seen that with the
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Figure 5.39 Experimental and calculated liquid densities
using the volume translated PR equation of state for six dif-
ferent solvents in the temperature range T, = 0.5—-0.8.
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Figure 5.40 Experimental [3] and calculated liquid heat capacities using VTPR.

exception of the strong polar compound water very good agreement is obtained
between the experimental and calculated densities in the whole temperature range
covered. For 44 compounds investigated in the temperature range (T, = 0.5-0.8) a
relative mean deviation smaller than 2% was obtained. This mean relative deviation
obtained for VTPR is much smaller than the deviations obtained for the PR (mean
deviation approx. 6%) or the SRK equation of state (mean deviation approx. 12%)
for the same 44 compounds.

Equations of siate not only allow to calculate densities, enthalpies of vaporization,
but also other thermodynamic properties, such as heat capacities, enthalpies,
entropies, internal energy, Gibbs energy, Helmholtz energy, and other important
properties, for example, Joule—Thomson coefficients, and so on. In Figure 5.40
experimental and calculated liquid heat capacities using the VTPR equation of state
for five different solvents in the temperature range 0-200 ‘C are shown. As can
be seen the agreement between experimental and calculated data is within approx.
2%. The calculated results of course depend on the quality of the heat capacities
of the ideal gas, the parameters of the a-function, and further parameters. In
[34] and Chapter 2 it was shown that the results can still be improved when
other thermodynamic data are used in addition for fitting the parameters of the
a-function.

5.5
Fitting of Binary Parameters of Cubic Equations of State

To describe the behavior of mixtures (enthalpies of vaporization, densities, heat
capacities, phase equilibria, etc.) using equations of state, binary parameters
are required. The different mixing rules suggested were alrrady discussed in
Section 4.9.2. While empirical mixing rules, for example, quadratic mixing rules
could only be applied for nonpolar systems, the range of applicability of equations
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of state with modern gE-mixing rules was extended to polar systems, for example,
systems with water, alcohols, ketones, and so on.

It was shown in Section 4.9.2 that in the quadratic mixing rules a binary
parameter k;; is required to describe the behavior of the binary system. For fitting
the binary parameter usually VLE data are used. With the help of all the required
binary parameters k;; (in the case of a ternary system: ky;, ki3, kz3) the ternary or
multicomponent system can then be calculated.

In Figure 5.41 for the binary system n-butane—CO; the experimental results are
shown together with the calculated results for k;; = 0 and for the fitted binary
parameter k;; = 0.1392. It can be seen that the agreement is highly improved when
going from k;; = 0to k1; = 0.1392. Furthermore, it is remarkable that k;; seems to
be temperature-independent over a wide temperature range. It is clear that starting
from a poor description of the binary system as in the case of kj; = 0, there is no
chance to obtain good results for a ternary or a multicomponent system.

For alongtime the empirical quadratic mixing rules were used in gas-processing
or petrochemistry. But poor results were obtained for systems with polar
compounds. This is exemplarily shown for the systems acetone—water and
isopropanol-water in Figures 5.42 and 5.43. It can be seen from the diagrams on
the left-hand side that unsatisfactory results are obtained, if the binary parameter
ki, of the empirical mixing rules is fitted to these systems. Huron and Vidal [35]
carefully investigated the advantages of gE-models and equations of state and
developed the so-called gE-mixing rules. Now, in gE-mixing rules the parameters
ofa gE-model, for example, of the Wilson, NRTL, or UNIQUAC model are fitted to
calculate the attractive parameter of the chosen cubic equation of state. For the two
systems mentioned the results are shown on the right-hand side of Figures 5.42
and 5.43. The improvements obtained are significant. The application of the new
mixing rules now allowed using equations of state also for process simulation in

8000
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O

0.5 1
X1, Y1

Figure 5.41 VLE results for the system n-butane(1) CO;(2)
using the binary parameter ki, = 0 and an adjusted bi-

nary parameter (o -270K; A —292.6 K; 4 —325.01 K;
W-3776K) (3]
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Figure 5.42 Experimental and calculated VLE data for the
system acetone (1)-water (2) using the PR equation of
state with classical mixing rules (k;; = —0.2428) (a) and
the Soave-Redlich—Kwong equation of state with gf-mixing
rules (NRTL, Agi2 = 257.9 cal/mol, Agx = 1069 cal/mol,
a1y = 0.2) (b) at 308, 323 and 333 K.
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Figure 5.43 Experimental and calculated VLE data for the
system isopropanol (1)-water (2) using the PR equation
of state with classical mixing rules (ky; = —0.168) (a) and
the Soave—Redlich—Kwong equation of state with g€-mixing
rules (NRTL, Agi; = —339.0 cal/mol, Agy = 1914 cal/mol,
a2 = 0.2) (b) at 308, 318, 328, and 338K.

chemical industry. Using the binary parameters derived from VLE data equations
of state directly allow the calculation of all other mixture properties.

Instead of the binary parameter k;; in the case of gt-mixing rules, the para-
meters of the Wilson, NRTL, or UNIQUAC equation are fitted. Depending on the
strength of the temperature dependence either constant or temperature-dependent
parameters have to be fitted. With the help of temperature-dependent parameters
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Figure 5.44 Experimental and cor- UNIQUAC parameters: a(acetone, H,0) =
related VLE, ht, azeotropic, and ™ 523.84 K, a(H;0, acetone) = —937.99K,
data using the VTPR equation of state b(acetone, H,0) = —1.3221, b(H;0, ace-
with gE-mixing rules (UNIQUAC with tone) = 4.4338, c(acetone, H,O) = 0.00125
temperature-dependent parameters); (K71), ¢(H20, acetone) = 0.00043 (K- 1).

even the temperature dependence of the excess enthalpies can be described with
the required accuracy. For the system acetone—water the results are shown in
Figure 5.44. It can be seen that besides the VLE behavior, the excess enthalpies,
activity coefficients at infinite dilution and the azeotropic data as a function of
temperature can be described with the required accuracy.

With the help of the binary parameters k;, or g8-model parameters now the phase
equilibrium behavior, densities, enthalpies, Joule~Thomson coefficients, and so
on, for binary, ternary and multicomponent systems can be calculated. For the
calculation of the VLE behavior the procedure is demonstrated in the following
example for the binary system nitrogen—methane using classical mixing rules. The
same procedure can be applied to calculate the VLE behavior of multicomponent
systems and with gE-mixing rules as well.

Example 5.12

With the help of the¢ SRK equation of state the system pressure and vapor phase
composition for the binary system nitrogen (1)-methane (2) for a liquid mole
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fraction of nitrogen x; = 0.2152 at 144.26 K should be calculated. The required
pure component data and the binary parameter are given below:

Component T, (K) P (bar) ®
N, 126.15 33.94 0.045
CH, 190.63 46.17 0.010

Binary parameter: ki, = 0.0267 [36].

Solution

The calculation has to be performed iteratively. The objective of the iterative
procedure is to find the pressure and vapor phase composition for which the
following equilibrium condition is fulfilled:

xipr = yig (5.9)

for both components. To start with the calculation, first of all estimated values
for the vapor phase composition and system pressure are required. [n this case, a
vapor phase mole fraction y; = 0.6 and a pressure P = 20 bar were chosen.

During the iterative procedure these values have to be changed until the equi-
librium condition (5.9) is fulfilled. A flow diagram for this procedure is shown in
Figure 5.45. For the considered example the first step of this procedure is described
in detail below.

First the pure component parameters for both compounds have to be calculated
with the help of Eqs. (2.162-2.164) at the given temperature (144.26 K) using the
critical data P,, T,, and the acentric factor w:

0.08314% - 126.152

a1 (T) = 0.42748 304 ay(T)
= 1.3856 - a;(T)(dm?)? bar I mol®
144.25
T, = =1.1436
126.15

2
ay(T) = [1+ (048 + 1,574 0.045 — 0.176 - 0.045%)(1 - 11436
o (T) = 0.9251

2
an(T) = 1.2818 (dm’) " bar/mol?

0.08314 - 126.15
b; = 0.08664 ——— ="~ — 0.02677 dm’
33.94

0.083142 - 190.632

TR a(T) = 2.3259 a5 (T) (dm*)? bar/mol?

azz(T) = 0.42748



Input (N, - CH,):
Temperature, mole fraction x;
(T =144.26 K, x4 = 0.2152)
Pure component data: T,
Peir o

(T, = 126.15 K 190.63 K

P. =33.94 bar, 46.17 bar

o = 0.045. 0.010)
Binary parameters: k;
(ky ~ 0.0267)

Initial estimation of P and y;
(P =20bar.y, = 0.6)

Y

Calculate the mixture
parameters a and b for the
liquid phase

(a - 2.2867 bar dm®/ mol?,
b= 0.02910 dm3/mol)

FN

Calculate the molar volume v- and the fugacity
coefficient ¢;- for the liquid phase
(v = 0.04775 dm¥mol. ! = 2 489. 0.3779;

Y

Calculate the mixture parameters a and b for
the vapor phase
(a-=1.7417 bar dm®/mol°. b = 0.02796 dm*/mol}

1]

Calculate the molar volume vV and the fugacity
coefficient ¢,V for the vapor phase
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Figure 5.45 Flow diagram for the calculation of isothermal vapor-liquid equilibria using the SRK equation of state.
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144.26

= —— = 0.7568
190.63

r2

2
ay(T) = [1 + (0.48 + 1.574 - 0.01 — 0.176 - 0.01%)(1 — 0.75680-5)]
Olz(T] =1.1331

a2,(T) = 2.6356(dm’)? bar/mol*
0.08314 - 190.63 ,
b; = 0.08664 ——————— = 0.02974 dm’/mol
46.17
In the next step, the cross parameter a,, and the mixture parameters a and b for the

liquid phase with the help of the mixing rules (Egs. (4.98—4.100)) are calculated.
a12(T) = a1 (T) = (1.2818 - 2.6356)>5(1 — 0.0267)
= 1.7889 (dm*)? bar/mol*
a(T) = 0.21522 - 1.2818 + 2 - 0.2152 - 0.7848 - 1.7889 + 0.78482 - 2.6356
= 2.2869(dm>)? bar/mol?

b =0.2152-0.02677 + 0.7848 - 0.02974 = 0.0291 dm3/mol

With the help of these parameters, the molar volume of the liquid has to be
determined in a way that the given pressure P = 20 bar is obtained with the SRK
equation of state.

This calculation can be performed iteratively or by solving the cubic equation of
state. For the given pressure of 20 bar a molar liquid volume 0f 0.0477563 dm? /mol
is obtained:

RT a(T) 0.08314 - 144.26

P = - -
v—b viv+b) 0.04776 —0.0291

2.2869
0.04776(0.04776 + 0.0291)

With the help of the calculated molar volume and the various pure component
and mixture parameters of the liquid phase both fugacity coefhicients for the liquid
phase ¢} can be calculated using Eq. (4.101). For nitrogen (1) the following value
is obtained:

= 20 bar

0.04776

0.04776 — 0.0291

3 2(0.2152 - 1.2818 + 0.7848 - 1.7889) r]0.04776 +0.0291
0.08314 - 144.26 - 0.0291 0.04776
0.02677 n 20-0.04776

0.04776 — 0.0291 0.08314 - 144.26

2.2869 - 0.02677
0.08314 - 144.26 - 0.0291?
. (l 0.04776 + 0.0291 B 0.0291 )
0.04776 0.04776 + 0.0291

Ingl =1n
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o7 = 2.4892
In the same way, the fugacity coefficient for methane (2) is obtained:
ok =0.3779

In the next step, the mixture parameters for the vapor phase (y; = 0.6) have to be
determined:
a(T) = 0.6* - 1.2818 + 2- 0.6 - 0.4 - 1.7889 + 0.4% - 2.6356
= 1.7418 (dm*)? bar/mol’

b =0.6-0.02677 + 0.4 - 0.02974 = 0.2796 dmj/mol

With the help of these parameters a molar volume of 0.4601 dm?*/mol for the
vapor phase is obtained for the pressure of 20 bar using the SRK equation of state.
With this volume and the parameters for the vapor phase the following fugacity
coefficients are obtained:

@Y = 0.8833

@y = 0.7100

With the help of the fugacity coefficients obtained first the K-factors (K; = y;i/x;) for
the two components can be calculated using Eq. (5.17):
Y1 or  2.4892

Ki=—= =
'Tx T oY 08833

= 2.8181

L 0.3779
&zﬁzﬁ_

2 = 27 05323
x, @Y 07100

Then it can be checked whether the equilibrium condition is fulfilled. In equilibrium
the sum of the mole fractions in the vapor phase should be equal to 1.

S= Zx.'Ki =0.2152 - 2.8181 + 0.7848 - 0.5323 = 0.6065 + 0.4177 = 1.0242

It can be seen that with the estimated vapor phase composition and pressure the
equilibrium conditions are not fulfilled. This means that new values have to be
estimated for the vapor phase composition, for example, by normalizing the vapor
phase mole fractions:

0.6065
y= =0.5922
1.0242
0.4177
Y2 = 1042 7

Furthermore, a new pressure is estimated using the K-factor method:

old - S = 20.484 bar

Pnew ==
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The iteration can be stopped when the sum of the calculated mole fractions

S= ZYi = inKi,

only deviates by a small value for example, £¢ = 10~> from the desired value of 1.
After a few iterations the stop criterion £ < 107> is fulfilled. This means that the
correct equilibrium composition and pressure are obtained.

N Y1exp Y1,cale Pexp (bar) Pealc {bar]

0.2152 0.5804 0.5893 20.684 20.733

At these conditions the following fugacity coefficients are obtained for the two
compounds in the different phases:

oF ok o) a4
2.4106 0.3655 0.8803 0.6984

In Figure 5.6, the calculated results using the SRK equation of state are shown
together with the experimental data for different temperatures and the whole
composition range for the system nitrogen (1)-methane (2).

The whole procedure is given in the form of a flow diagram in Figure 5.45. The
same procedure shown for the binary system nitrogen—methane can be applied for
multicomponent systems. For the calculation besides the critical data T,, P, and
the acentric factors w; of the compounds involved only the binary parameters k;
for the quadratic mixing rule or the gB-model parameters in the case of gt-mixing
rules are required.

For the quaternary system N,—CO,-H;,S-methanol calculated with the help of
the SRK equation of state using binary parameters k;; respectively gf-mixing rule
parameters the calculated and experimental results are shown in Figure 5.46. From
the results it can be concluded that in this case only slightly improved results are
obtained using gF-model parameters.

5.6
Conditions for the Occurrence of Azeotropic Behavior

At the azeotropic point, the mole fractions of all components in the liquid phase
are identical with the mole fractions in the vapor phase for homogeneous systems.
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Figure 5.46 Experimental [3] and predicted K-factors for
the system N,—-CO,; — H,S—methanol at —15 C: ----- SRK
+ quadratic mixing rule; —— SRK + gf-mixing rule

This leads to the fact that all K-factors and all relative volatilities show a value
of 1 at the azeotropic point and that the system cannot be separated by ordinary
distillation. A reliable knowledge of all azeotropic points for the system to be
separated is of essential importance for the synthesis and design of separation
processes.

For a binary system, the following relations are valid for homogeneous systems
at the azeotropic point using the simplified Eq. (5.18) of Approach B:

Ki  yi/xa

nh
O =—=—= —

n_hon_5B
)'zpi

=1- = ~ ps
Y1 Pz Y2 P]

(5.46)

Using an equation of state (Approach A) the following relation is obtained for the
azeotropic point:

Ki  yi/ei oy or  or
a12:?= :-LV—ZL= —>—:/=—\2/ (547)
2 Y% @y 728 7

It can be seen that starting from Eq. (5.46) azeotropic behavior always occurs if
for a given composition the ratio of the pure component vapor pressures Pj/P§
is identical to the ratio of the activity coefficients y,/y;. The typical curvature
of the y,/y -ratio in logarithmic form for an azeotropic system with positive
and negative deviation from Raoult’s law at constant temperature is shown in
Figure 5.47a,b, respectively. The azeotropic composition can directly be obtained
from the intersection of the straight line for the vapor pressure ratio and the curve
for the ratio of the activity coefficients y»/y.
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Figure 5.47 Examination of the azeotropic behavior of bi-
nary homogeneous systems at constant temperature (com-
ponent 1 = low boiling compound).’

From Eq. (5.46), it can be seen that azeotropic behavior can easily occur in
a binary system if the vapor pressures of the two components are very similar,
since in this case already very small deviations from Raoult’s law are sufficient
to fulfill the equation and to create an azeotropic point either with positive or
negative deviation from Raoult’s law. If the vapor pressures are identical (e.g., at
the Bancroft point), the binary system shows the azeotropic behavior.

From Figure 5.47, it can be concluded that the occurrence of azeotropic points
can be calculated if besides the activity coefficients at infinite dilution the ratio of
the vapor pressures is known. Azeotropic behavior occurs if the following condition
for positive resp. negativedeviation from Raoult’s law is fulfilled (see Figure 5.47):
Pi
P
positive resp.

—Ilny°>In El
]

negative deviation from Raoult’s law

Iny;° >In (5.48)

Since approx. 90% of the systems show positive deviation from Raoult’s law, in
most cases pressure maximum (temperature minimum) azeotropes are observed.

The activity coefficients at infinite dilution and the vapor pressures de-
pend on temperature following the Gibbs—Helmholtz (Eq. 5.26) and the
Clausius—Clapeyron equation (Eq. 3.64) [7], respectively. The result of the
temperature dependences is that azeotropic behavior can occur or disappear with
increasing or decreasing temperature (pressure). lo understand if azeotropic

15) When a strange composition dependence
of the activity coefficients exists also two
azeotropes with pressure minimum and
pressure maximum can be found in a

binary system, for example, the system
benzene-hexafluorobenzene shows this
hehavior.
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Figure 5.48 Temperature dependence of Ih y;* (- -) calcu-
lated with the help of the NRTL equation and the ratio of
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Figure 5.49 Azeotropic behavior of the systein ethanol
(1)-1,4-dioxane (2) (a) and acetone (1) water (2)
(b). A experimental [37); — calculated using NRTL.

behavior occurs or disappears, only the knowledge of the temperature dependence
of y5° (for positive deviations from Raoult’s law) and the ratio of the vapor
pressures is required. For the systems ethanol-1,4-dioxane and acetone-water
the experimental azeotropic data are shown in Figures 5.48 and 5.49 together
with the calculated results using the NRTL equation with the parameters given in
Table 5.9. While for the first system the azeotropic behavior disappears at higher
temperature, the opposite is true for the second system acetone—water, where
azeotropic behavior occurs at temperatures above 70°C. As can be seen from
Figure 5.49 the occurrence and disappearance of the azeotropic behavior for both

systems is described reliably with the NRTL model.
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Example 5.13

Determine the azeotropic points of the system acetone (1)-methanol (2) at 50, 100,
and 150 °C by the ratio of the activity coefficients and vapor pressures using the
Wilson equation with the interaction parameters given in the table below.

For the calculation. the following molar volumes:

v, = 74.04 cm® mol™'; v, = 40.73 cm? mol ™! should be used.

Parameters of the Antoine equation: log P{(mm Hg) = A — —

v("C)+C
Compound A B C
Acetone 7.1327 1219.97 230.653
Methanol 8.08097 1582.27 239.7
Wilson parameters
i j ajj (cal mol™) bj; (cal mol~" K"}

1 2 -60.756 -0.06114
2 1 863.79 -1.0533

Solution

Exemplarily for the calculation of the ratio of the activity coefficients the following
composition at a temperature of 100 °C is used: x; = 0.2 and x, = 0.8.
First the Wilson interaction parameters AA;; at 100 "C have to be calculated:

Alij=aj+by- T
Ay = —60.756 — 0.06114 - 373.15 = —83.57 cal mol ™"
Ak = 863.79 — 1.0533 - 373.15 = 470.75 cal mol ™'

Then the Wilson parameters Aj can be determined:

v Ak
Aj=-2 exp|-—2
! vi explz RT:I
40.73 ~83.57
=T exp |22l = 0,615
2= 7404 e"p[ 1.9872]~373.15] e
74.04 470.75
Ap= exp|-— 2 = 0.9635
2= 2073 exP[ 1.98721-373.15]

With the help of these parameters the required activity coefficients can be calculated.
Exemplarily the calculation is shown for the activity coefficient of acetone (1):

Iny; =—1n (x +x2A12)+x2( Az - A )
! 1 +x0hn xAn+x
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Iny =—In(02+ 0.8-0.6157)
0.6157 0.9635
+08- -
0.2+08-0.6157 0.2-0.9635+08

) =0.3021
y = 1353

Similarly the following value is obtained for y;:

With the help of these activity coefficients the ratio can be estimated:

yi 1353

= =1.3213
Y2 1.024

Using the Antoine constants given above one obtains for the ratio of the vapor
pressures P5 /P at 100°C:

P 2649.26
P 27741

=0.955

For the whole composition range and the different temperatures selected the
results are shown in Figure 5.50. From the diagram it can be seen that a strong
temperature (pressure) dependence of the azeotropic composition is observed
(50°C: x;22 = 0.8; 150°C: x4, = 0.2). This is mainly caused by the different
enthalpies of vaporization of the two compounds considered. While acetone shows
an enthalpy of vaporization of 29.4 kJ/mol at 50 'C, the value for methanol is

2

L
i 50 °C
b 5 100 °C
150 °C
L 5 PyIP®
[ 5 = 150|°C
L
1 e — Sp— SE— —ee —
F9 = 100|°C
[5=50%C V4
0s b Y1lva
0 I 1 1 1 { X 1 1 1
0 0.5 1

Figure 5.50 Ratio of the activity coefficients y1/y,
and ratio of the vapor pressures P3/P;} of the system
acetone (1)-methanol (2) for the determination of the
azeotropic points at 50, 100, and 150°C.
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36.1kJ /mol. The strong pressure dependence observed can be applied in practice
for the separation of azeotropic systems by pressure swing distillation, this means
using two distillation columns running at different pressures. Since the enthalpies
of vaporization of water are higher than for organic compounds, pressure swing
distillation is mostly used for the separation of water from organic compounds, as
for example, the separation of tetrahydrofuran—water, acetonitrile—water, and so on.
The temperature dependence of the separation factor (see Eq. (5.18)) and of
the azeotropic composition of binary systems depends on the type of azeotrope
(pressure maximum, pressure minimum), the temperature dependence of the
vapor pressures, and the composition and temperature dependence of the activity
coefficients. These dependencies can be described with the help of the heats of
vaporization and partial molar excess enthalpies following the Clausius—Clapeyron
respectively the Gibbs-Helmholtz equation [38] (derivation see Appendix C, B9):

aT )~ RT?[1 - (3yy/0%1),_] (5.49)

—E —E
(ay]> (ny2),, (Ahv, — Ahy 4 by — hl)

az
where the expression (3y;/dx;)., shows values < 1 for systems with positive
deviations from Raoult’s law and values > 1 for systems with negative deviations
from Raoult’s law. In most cases the difference of the enthalpies of vaporization is

larger than the difference of the partial molar excess enthalpies.

Example 5.14

Calculate the temperature dependence of the azeotropic composition (y; ., = 0.9) of
the system ethanol (1)-water (2) at 70 °C using Eq. (5.49). At 70 °C the compounds
show the following enthalpies of vaporization:

Ahyethanol: 39800 ]/mo]
Ahywarer: 42000 J/mol

Solution

Besides the enthalpies of vaporization additionally the difference of the partial
molar excess enthalpies and the slope dy,/3x; at the azeotropic point at 70°C is
required. This information can be derived from Figures 5.17 and 5.30. For the
difference of the partial molar excess enthalpies }_LE - ﬁf approximately a value of
500 ) /mol and for the slope a value of 0.9 is obtained.

Using these values the temperature dependence can be calculated:

(Byl> _0.9-0.1- (39800 — 42000 + 500)
az

=-1.56-10"3 K!
T 8.31433 - 343.152 (1 — 0.9)

This means that the mole fraction of ethanol in the azeotrope will decrease with
increasing temperature and that the azeotropic behavior should disappear at a
lower temperature. This is in agreement with the experimental findings. From the
enthalpies used for the calculation, it can be recognized that this is mainly caused
by the higher enthalpy of vaporization of water compared to ethanol.
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0.4 Figure 5.51 3, (—) and the ratio of
the vapor pressures P;/P; in logarithmic
a form (- - -) as a function of temperature
a 0.35 2 for the system acetone (1)—carbon tetra-
“@; chloride (2).
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Depending on the sign of the partial molar excess enthalpies as a function of
temperature, the activity coefficient y;* can show a maximum or a minimum in
the considered temperature range following the Gibbs—Helmholtz relation. This
means that the condition for azeotropic points can be fulfilled either only in a small
temperature range or at low and again at high temperature. For the maximum
case the condition is fulfilled for the system acetone-carbon tetrachloride. The
reason is that the sign of the partial molar excess enthalpy changes because of
the S-shaped heat of mixing behavior of this system. This results in a maximum
for y,°, so that the condition for azeotropic behavior is fulfilled only in a limited
temperature range. Figure 5.51 shows the curvature of y;* and the ratio of the vapor
pressures in logarithmic form as a function of temperature. The experimental and
predicicd excess enthalpies and the experimental and predicted azeotropic data
using modified UNIFAC are shown in Figures 5.52 and 5.53. It can be seen
that modified UNIFAC (see Section 5.9.3.1) is able to predict the occurrence and
disappearance of the azeotropic behavior.

Instead of gt-models also equations of state can be used for the determination
of azeotropic behavior of binary or multicomponent systems. In Figure 5.54 the
experimental and predicted azeotropic points using the group contribution equation
of state VTPR (see Section 5.9.4) for the system ethane—CO, up to pressures of
80 bar are shown.

As mentioned before, azeotropic behavior always occurs if the compounds to be
separated have identical vapor pressures (Bancroft point). Since the slope of the
vapor pressure curve, following the Clausius—Clapeyron equation, depends on the
value of the enthalpy of vaporization, a low boiler may become the high boiler with
rising temperature, if the enthalpy of vaporization is smaller than the one for the sec-
ond compound. This is shown for ethanol and benzene in Figure 5.55. While ben-
zene is the low boiler at low temperatures, the opposite becomes true at higher tem-
peratures, since the molar enthalpy of vaporization of the polar component ethanol
is larger than the molar enthalpy of vaporization of benzene (see Appendix A).

Even the system water—deuterated water shows a Bancroft point, since deuterated
water with a higher normal boiling point (101.4°C instead of 100°C) shows a
larger enthalpy of vaporization than water. For example, at 25 °C the enthalpy
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Figure 5.52 Experimental and predicted azeotropic compo-
sition of the system acetone (1)—carbon tetrachloride (2) as
a function of temperature A experimental [3] — predicted

using modified UNIFAC.
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Figure 5.53 Experimental and predicted excess enthalpies
of the system acetone (1)—carbon tetrachloride (2) as a
function of temperature e experimental data at 5, 25, 30,
45°C [3] — predicted using modified UNIFAC.
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of vaporization for water is 43.9kJ/mol and for D,0 45.35k]/mol. The result is
that at temperatures around 220 °C the vapor pressures of water and deuterated
water become identical following the Clausius—Clapeyron equation, so that even the
system water—deuterated water shows azeotropic behavior in a limited temperature
range (493-495 K) near the Bancroft point, as shown in Figure 5.56.

Azeotropic behavior is notlimited to binary systems only. Also ternary and quater-
nary azeotropic points are observed. For the determination of the azeotropic points
in ternary and quaternary systems, thermodynamic models (gE-models, equations
of state, group contribution methods) can again be applied [40]. Azeotropic points
in homogeneous systems can be found with the help of nonlinear regression
methods. At the azeotropic point all separation factors «;; show a value of 1 in the

case of homogeneous systems. This means that the following condition has to be
fulfilled:

n n
F=YY laz—1|=0 (5.50)
i >

For the azeotropic system acetone—chloroform—-methanol, the three possible sep-
aration factor curves with a value of 1 are shown in Figure 5.57. The intersection
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496 - Figure 5.56 Experimental azeotropic
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Figure 5.57 Predicted contour lines (; = 1) using
modified UMIFAC for the ternary system acetone
(1)—chloroform (2)—methanol (3) at atmospheric pressure).

of two of these curves, for example, oy, =1 and a3 = 1 leads to an azeotropic
point, since at the intersection point the criterion for the separation factor a,;3 is
automatically fulfilled (see Figure 5.57).

In the case of heterogeneous azeotropic mixtures a different calculation procedure
has to be applied. For the ternary system water—ethanol-benzene this is shown
in Figure 5.58. Heterogeneous azeotropic behavior occurs if a pressure maximum
can be found along the binodal curve. The required pressures can be calculated
starting from the composition of the heterogeneous binary system up to the critical
point. In doing so, one can start from the composition in the organic or the
aqueous phase. The result is shown on Figure 5.58b. It can be seen that for both
procedures a pressure maximum occurs, this means heterogeneous azeotropic
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Figure 5.58 Experimental and calculated LLE behavior using
modified UNIFAC for the system water—ethanol-benzene at
298.15K (a) pressure as a function of composition of the
benzene rich phase resp. water-rich phase (b).

behavior is obtained for this system. In Figure 5.58, the temperature dependence
of the azeotropic composition is also shown. It can be seen that the concentration
of water in the azeotrope increases with increasing temperature (pressure). The
main reason for the observed temperature dependence is that the vapor pressure
of water increases faster than the vapor pressures of ethanol and benzene, because
of the larger enthalpy of vaporization.

Azeotropic behavior is also obtained for quaternary systems. But fortunately,
azeotropic points in quinary or higher systems do not exist, since with increasing
number of components it becomes more and more unlikely that for one composi-
tion all the separation factors become exactly unity.

For a large number of systems experimental (a)zeotropic information can be
found in a comprehensive data compilation [37]. The knowledge of the azeotropic
points is of special importance during the synthesis of separation processes and
the selection of suitable solvents for azeotropic distillation.

5.7
Solubility of Gases in Liquids

The objective of absorption processes is the separation of gas mixtures or the
removal of undesired compounds from gas mixtures. For the selection of the
optimal solvent or solvent mixture (absorbent) and the design of absorption
processes a reliable knowledge of the gas solubility as a function of temperature
and pressure is of special importance.'

16) The reliable knowledge of gas solubilities
is also required for the design of gas—liquid
reactors.
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Industrially important absorption processes are for example the removal of
sour gases (CO,, H,S) from natural gas or synthesis gas, the removal of carbon
dioxide in chemical plants such as ethylene oxide plants, the removal of SO,
from flue gas, or the absorption of CO, in power plants (carbon capture and
storage (CCS)), and so on. One has to distinguish physical and chemical absorption
40+ 2,
A
30 1 7 1.5 ”
20 - g 1 9
Q
10 1 0.5 -
0 - T 1 0 N r T -1
0.1 0.2 0 0.025 0.05
e e
Figure 5.59 Experimental solubilities [3] of CO,
in methanol (A) and aqueous monoethanolamine
solution (30 mass%) (e) at T = 313.15 K.
Co,
Gas phase
Liquid phase
COOe
HO
EED — HO + HO ®
2 \/\NHZ \/\u/ \/\NH3
CO, + HO + HO\/\NH2 — RS s o Ho\/\NH‘;

Figure 5.60 Chcmical reactions which have to be
considered besides the gas solubility for the absorption of
CO, in aqueous monoethanolarrine solutions.
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processes. For physical absorption processes, only the knowledge of the phase
equilibrium behavior is required. For chemical absorption processes, all chemical
equilibria have to be taken into account in addition to the phase equilibria. Often,
reaction kinetics and mass transfer has to be regarded as well. In Figure 5.59
the solubility of carbon dioxide in methanol (physical absorption) and aqueous
monoethanolamine solution (chemical absorption) is shown for a temperature
of 313.15K.” The reactions which have to be considered for the absorption of
CO; in monoethanolamine are shown in Figure 5.60. From Figure 5.59 it can be
recognized that chemical absorption shows great advantages compared to physical
absorption, when the partial pressure of the gas to be absorbed is low, as in the case
of CCS-processes. Physical absorption shows advantages at high partial pressures.

For the calculation of gas solubilities for physical absorption processes both
approaches discussed in Section 5.1 (Egs. (5.9) and (5.10)) for VLE calculations can

be applied.
xipf =y (5.9)
xiyif’ =y} P (5.10)

While there is no difference for the calculation of gas solubilities in comparison
to VLE in the case of the equation of state (approach A), for approach B, there is
the problem that the standard state (pureliquid at system temperature and system
pressure) used for VLE calculations cannot be used anymore, since supercritical
compounds are not existent as liquid. This means an alternative standard fugacity
is required for the y —¢-approach.

5.7.1
Calculation of Gas Solubilities Using Henry Constants

An alternative is the usage of the Henry constant H;; as standard fugacity f°. Using
the Henry constant as standard fugacity, the following expression is obtained for
the calculation of gas solubilities in a binary system:

x1y; Hi =y P (5.51)

1 = solute, 2 = solvent
The Henry constant is defined as

Hp= lm & (5.52)
0w -0 X1
x; —> 1
PP

and is exactly valid only for the case where the partial pressure of the gas is equal
to zero, this means when the total pressure is identical to the vapor pressure of the
solvent.

Since in the case of gas solubilities normally only a small concentration range
is covered in the liquid phase, simple expressions for the description of the

17) Atemperature of 313.15 K was chosen to be methanol is used as absorbent (Rectisol
able to compare the solubilities. In practice process) at much lower temperatures.
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concentration dependence of the activity coefficient y* like for example, Eq. (5.53)
(so-called Porter equation) can be applied:

Iny! = A(x} — 1) (5.53)

The simple expressions used have to satisfy the asymmetric convention (y;* = 1 for
x; — 0,x, — 1). However, one should have in mind that equations of state have
significant advantages if y;* is significantly different from unity. The application of
the Henry constant should be restricted to low solute concentrations x; < 0.03, so
that Eq. (5.51) reduces to the usually applied form:

x1Hp = y11 P (5.54)

At low pressures the fugacity coefficient also shows values close to unity, so that
the following simple expression (so-called Henry’s law) is obtained:

X1 Hu =M P= b1 (555)

A comparison of Eq. (5.55) with Eq. (5.16) at infinite dilution of component 1 shows
that in the subcritical region the Henry constant corresponds to

Hu~ y° - P, (5.56)
Atlow pressures the following statements can be derived from Henry’s law:

« the gas solubility is proportional to the partial pressure;

« the gas solubility is proportional to the reciprocal value of the Henry constant;

+ the temperature dependence of the gas solubility is only determined by the
temperature dependence of the Henry constant.

[n comparison to the standard fugacity “pure liquid at system temperature and
system pressure” used for VLE calculations, there is the great disadvantage of the
Henry constant that it is not a pure component property, but has to be derived
from experimental gas solubility data.

The value of the Henry constant can be very different. It strongly depends on the
properties of the gas (T;, P;) and strength of the interactions with the solvent. In
Table 5.12 Henry constants for various gases in water are listed for a temperature
of 25 °C. It can be seen that these values differ by orders of magnitude. While for
the light gases (He, Ar, H;, N,, O,, CO, CH4, SFs) Henry constants greater than
40000 bar are observed, values around 1000 bar are found for CO,, H,S, C;H,
in water, where it is surprising that the Henry constant for the relatively large
compound SF is even greater than for helium. In Table 5.13, Henry constants for
six gases in four solvents are given for a temperature of 25 °C. The values show that
also the interactions between the gas and the solvent play an important role. For all
the gases the values are significantly different between the polar solvent methanol
and the nonpolar solvent n-heptane, caused by the different intermolecular forces
between the compounds. Looking at the Henry constant of the sour gases (CO,,
H;S) and methane in methanol, it seems that methanol is a highly selective
absorbent for the removal of sour gases from natural gas. This effect is realized
in the so-called Rectisol process [41]. Furthermore, Henry constants show strong,
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Table 5.12  Henry constants of various gases in water at 25 °C [3].

Gas Hj (bar)
He 144000
Ar 40000
H, 71000
N» 83500
0O, 44200
H,S 580
CoO 58000
CO; 1660
CH, 40200
CyH, 1350
CyHy 11700
CyHg 30400
SF, 236000

Table 5.13  Henry constants (bar) of various gases in different organic liquids at 25 °C [3].

H, N, 0, H2S co; CH,
Methanol 6100 3900 2200 335 145 1180
Acetone 3400 1850 1200 14.5 50 545
Benzene 3850 2300 1260 19.0 105 490
Heptane 1450 760 500 234 78 210

nonlinear temperature dependence. In Figures 5.61 and 5.62, Henry constants for
various systems are shown as a function of temperature. For the three systems
helium, nitrogen, and oxygen in water shown in Figure 5.61 even a maximum of
the Henry constant is observed. This means that the gas solubility for a given partial
pressure can increase as well as decrease with increasing temperature depending
on the temperature range considered. In Figure 5.62 it is shown that for the systems
with hydrogen the Henry constant decreases with increasing temperature, while
the opposite behavior is observed for methane in methanol and carbon dioxide in
toluene.

In process simulators, the temperature dependence of the Henry constants is
often described by the following expression:

B T E
-2 + Ci21n X + DT + = (5.57)

Hyp (T
12 )=A12+ T?

1
- bar T

Usually the data situation does not justify adjusting all parameters. In most cases
only two of them (A, B or A, D) can be fitted. The value of the constant A depends
on the chosen unit for the pressure.
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5.7 Solubility of Gases in Liquids

Example 5.15

Determine the Henry constant for carbon dioxide (1) in water (2) with the help of
the following phase equilibrium data at 50 "C:

xy-10% p1 (kPa)
0.342 101.33
0.683 202.65
1.354 405.3
2.02 607.95
2.66 810.6
33 1013.3
3.93 1216
4.55 1419
5.15 1621
5.75 1824
?410 = 12.3kPa at 50°C, virial coefficients: B;; = —102 cm?/mol,

By, = —198 cm?/mol, By; = —812 cm?/mol.

Solution

For the calculation of the fugacity coefficients the total pressure has to be determined
first. Since the partial pressure of water is approximately identical with the vapor
pressure at 50 C (12.3kPa), the total pressure can directly be calculated, for
example, for p; = 405.3 kPa (data point 3):

P =4053+12.3 =417.6kPa

With these values the vapor phase composition is obtained:

405.3
Y1 = m = 0.9705

With this information, the second virial coefficient B and the fugacity coefficient
for carbon dioxide can be calculated using Eq. (4.89):

B = 0.9705% (—102) + 2 - 0.9705 - 0.0295 (—198)
+0.0295% (—812) = —108 cm®/mol
With Eq. (4.87) follows for the fugacity coefhicient:

417.6

Ingy = (2(0.9705 (~102) + 0.0295 (—1 08) ———
ney = (2[09705(=102) +0.0295 (=198)] + 108} g3 33 15

o1 = 0.9843
In the next step the fugacity f; and the ratio f; /x; can be calculated:

fi = 101 P = @1p1 = 0.9843 - 405.3 = 398.94 kPa
fi/x1 = 398.94/0.001354 = 294600 kPa = 2946 bar
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Table 5.14

Experimental gas solubility data, fugacities,
fugacity coefficients and the ratio fi/x; for the system
COz-water at 50°C.

x1-10° pr (kPa) o fi (kPa) fiJx (bar)
0.342 101.33 0.9960 100.92 2951
0.683 202.65 0.9920 201.01 2943
1.354 405.3 0.9843 398.94 2946
2.02 607.95 0.9768 593.83 2940
266 810.6 0.9693 785.7 2954
33 1013.3 0.9618 974.63 2953
3.93 1216 0.9545 1160.6 2953
4.55 1419 0.9471 1344.0 2954
5.15 1621 0.9399 1523.6 2958
5.75 1824 0.9327 1701.2 2959

For the other data points the fugacity coefficients ¢, fugacities f; and ratios fi /x
are given in Table 5.14.

From a diagram (see Figure 5.63a) where the ratio fi/x; is plotted against the
liquid niole fraction of carbon dioxide, the Henry constant can be determined at the
mole fraction x; = 0. Besides the ratio f /x;, additionally the ratio p; /x; is shown in
Figure 5.63. While the ratio f; /x; stays nearly constant, the values for the ratio p; /x;
are distinctly different already at low partial pressures. But the extrapolation to
%1 =0 (p1 — 0) leads to the same value for the Henry constant (H;; ~ 2950 bar).

Another option to determine the Henry constant is the plot of the fugacity f; over
the mole fraction x;. That is shown in Figure 5.63b. In this diagram the Henry
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5.7 Solubility of Gases in Liquids

constant is obtained from the straight line through the experimental data at the
intersection at x; = 1. Both procedures lead to the same value.

Henry’s law is valid exactly only for P = P5. However, the pressure dependence
of the Henry constant is relatively low, but it can be taken into account by

dln H]g ‘—/loc

— ) == (5.58)
oP ), RT

where v;°™ is the partial molar volume of the dissolved gas (1) in the solvent (2)

at infinite dilution. Assuming that the partial molar volume is constant, the Henry

constant at the pressure P can directly be calculated using Eq. (5.59), which is

known as Krichevsky—Kasarnovsky equation.

V(P - P
InHy(P) = InHyy(P3) + WP P (5.59)
RT
For mixed solvents, an empirical logarithmic mixing rule
q Z x]‘ In %
Lmix _ J
In bar © Y% (5.60)
J

can be applied, where the summation is only carried out for solvents for which the
Henry constant is known.

This mixing rule makes sense only in cases where the Henry constants for the
gases in the highly concentrated compounds of the solvent are known.

Example 5.16

Calculate the Henry constant of CO; in a liquid mixture of methanol, water and
trioxane at 25 °C. The concentrations and the Henry constants of CO, in the pure
solvents are given in the following table:

x Hco, j (bar) at # = 25°C
Methanol 0.39 145
Water 0.6 1660
Trioxane 0.01 unknown

Solution

Using Eq. (5.60), one has to take into account that only the concentrations of
methanol and water are counted, as the Henry constant of CO, in trioxane is not

18) The partial molar volumes at infinite di-
lution can be obtained from the observed
volume change during absorption.
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Figure 5.64 Henry constant of CO; in the system
methanol (1)-water (2) at 25 'C — correlation;
B experimental dat2 frorm [42).

known:
> % In 52
In Hco, mix _ j _ 0.39- In 145+ 0.6 - 1n 1660
bar Z X; 0.39+0.6
l

= 6.4545 = Hco, mix = 635 bar

There is an experimental value for Xmethanol = 0.3885 and xXwaer = 0.6115 at
? = 25°C, giving Hco,mix = 749bar [42]. Clearly, the simple mixing rule can
by far not be taken as exact; however, at least the correct order of magnitude
is met, which is usually sufficient in process simulation. Figure 5.64 shows the
relationship of the Henry constant Hco, at ¢ = 25 °C as a function of the methanol
concentration. It can be seen that in this case the mixing rule works in a qualitatively
correct way.

When dissolving a gas in the liquid phase the enthalpy of the gas changes
similarly to the enthalpy change of vaporization. The enthalpy of solution at infinite
dilution Ak — the enthalpy difference between the gaseous and the dissolved
solute — can be expressed with the help of the Henry constant as derived below.

Starting from the phase equilibrium condition

w =t (5.61)
and
v
w’ =ud + RTlnﬁ (5.62)
13
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where the standard fugacity is based on the pure component, and
pt = pt + RTIn (xy,") (5.63)

where the standard fugacity is based on the state of infinite dilution, one obtains

Sl (5.64)
RT £
as y;* becomes unity at infinite dilution. Considering
L

Himix = xl,iTo ;C_; and  fl=f"

one obtains
oV _ ool -
Hi RT“ i = _In I}:b“v“* (5.65)

Using the van't Hoff equation (see Appendix C, A7), differentiation of both sides
with respect to temperature yields

Hl,mix
ke AT Y 1 dHime 1 dHim (5.66)
RT? dT Himx O dT — Himx dT
and therefore
) RT? dH;m;
Ah?cl‘ _ hov _ h‘?‘"l‘ _ i,mix 567
' ! : Hi,mix dT ( )

The application of Henry's law is recommended especially for systems with a
single volvent, such as the solubility of nitrogen in water or, as shown below, the
solubility of methane in benzene. In multicomponent mixtures with one or more
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supercritical compounds the use of Henry constants must be examined carefully.
In this case the use of an equation of state should be preferred.

5.7.2
Calculation of Gas Solubilities Using Equations of State

As mentioned before, the great advantage of the equation of state approach is that
for the calculation of VLE no standard fugacity (vapor pressure, Henry constant)
is required. This means that there is no difference in the calculation procedure
for VLE and gas solubilities. In Figure 5.65 typical results are shown for the
system nitrogen—-NMP (N-Methylpyrrolidone) at different temperatures. For the
correlation the SRK equation of state with quadratic mixing rules was used. It can
be seen that the results can be slightly improved when a binary parameter k;, with
a linear temperature dependence is used for the temperature range covered.

Example 5.17

Calculate the Henry constant for methane in benzene at 60 “C with the help of the
SRK equation of state (k;, = 0.08 [36]).
Pure component properties

Component T (K) P, (bar) ®
Methane 190.63 46.17 0.010
Benzene 562.6 49.24 0.212

Solution

The calculation can be carried out in the same way as shown in Example 5.12
for the system nitrogen—methane. For the calculation only initial values for the
pressure and vapor phase mole fraction are required. With the calculated fugacity
coefficients new values for the pressure and vapor phase mole fractions can be
calculated. This iterative procedure is stopped at a given convergence criterion. For
amole fraction of x; = 0.01 in the liquid phase in equilibrium the following values
are obtained:

y1 = 0.9014
P = 5.666 bar

¢y =89.70 ¢y =0.0915
@Y =09951 ¢) =0.9193

Using these values the Henry constant can be calculated:

fi _ neYP _ 0.9014-0.9951 - 5.666

=5082b
o 0.01 ar

Hp =
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or

X1+ P
Hy = A B2 LA @1 P =89.70 - 5.666 = 508.2 bar
x1 X
In fact the Henry constant should be calculated for x; — 0. But when the interaction
energies are not too strong as in this case, the Henry constant can be used up to a

few mole-%.

5.7.3
Prediction of Gas Solubilities

If no experimental data are available gas solubilities can be predicted today
with the help of group contribution equations of state, such as Predictive
Soave—Redlich—Kwong (PSRK) [43] or VTPR [44]. These models are introduced in
Sections 5.9.4 and 5.9.5.

Up to the 1970s, methods based on the regular solution theory and the fugacity
of a hypothetical liquid were suggested for the prediction of gas solubilities. This
procedure can lead to reasonable results as long as only nonpolar components
are regarded. According to the method of Prausnitz and Shair [45], the reduced
standard fugacity of the solute (hypothetical liquid) is described by the following
expression:

°(1.013 b :
Pcl Trl
which is valid in the temperature range 0.7 < T,; < 2.5. Figure 5.66 shows the
temperature dependence of the reduced standard fugacity of the hypothetical liquid.

—2.94In T, (5.68)

8

(o)
1

2(1.013 bar) / Py,
S
[

f?

N
I

Figure 5.66 Temperature dependence of the reduced stan-
dard fugacity of the solute (hypothetical liquid).
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Table 5.15  Hypothetical liquid molar volumes and solubility parameters at ¢ = 25-C.

Gas v; (10~ m3 fmol) 8 (JJm3)0s T (K) P, (bar)
N, 32.4 5279 126.2 339
Cco 32.1 6405 132.9 35
0, 33 8185 154.6 50.4
Ar 57.1 10906 150.8 48.7
CH, 52 11622 190.4 46
Co, 55 12277 304.1 73.8
Kr 65 13095 209.4 55
CyH. 65 13505 2824 50.4
CyHg 70 13505 305.4 488
Rn 70 18068 377 62.8
cl 74 17802 4169 79.8

According to the regular solution theory, the corresponding activity coefficient at
infinite dilution can be expressed as

V;
Iny® = —= (6 — &)° 5.
ny, RT( 1—82) (5.69)
with the solubility parameter

(T 05
Ahy(T) RT) 0

&(T) = (
For supercritical gases no liquid phase and thus no values for v; and Ahy; exist.
In Table 5.15 hypothetical values for the molar liquid volume and the solubility
parameter for some well-known light gases at ¥ = 25°C are listed. As nothing
better is available, these values are also applied at other temperatures as well. The
Henry constant can finally be calculated using Eq. (5.56), where instead of the
vapor pressure the fugacity of the hypothetical liquid is used.

i

Example 5.18

Estimate the Henry constant of methane (1) in benzene (2) at ¥ = 60 'C using the
method of Prausnitz and Shair.
Solution
The values for the solute from Table 5.15 are
vy = 52-107° m*/mol

8 = 11622 (J/m*)°*

T,y =190.4 K
P, = 46.0 bar
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For benzene, the solubility parameter can be determined using the following
information:

M = 78.114 g/mol
Ah,(60°C) = 408.7 /g
02(60°C) = 837.9kg/m® = v, = 93.22-10~° m?/mol
leading to
. (408.7 .78.114 — 8.31433 - 333.15

93.22-10-¢
Thus, the activity coefficient of the solute at infinite dilution is calculated via
-6
~ W 2 52-10 Iy
= — (8§ - 8) = ————— (11622 — 17685
Y™ = jr & =% = g313 33315 )

= 0.6901 = y;> = 1.994

0.5
) = 17685 (J/m?)*>

The standard fugacity can be determined with Eq. (5.68) for
T, = 333.15/190.4 = 1.75:

8.06
fP = 46.0 exp (7.81 — 155~ 2% In 1.75) = 218.7 bar

The result for the Henry constant at 1% = 60°C is
H12(60°C) = 218.7 bar - 1.994 = 436.1 bar

The experimental value is approx. 513 bar [46].

5.8
Liquid—-Liquid Equilibria

In Section 5.2 it was shown that strongly real behavior leads to the formation of
two liquid phases with different compositions. The concentration differences of
the compounds in the different phases can be used, for example, for the separation
by extraction. As in the case of other phase equilibria, the fugacities in the different
liquid phases are identical in the case of LLE:

fi=f i=12...,n (5.71)

As shown before, the fugacities can either be described using activity coefficients or
fugacity coefficients. Using activity coefficients the following relation is obtained:

(avif®) = (anf?)” (5.72)
Since the standard fugacity f; is the same for the two liquid phases, the following
simple equation results from Eq. (5.72):

Xy =%y (5.73)
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The product x;y; is also called activity a; (see section 4.8). This means that the
so-called isoactivity criterion has to be fulfilled in the case of LLE.
Using fugacity coefficients, a similar relation results:

(xigf) = (xiet)” (5.74)
Two liquid phases always occur in the case of strong positive deviation from
Raoult’s law. The LLE behavior as a function of temperature only depends on
the temperature dependence of the activity coefficients. The possible temperature
dependencies for binary systems at constant pressure'” are shown in Figure 5.67 in
the form of the temperature-concentration-diagrams, the so-called binodal curves.

In most cases the mutual solubility rises with increasing temperature until
the system becomes homogeneous above the upper critical solution temperature
(UCST). This behavior is shown in Figure 5.67a. The other cases shown in
Figure 5.67 occur more rarely than this behavior. [n case (c) the mutual solubility
increases with decreasing temperature until the two-phase region completely
disappears below the lower critical solution temperature (LCST). Sometimes, even
both critical solution temperatures occur (case (b)). Finally, there are systems with
a miscibility gap over the entire temperature range. Cases (a), (c), and (d) can be
regarded as special cases of (b), as in many cases the binodal line is interrupted by
the melting curve, the boiling curve, or both. A very complex behavior is found for
sulfur with aromatic compounds, for example, benzene-sulfur. For this system
the LLE behavior disappears at the UCST. But at higher temperatures again a
miscibility gap occurs.

For the ternary case, the most frequently observed curve shapes are shown in the
form of triangular diagrams in Figure 5.68. Like in binary systems, the two-phase
region is limited by the binodal curve. The two liquid phases in equilibrium are
connected by so-called tie lines. From the tie line end points the distribution
coefficient K; between the two phases ’ and ” can be calculated.

7"

K= 5.75
=3 (5.75)

In so-called closed systems (case (a)), which are observed for about 75% of the
systems, only one binary pair shows a miscibility gap. For these systems, a critical
point C arises, where both liquid phases show the same concentration. Case (b)
presents a system where two binary pairs show partial miscibility (open system).
This behavior occurs in about 20% of all cases. Besides these most important cases,
however, there are a large number of other possibilities (47]. For example, there
are systems where all binary subsystems are homogeneous, but a miscibility gap
(island) is found in the ternary system (see Figure 5.76). Additionally, there is the
chance that three liquid phases are formed.

19) For not too large pressure differences, for phases. But as shown in Sections 5.8.2 and
example a few bar, the pressure influence 8.1.4, high pressures can have a significant
can usually be neglected for condensed influence on the LLE and SLE behavior.
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Ethanol Methylcyclohexane
A

Y
>
e,

~

Water Cyclohexane Heptane Aniline

(@) (b)

Figure 5.68 The most important types of ternary LLE (3] at a temperature of 25 C.
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Figure 5.69 Experimental [3] and calculated
partition coefficients of ethanol in the system
water(1)—ethanol(2) —cyclohexane(3) at 298.15K using
UNIQUAC.

The distribution coefficients are not constant. They strongly depend on the con-
centration. For the system water—ethanol-cyclohexane the distribution coefficients
for ethanol are shown in Figure 5.69. 1t can be seen that the largest distribution
coefficients are obtained at infinite dilution. These values at infinite dilution are
called Nernst distribution coefficients.
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T AT =2500 J/mol
1200 + g1 = 800 J/mol
g, =0 J/mol

Figure 5.70 Concentration dependence of the molar Gibbs
energy for systems with different strong real behavior A =
coefficient of the Porter equation (Eq. (5.19)).

Equation (5.73) forms the basis for the calculation of LLE. As can be learned
from this equation, the concentration and the temperature dependence of LLE is
described via the activity coefficients. However, the occurrence of two liquid phases
and critical solution temperatures cannot be understood alone by this equation
(1soactivity criterion).

Looking at the concentration dependence of the Gibbs energy, it is easier to
understand the formation of two liquid phases. For an ideal binary system, the
molar Gibbs energy at a given composition (see Chapter 4) can be calculated by

Zideal = %181 + %282 + RT (%1 In % + x5 In x;,) (5.76)

Since the mole fractions are always smaller than 1, the last term is negative and
zero for x; = 1 and x; = 1. Therefore, the molar Gibbs energy as a function of
composition shows a minimum (see Figure 5.70 with A = 0). However, in case of
areal system the excess Gibbs energy has to be added:

Lreal = Zideal + gE (+.77)
8real = ideal T+ RT(x1 In v; + %10 v2) (5.78)

With increasing positive deviation from Raoult’s law the positive contribution of
the excess Gibbs energy is enlarged and, consequently, the molar Gibbs energy
at the composition considered. This is shown in Figure 5.70. For example, it is
assumed that the contribution of the excess Gibbs energy can be taken into account
by Porter’s approach (g8/RT = Ax;x;). The resulting curve shape of the molar
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Gibbs energy for different values of the parameter A is shown in Figure 5.70. With
increasing gE-values, this means increasing values of the parameter A, the molar
Gibbs energy becomes larger. Because of the equilibrium criterion (minimum
of Gibbs energy), in the case of strongly real behavior (i.e., in Figure 5.70 for
A = 3) two liquid phases with the concentration x| and x| are formed. At these
concentrations the molar Gibbs energy of the two phases shows a lower value than
a homogeneous mixture. For the Gibbs energy for a mole fraction of x; = 0.5,
an approximate value of 540 ]/mol is obtained for the homogeneous composition,
while for the heterogeneous composition an approximate value of 250 | /mol results.
In Figure 5.70 the values of the molar Gibbs energy for the composition of the
coexisting liquid phases ' and " are shown by the tangent and for the homogeneous
composition by the dashed line.

According to this, the formation of two liquid phases can only occur if the curve
shape of the Gibbs energy as a function of the composition shows an inflexion
point, that is, there must be a region where the following condition is valid:

d%g
3% /1 p
The same criterion can be applied for the Gibbs energy of mixing:
3’A
( , g) <0 (5.80)
ax? Jrp

In turn, the different gE-models can be used to describe the contribution of the
excess Gibbs energy or activity coefficients. An exception is the Wilson model. No
miscibility gap can be represented by this equation because the Wilson equation
describes a monotone behavior of the composition for each parameter combination,
that is, (32Ag/dx? > 0) (see Appendix C, E3).

It is more complicated to calculate LLE in multicomponent systems accurately
than to describe vapor-liquid or solid-liquid equilibria. The reason is that in the
case of LLE the activity coefficients have to describe not only the concentration
dependence but also the temperature dependence correctly, whereas in the case
of the other phase equilibria (VLE, SLE) the activity coefficients primarily have to
describe the deviation from ideal behavior (Raoult’s law resp. ideal solid solubility),
and the temperature dependence is mainly described by the standard fugacities
(vapor pressure resp. melting temperature and heat of fusion).

This is the main reason why up to now no reliable prediction of the LLE behavior
is possible. Even the calculation of the LLE behavior of ternary systems using
binary parameters can lead to poor results for the distribution coefficients and the
binodal curve. Fortunately, it is quite easy to measure LLE data of ternary and
higher systems up to atmospheric pressure.

Example 5.19

Calculate the miscibility gap for the system n-butanol (1)-water (2) at 50 °C and
additionally the corresponding pressure and vapor phase composition using the
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UNIQUAC equation with the help of the UNIQUAC parameters fitted to VLE
data [6):

Augz =129.7 cal/mol, Auy; = 489.6 cal/mol

Pure component properties:

Component ti qi P;* (kPa)
n-Butanol 3.4543 3.052 4.61
Water 0.92 1.4 12.36

Solution

For the calculation of the miscibility gap the procedure shown in Figure 5.73 can be
applied. However, for a binary system the miscibility gap can also be determined
graphically. For the graphical approach the activity coefficients are evaluated for
different concentrations. For illustration, the activity coefficient y; is calculated for
a mole fraction x; = 0.05. Using the UNIQUAC equation, the values for 7;; and
75 are determined (see Table 5.6):

“A¥n _ oy —1297 0.8171 0.4685
T = eX = —_—————— = U. T = 0.
12 = €XPpT P 198721 -323.15 n

Furthermore for the calculation of the combinatorial part the values for V; and F,
are required:

- " B 3.4543 s
YT ik +rx,  3.4543.005+092-095
3.052
Fl=—®0 — 2.0585

Gix1 + goxs  3.052-0.05+ 1.4-0.95

Then the combinatorial part of the activity coefficient can be calculated

\% V.
lny,czl—V]+an1—5q1(l——l+ In —])

F] Fq
33 33
Inyf=1-334+1In(33)—-5-3.052|1— 1 ):0.8956
e A 20585 " 2.0585
In the next step the contribution of the residual part is determined:
+ P2%Tx 123! 12
1n )/R = — lnm—— + X [ — ]
! A 1% + gax g qix1 + Pxta (X1t + 2%
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3.052-0.05 4+ 1.4-0.95 - 0.4685

Inyf = -3.052- In 5052, 005 10 055 +3.052-14-0.95
0.4685
' [3.052 -0.05 + 1.4 - 0.95 - 0.4685
0.8171
73.052.0.05-0.8171 + 1.4 - 0.95]
0.7757 0.4685  0.8171
ln ' = ~3.052In3=r e + 4.0592 (0.7757 - 1.45469)

1.977 + 0.1716 = 2.1486

Iny1 = In yf + InyC = 2.1486 + 0.8956 = 3.0442

y1 = 20.99
In the same way, the activity coefficient of component 2 and the activities for
component 1 and 2 can be calculated:

x1 =0.05 ¥ = 2099 a; =1.0495 x; =0.95 y;, = 1.028 a; = 0.9766

For other mole fractions x; the following activities are calculated:

x1 0.005 0.01 0.0015 0.02 0.05 0.1 0.2 0.4 0.6
a;  0.2824 04972 0.6598 0.9801 1.0495  0.9605 0.7253 0.6141  0.6802
a; 09953 09913 09878 0.9848 0.9762 09842 1.0332 1.0951 0.9766

In the case of a miscibility gap, an intersection is obtained when the activity
of component 2 is plotted against the activity of component 1 for different mole
fractions x; as in the example considercd (see Figure 5.71). At the intersection the

1.2 1.2
i1 \ 1.1 /\
1 P~ I T S A
] I
09 0.9 T
| \ | : \
1 1
0.8 T T T T 0.8 Ix1 T XII
0.4 0.6 0.8 1 1.2 0 0.5 1
a, X4

Figure 5.71 Graphical determination of LLE for binary sys-
tems exemplary shown for the system butanol (1)--water (2)
at 50°C.
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Figure 5.72 Experimental and calculated VLE and
azeotropic data using the UNIQUAC parameters given
in Example 5.19 together with experimental LLE data [3]
—— azeotropic composition.

5.8 Liquid-Liquid Equilibria

equilibrium condition (Eq. (5.73)) is fulfilled. This means that the same activities
are obtained for two different compositions. As can be seen, the intersection is
obtained at approx. x; = 0.015 and x; = 0.59, when the activity of component 2 is
plotted against the mole fraction x; (Figure 5.72).

For the system n-butanol (1)-water (2) at 50 °C the following values are obtained
in equilibrium:

x1’ = 0.01556 y1'=43.40 a," =0.6753 x;” =0.5906 y,” =1.143 a,”" =0.6751
x’ =0.9844 y,'=1.003 a;’ =0.9873 x;” =0.4094 y,” =2.412 a;” =0.9875

Using these values obtained for phase ’ or phase " directly the corresponding
pressure and mole fraction in the vapor phase can be calculated.

P=xy1 P} + %P5

P =10.01556-43.4-4.61+0.9844 -1.003 - 12.36)

= 3.113 + 12.204 = 15.317 kPa
g 3113

P~ 15317 - 02032

Y1

Because the activities in phase ’ and " are identical, the same results are obtained
starting from the composition in phase ", this means for x; = 0.5906.

281
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For the entire composition range, the VLLE results are shown in Figure 5.72,
together with the calculated and experimental data for a few isobaric VLE data, the
calculated azeotropic composition as fiT) and experimental LLE data.?® It can be
recognized that at atmospheric pressure the system n-butanol(1)-water(2) shows a
heterogeneous azeotrope with a mole fraction of approximately y;,, = 0.25 and a
temperature of 366 K. At other pressures, the azeotropic composition will change.
The change of the azeotropic composition depends not only on the temperature
dependence of the vapor pressures, but also on the temperature dependence of the
activity coefficients. In Figure 5.72 the typical temperature dependence is shown in
the form of isobaric Txy-diagrams. While at atmospheric pressure a heterogeneous
azeotropic point occurs, homogeneous azeotropic behavior is observed at higher
pressures (temperatures). The temperature dependence of the azeotropic behavior
is discussed in detail in Section 5.6.

While the calculation of binary LLE can be performed graphically, the calculation
of LLE for ternary and higher systems has to be performed iteratively. One possible
procedure for a multicomponent system is shown in Figure 5.73 in the form of a
flow diagram. The method takes into account the isoactivity conditions (Eq. (5.73))
and the material balance.

Starting from the mole numbers #; (initial feed stream to the equilibrium stage)
with a composition in the two phase region, mole numbers n; (composition) are
estimated for the liquid phase. From the difference n; — 1}, the mole numbers
n; (composition) in the second liquid phase can be calculated. Then the activity
coefficients of the components in the two liquid phases are determined. In the next
step it is checked if the isoactivity condition is fulfilled. Of course, after the first
step the isoactivity condition will not be fulfilled. Therefore, the estimated mole
numbers n; have to be changed in the right way. Using the K-factor method, the
following equation is obtained for the variation of the mole numbers starting from
Eq. (5.73) and the material balance:

’ "
’ol "o 1., n;
"’ i

- 1 "
XYi =% Y resp. Vi = Vi
ny ny
with
ny=Xn; and n}=Zn]
one obtains
" ’
nw_ a1V
ni iR nﬂ "
Vi
I

Taking into account the material balance n}' = n; — n;

" ’ "o
nly: ny; nry:
n—n=n—1" > p=n4+n—t =n 1+

1 1 " 1 L o i M

nrYi Vi hry;

new mole numbers in phase ’ can be calculated using the following relation:

20) A comparison of the calculated LLE in for the butanol rich phase, experimentally
Example 5.19 at 50°C with the exper- less than 50 mol% was found. The reason
imental findings shows a disagreement. is that parameters fitted to VLE data do not

While 59 mol% butanol were determined describe the LLE behavior correctly.
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Figure 5.73 Flow diagram for the calculation of LLE using the K-factor method.
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The iteration is stopped when the activities in the different phases are identical
within a small value ¢. If the feed composition is outside the two-phase region, the
solution will lead to the trivial solution, where the composition of the two liquid
phases is identical.

Example 5.20

Calculate the LLE composition for the system water (1)—ethanol (2)-benzene (3)
for the following feed stream: ny = 1 mol, n, = 0.3 mol, and n; = 1 mol at 25° C
with the help of the UNIQUAC model.

UNIQUAC parameters Auj(K) fitted to LLE data at 25 °C:

Compound 1 2 3
1 0 526.02 309.64
2 -318.06 0 -91.532
3 1325.1 302.57 0

Relative van der Waals properties:

Compound r qi
Water 0.9200 1.400
Ethanol 2.1055 1.972

Benzene 3.1878 2.400

283



284 | 5 Phase Equilibria in Fluid Systems

Solution

To start the calculation, first the mole numbers in phase * have to be estimated. Let
us assume that n} = 0.8 mol, n;, = 0.1 mol, and n} = 0.2 mol are in phase’, for the
given feed n{ = 0.2 mol, n; = 0.2 mol, and nj = 0.8 mol remain for phase . Then
for these phases in the next step the activity coefficients can be calculated with the
help of the UNIQUAC equation.

UNIQUAC parameters t;;

Compound 1 2 3

1 1 0.1713 0.35397
2 2.9060 1 1.3593
3 0.01174 0.36247 1

The following composition is obtained for phase ' : x; = 0.8/1.1 = 0.7273,
x, = 0.0909, x; = 0.1818.

For this composition the activity coefficients have to be calculated. That is
exemplarily shown for component 1:

n

Vi= ———=— »
nx + nx; +rxs
= 0.92 = 0.6389
7092 0.7273 + 2.1055 - 0.0909 + 3.1878 - 0.1818
1.4
F, = il

Q1% + %2 + q3xs | 1.4-0.7273 + 1.972 - 0.0909 + 2.4 - 0.1818

= 0.8569

V; V;
lnyIC:I—V1+an1—5q1 (1——1+ln~—])

Fi F
0.6389 0.6389

Iny¢=1-0.6389 + In (0.6389) —5-1.4( 1 —

2l +in{ ) ( 08569 " 0.8569)

= 0.1873
InyR = g (] o + Qxata + Px3TH Q1%
hix; + qax + q3%3 q1x1 + G2%2T21 + 3%3T31
q2%2T12 B g3%3T13 )
fix1T12 + @2x3730 Qi1X1T13 + 2% T3 + g3%3
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1.4-0.7273 4 1.972-0.0909 - 2.906 + 2.4 - 0.1818 - 0.01174
1.4-0.7273 +1.972 - 0.0909 + 2.4 - 0.1818

Inyf=14. (1 — In

1.4.0.7273
1.4-0.7273 +1.972-0.0909 - 2.906 + 2.4 - 0.1818 - 0.01174

1.972-0.0909 - 0.1713
1.4-0.7273-0.1713 + 1.972- 0.0909 + 2.4 - 0.1818 - 0.36247

2.4.0.1818-0.35397 )
1.4.0.7273 - 0.35397 + 1.972 - 0.0909 - 1.3593 + 2.4 - 0.1818

= 0.2640

Inyy = InyC + InpR = 0.1873 + 0.2640 = 0.4513

y = 1570

The activity coefficients for all components in both phases are given in the following
table:

Phase’ Phase "

n; X Vi n; X Y

0.8 0.7273 1.570 0.2 0.1667 8.856
0.1 0.0909 0.2948 0.2 0.1667 0.860
0.2 0.1818 18.11 0.8 0.6667 1.425

Using these data improved mole numbers are calculated for phase ’ with the
help of the K-factor method. Then the mole numbers in phase ’, the compositions
and the activity coefficients are calculated again. For n} one obtains

, 1
M=y = 0.8379
8.856-1.1

and for all other values:

Phase’ Phase "

n; Xi Vi n, Xi Vi
0.8379 0.7458 1.181 0.1621 0.1378 20.99
0.2183 0.1943 0.7311 0.0817 0.0694 0.5809

0.0673 0.0600 36.77 0.9327 0.7928 1.258
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Ethanol

& 4
Water Benzene
Figure 5.74 The first three steps of the K-factor method to-
gether with the experimental and calculated LLE behavior of

the ternary system water—ethanol—benzene at 25°C using
UNIQUAC.

After a few steps, convergence — this means LLE - is obtained, since the changes
of the calculated mole numbers are below a small value ¢. The final values are:

Phase’ Phase "

n; X Y. n, X Vi
0.9799 0.8112 1.053 0.0201 0.0184 46.35
0.2153 0.1782 1.006 0.0847 0.0776 2.310
0.0128 0.0106 88.49 0.9872 0.9040 1.039

The results of the first three steps and the final LLE results for the system
water—ethanol-benzene at 25°C are shown in Figure 5.74. It can be seen that
after three steps the equilibrium composition is nearly reached, also for poor initial
estimates.

5.8.1
Temperature Dependence of Ternary LLE

The temperature dependence of LLE of ternary systems can be very different,
as shown for binary systems in Figure 5.67. In most cases, the miscibility g:p
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Benzene Benzene

Cyclohexane

72°C -
64 °C ..,,.——\‘\ Acetonitrile
56 °C *
48°C
40°C
32°C
24°C
16°C
8°C

Temperature

H Cyclohexane =~349.8K Acetonitrile

Figure 5.75 Qualitative progress of the temperature depen-
dence of ternary liquid—liquid equilibria.

becomes smaller with increasing temperature. For a closed system this behavior is
shown in Figure 5.75. In the case presented, the mutual solubility increases with
increasing temperature, this means, the range of concentration where two liquid
phases coexist decreases more and more until the heterogeneous region disappears
above the UCST of the binary system AB.

140
P
) s
o,
[ ¥
= o ':
© o
3 68
=3 )
'_
X
i )
T
0 g7~ Phenol
THF
Water

Figure 5.76 LLE behavior of the ternary system
tetrahydrofuran—water—phenol as a function of temperature.
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But as mentioned above, the temperature dependence can be much more com-
plex. For the system tetrahydrofuran—water—phenol this is shown in Figure 5.76.
At temperatures below 66°C, only the system phenol-water shows a miscibility
gap, whereas the other two binaries are homogeneous in this temperature range.
The binary miscibility gap extends into the ternary area. Above the UCST of the
system phenol-water, the formation of an island curve is observed, where all binary
systems are homogeneous while the ternary system is heterogeneous. At approx.
72°C, the LCST of the system tetrahydrofuran—water is reached. The binary system
shows a miscibility gap up to a temperature of about 137°C. Above the UCST of
the system tetrahydrofuran—water again an island curve is formed in the ternary
system. Up to now this complex LLE behavior can not be described with the help of a
gE-model, even with linear or quadratic temperature-dependent model parameters.
Since phenol has a melting point at approx. 41 °C, in Figure 5.76 additionally the
SLE behavior for the system phenol—water is shown.

5.8.2
Pressure Dependence of LLE

Although it was mentioned at the beginning of Section 5.8 that pressure differences
of a few bar only have a negligible influence on the LLE behavior, in practice often
higher pressures are realized. Already a slight volume compression of a liquid
can lead to very high pressures. In centrifugal extractors often higher pressures
are observed. The influence of the pressure on the activity coefficients (LLE)
can be taken into account if the excess volumes are known. The influence can
directly be calculated using Eq. (5.27). The activity coefhcients will decrease with
increasing pressure in the case of negative partial molar excess volumes, as
shown in Example 5.7. This means that the miscibility gap becomes smaller with

0 \ U 140 -~ e
[ | .

130 | ) < 10 bar

! /~60bar

~ 150 bar

120

05 o 1101 ~ 250 bar
= 100

90

80 -

L — 70 11— SR

Figure 5.77 Excess volumes and LLE behavior of the sys-
tem tetrahydrofuran (1)-water (2) [3] as a function of pres-
sure.
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Figure 5.78 Excess volumes and LLE behavior of the sys-
tem methanol (1)-n-heptane (2) [3] as a function of pres-
sure.

increasing pressure. The opposite is true in the case of positive partial molar excess
volumes. The influence of the sign of the excess volumes on the LLE behavior is
exemplarily shown in Figures 5.77 and 5.78 for the systems tetrahydrofuran—water
and methanol-heptane.

For the system tetrahydrofuran—water, negative excess volumes are observed.
This results in the fact that the system becomes homogeneous at pressures around
250 bar.

In contrast, the miscibility gap becomes larger with increasing pressure for the
system methanol-heptane (see Figure 5.78) because of the positive partial molar
excess volumes for this sysiem.

5.9
Predictive Models

Both approaches (gE-models (y —¢ approach), equations of state (¢ —¢ approach))
allow the calculation of multicomponent systems using binary information alone.
However, often the required experimental binary data are missing.

Assuming that 1000 compounds are of technical interest, phase equilibrium
information for about 500000 binary systems are required to fit the required binary
parameters to describe all possible binary and multicomponent systems. Although
more than 64500 VLE data sets for nonelectrolyte systems have been published
up io now, VLE data are available for only 10300 binary systems, since for a
few systems a large number of data sets were published, for example, for the
systems ethanol-water, ammonia—water, water—carbon dioxide, methanol-water,
methane—nitrogen more than 150 data sets are available. This means that only
for ~2% of the required systems at least one VLE data set is available. If only
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consistent VLE data are accepted or if more than one VLE data set is desired, the
percentage even decreases to ~1.2%. If also information about the dilute range
and the temperature dependence in the form of y™ and hE should be used to fit
the required model parameters, the percentage of the available systems is less than
0.2%, although approximately 62500 y>°-values and 21000 hE-data sets have been
published, which are stored in the Dortmund Data Bank [3].

Since the assumption of ideal behavior can lead to very erroneous results and
measurements are very time consuming, reliable predictive models with a large
range of applicability would be desirable.

Because of the importance of distillation processes, first it was the objective to
develop models only for the prediction of VLE. The first predictive model with
a wide range of applicability was developed by Hildebrand and Scatchard [48).
The so-called regular solution theory is based on considerations of van Laar, who
was a student of van der Waals and used the van der Waals equation of state to
derive an expression for the excess Gibbs energy [49]. Since the two parameters
a and b of the van der Waals equation of state can be obtained from critical
data, it should be possible to calculate the required activity coefhicients using
critical data. However, the results were strongly dependent on the mixing rules
applied.

5.9.1
Regular Solution Theory

Hildebrand and Scatchard [48] showed that better results are obtained, if instead
of the van der Waals constants a and b molar volumes v; and so-called solubility
parameters §&; are used instead. For binary systems the following relations are
obtained for the activity coefficients:

_ wdl (6 —8)?
RT
v, ®2 (8, — 8,)°
1 P ke 5.81
ny, RT (5-81)
®; volume fraction of component i = (x;v;)/ Zx; v,
8; solubility parameter of component i.

The solubility parameter §; can be calculated using values for the enthalpy of
vaporization and the molar volume v; at 298.15K:

L 05
B = (M) (5.82)

vi

Ah,; molar heat of vaporization of component i (cal/mol).

For regular solutions the solubility parameters §; and molar volumes v; can be
assumed to be constant for a larger temperature range. For a few compounds the
parameters are given in Table 5.16.
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Table 5.16  Molar volumes and solubility parameters for selected compounds.

Compound v; (cm? Jmol) 8; (cal/cm?)%s
Carbon tetrachloride 97 86
Carbon disulfide 61 10.0
n-Pentane 116 7.1
Benzene 89 9.2
Cyclohexane 109 8.2
Hexene-1 126 7.3
n-Hexane 132 7.3
Toluene 107 89
n-Heptane 148 7.4
n-Octane 164 7.5

The regular solution theory is not limited to binary systems. It can directly be
applied for the calculation of activity coefficients in multicomponent systems:

v; =2
Iny;=— (8 -39 5.83
nyi= 4= (6-9) (5:83)
where the mean solubility parameter:
Z x;v;6;
- ;8 = i 5.84
’ Z Z xXiV; ( )

i
can be obtained by summation over all compounds.
However, the regular solution theory can only be applied for nonpolar systems
and systems with positive deviations from Raoult’s law.

Example 5.21

Estimate the activity coefficients at infinite dilution for the system benzene
(1)-cyclohexane (2) at 353.15 K.

Solution

With the values given in Table 5.16 the values at infinite dilution (®; = 1, ; = 1)
can directly be estimated:

89 (9.2 - 8.2)? 109 (9.2 — 8.2)?
lny®=—""""""7 _01268 Iny®*=——— """ _0.1553
n 1.98721 - 353.15 Y2 = 1.98721-353.15

y° =1.135 p =1.168

Experimentally, higher values were measured (y;° =~ 1.35, y;° ~ 1.44) [3].
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59.2
Group Contribution Methods

Group contribution methods do not show these weaknesses discussed for the
regular solution theory.

In group contribution methods it is assumed that the mixture does not consist
of molecules but of functional groups. In Figure 5.79 this is shown for the
systems ethanol-n-hexane. Ethanol can be subdivided in a methyl-, methylene-
and alcohol-group and n-hexane in two methyl- and four methylene-groups. It can be
shown that the required activity coefficients can be calculated if only the interaction
parameters between the functional groups are known. For example, if the group
interaction parameters between the alkane and the alcohol group are known, not
only the activity coefficients (VLE behavior) of the system ethanol-n-hexane, but
also for all other alkane—alcohol or alcohol-alcohol systems can be predicted. The
great advantage of group contribution methods is that the number of functional
groups is much smaller than the number of possible molecules.

The required equation of the solution of groups concept can be derived from the
excess Gibbs energy of the groups in the mixture and the excess Gibbs energy in
the pure compound.

For the pure compound i built up by functional groups one can derive the
following expression for the molar (gf) and total Gibbs energy (g£):

gt 0 0
Fiap Ll

k
SRR SO GFO )0 1 PO
ﬁ = n(') ; vy, In ["k i E’IT = Zl: ; n(l)l)k In l"k

For a mixture built up by functional groups one can write

E(m)

=LKl
— = v InTy
RT p
E(m) o E(m) L
e LA D REACINE s ) SRTIE
i k ik

Ethanol: m
Figure 5.79 Group contribution concept.
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From the difference of the excess Gibbs energies for the groups in the mixture
and in the pure compound (standard state) one can derive an expression for the
required activity coefficient y;:

GE ) GE(m) GEH)
I 0 ny = _ -
RT Z = R T L RT

1

= Z Z nt vk(i) InT), — Z z n‘i)v,f” In F,(:)
ik k

= ani) |:Z vkm (ln Fy—In F‘,(cl])jl
i k
which leads to the equation for the solution of groups concept:

Iny, = Z vkm (ln Iy, —1In F,':))

k

with
l",((" group activity coefficient of group k in pure component i
Iy group activity coefficient of group k in the mixture
vk(') number of groups k in component i
v number of groups in component i

v = Z vk“) = v]m + vzm + .+ u,ﬁf’
i

nt number of moles of component i
ny =3 n  total number of moles in the mixture
i
niiy ®) total number of moles of groups of component i
S nlhy ) total number of moles of groups in the mixture
: 0

X,E') = \V"W group mole fraction of group k in compound i

Z "(')v 1)

B’ . . .
X, =<2 group mole fraction of group k in the mixture

S aly,®

593
UNIFAC Method

The first group contribution method for the prediction of VLE (activity coefhicients)
was the so-called analytical solution of groups (ASOG) method [50, 51], developed
within Shell. The ASOG method uses the Wilson model to describe the concentra-
tion dependence of the group activity coefficients required in the solution of groups
concept.

In 1975, the UNIFAC group contribution method was published by Fredenslund
etal. [27, 52, 53]. Like the ASOG method, the UNIFAC method is based on the

293
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solution of groups concept. But in the UNIFAC method, the activity coefficients are
calculated from a combinatorial and a residual part exactly like in the UNIQUAC
model (see Eq. (5.85)). While the temperature-independent combinatorial part takes
into account the size and form of the molecules, that is, the entropic contribution,
the residual part considers the enthalpic interactions:

Iny =lny® +Inyf (5.85)

The combinatorial part In .~ can be calculated using the following equation, which
is identical to the UNIQUAC model:
C Vi Vi
Inys=1-Vi+ InV;-5¢(1- =+ In — (5.86)
F; E;
where V, (volume/mole fraction ratio) and F; (surface area/mole fraction ratio) can
be calculated for a given composition using the relative van der Waals volumes r;
and van der Waals surface areas g, of the molecules:

ri
V, = (5.87)
1%
J

F, =

qi

Z a7 (5.88)
J

For the UNIFAC group contribution method the relative van der Waals properties
r; and g; can be obtained using the relative van der Waals group volumes R; and
relative van der Waals group surface areas Qk, which can be derived from x-ray
data. Tabulated values for R, and Qy can be found by Hansen et al. [53]. They can
also be derived from the tabulated van der Waals properties published by Bondi
[54]. For selected groups the R and Q values are given in the Appendix H:

n=y vWR (5.89)

k
a=> v'o (5.90)
k
where vk(”is the number of functional groups of type kin compound i.

The temperature-dependent residual part InyR takes into account the interac-
tions between the different compounds. In group contribution methods, this part
is calculated via the solution of groups concept using group activity coefficients I't
and T:

Inyf =3 v (Inre—Inrf’) (5.91)
k
Iy and F,(:) are the group activity coefficients for group k in the mixture, respectively,

for the pure compound i. For the description of the concentration dependence of
the group activity coefficients the UNIQUAC equation is used:

Inly=0Qk|1-In (Z ®mwmk) Z SOW\;"‘ (5.92)
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The surface area fractions ®,, and the group mole fractions X, of group m can be
calculated using the following relations:

_ OXn

0, =
> QnXn
n

(5.93)

iy
Xy = ’4” (5.94)
PIPBET

jon

The parameter W,,, contains the group interaction parameter a,,, between the
functional groups »n and m, for example, between alkanes and ketones:

W = exp (— “I}’") (5.95)

These functional groups are called main groups. They often consist of more
than one subgroup. For example, in the case of alkanes one has to distinguish
between CH3;—, CH,—, CH-, and C-groups. The different alkane subgroups all
have different values for the van der Waals properties. The same is true for the
ketone group, where one has to distinguish between the CH;CO-, CH,CO-, and
CHCO-group. In the UNIFAC method, for every main group combination two
temperature-independent group interaction parameters (@um, Gms) are required,
which were fitted almost exclusively to consistent experimental vapor-liquid
equilibrium data stored in the Dortmund Data Bank [3]. Since the interactions
are defined per area, depending on the subgroup different strong interactions are
calculated for e.g. CH;—CH,CO and CH;—-CH,CO pairs. By definition, the group
interaction parameters between identical main groups (@sn, amm) are equal to 0.
This means that the parameters W,,and ¥,,,,become unity. The van der Waals
properties and the published group interaction parameters can be found in the
internet (see Appendix H).

Example 5.22

Calculate the VLE of the system n-hexane (1)-2-butanone (2) at 60°C for a mole
fraction of x; = 0.5 with the help of the UNIFAC method assuming ideal behavior
of the vapor phase.

Vapor pressures and structural information:

Component P;* at 60 °C (kPa) CH; CH; CH3CO

n-Hexane 75.85 2 4 -
2-Butanone 51.90 1 1 1

295
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van der Waals properties:

Group Ry Q«

CH; 0.9011 0.848
CH; 0.6744 0.540
CH;CO 1.6724 1.488

Group interaction parameters a,,, between the main group alkanes (CH;) and
ketones (CH,CO):

anm(K) CHI CH;CO
CH; 0.0 476.4
CH,CO 26.76 0.0

Solution

First of all the van der Waals properties of the two compounds can be calculated
with the help of the van der Waals properties of the groups:

rn =2-0.9011 +4.0.6744 = 4.4998

q1 =2-0.848 +4-0.54 = 3.856

r,=1-0.9011+1-0.6744 +1.1.6724 = 3.2479

72 =1-0.848+1-054+1.1.488 = 2.876

Using these van der Waals properties for x; = 0.5 the following values are obtained

for V; and F;:
4.4998
V= =1.1616
0.5 (4.4998 + 3.2479)
3.2479
Vv, = 7 — 0.8384
0.5 (4.4998 + 3.2479)
3.856
F = = 1.1456
0.5 (3.856 + 2.876)
2.876
F 7 = 0.8544

~ 05 (3.856 + 2.876)
With the help of these values the combinatorial part can be calculated. For
n-hexane (1)

1.1616 1.1616
InyC =1-1.1616+ In1.1616 — 5 - 3.856 (1 - )

+ In
1.1456 1.1456
= —0.00994

For 2-butanone (2) the following value is obtained:

In y< = —0.001210
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For the calculation of the group activity coefficients in the mixture first of all the
parameters W,,,, the group mole fractions and surface area fractions have to be
determined. For the parameters W,,, the following values are obtained:

—476.4
Wens.cHsco = Wen,.cHyco = eXpoTe = 0.2393

—26.76
WcH;co.cHy = WeHycocH, = KPS = 0.9228

WeH,,cHy = WeH,.cH, = Yenyco.cHyco = Wen,.cHy = WeHycH, = 1

The following group mole fractions and surface area fractions are obtained for the
considered binary system at x; = 0.5:

(241)0.5
= 22 03333
T 6+3)05
4+1)0.5
= T2 55556
= 6+3)05
X = 0o =0.1111
CHCO = (613)05
A 0.848 - 0.3333
Och, = =0.3779

0.848-0.3333 + 0.54 - 0.5556 + 1.488 - 0.1111
Och, = 0.4011

OcH,co = 0.2210

Now all values are available to calculate the group activity coefficients in the binary
system:

InTch, = 0.848 l:l — In(0.3779 + 0.4011 + 0.221 - 0.9228)

0.3779 + 0.4011
0.3779 + 0.4011 + 0.221 - 0.9228

0.221-0.2393
(0.3779 + 0.4011) 0.2393 + 0.221
In Fcp, = 0.080458

InTcy, = 0.051235
In rCH]CO = 0.92872

For the pure compounds the following group mole fractions and surface area
fractions are obtained:
For n-hexane (1):

XG, =03333 XU =0.6667

o — 0.848 - 0.3333 — 04398
“Hs = 0.848.0.3333 + 0.54-0.6667

OcH, = 0.5602
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For 2-butanone (2):

X0k, =03333 X&) =03333 X{) oo =03333

o _ 0.848 - 0.3333 02949
CH3 = 0848.0.3333+ 0.54-0.3333 + 1.488 - 0.3333

("‘)CH2 = 0.1878

Ochyco = 0.5173

With these values the group activity coefficients in the pure compounds can be
calculated. For pure n-hexane (1) one obtains

InT&, =00  InTE) =00

and for 2-butanone (2)

InT&, = 0848 [1 ~ In (0.2949 + 0.1878 + 0.5173 - 0.9228)

0.2949 + 0.1878

"~ 0.2949 + 0.1878 + 0.5173 - 0.9228
0.5173-0.2393

"~ (0.2949 + 0.1878)0.2393 + 0.5173]

In T, = 0.29038
In T, =0.18491
In T, co = 0.262

Herewith all values are available to calculate the residual part of the activity
coefhicients following the solution of groups concept and finally to calculate the
required activity coefficients:

In le = 2(0.80458 — 0) + 4(0.051235 — 0) = 0.365856

Iny; = InyR+ In yf = 0.365856 — 0.00994 = 0.35592

v = 1.4275

In yZR = (0.080458 — 0.29038) + (0.051235 — 0.18491)

+ (0.92872 — 0.262) = 0.32312
Iny, = Iny, + InyS = 0.32312 — 0.01210 = 0.31102
2 = 1.3648

Assuming ideal vapor phase behavior the knowledge of the activity coefhicients
allows calculating the partial pressures, total pressure, and the vapor phase mole
fraction:

P=p;+p,=05-14275-7585+05-1.3648-51.9 = 89.55 kPa
_p1_ 05-1.4275-75.85

B 02 LA 6045
=% 89.55
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Figure 5.80 Experimental and predicted y—x-data for the
system n-hexane (1)-2-butanone (2) at 60 C.

The results for the whole composition range are shown in Figure 5.80. It can be
seen that good agreement between experimental and predicted VLE is observed.
In Figure 5.81 it is shown that good results are obtained not only for the system
n-hexane-2-butanone, but also for all the other alkane-ketone systems. It can be
seen that even the azeotropic points are predicted accurately. It is worth mentioning
that for all systems shown the same two group interaction parameters were used,
which describe the interaction between the alkane and ketone group.

Because of the reliable results obtained for VLE and the large range of appli-
cability, the method was directly integrated into the different process simulators.
However, in spite of the reliable results for VLE, UNIFAC also shows a few
weaknesses, for example, unsatisfying results are obtained:

« for the activity coefficients at infinite dilution,

« for the excess enthalpies, this means the temperature dependence of the activity
coefficients following the Gibbs—Helmbholtz relation, and

- for strongly asymmetric systems, this means for compounds very different in
size.

For the system Z-butanone—n-hexane the predicted results of the excess enthalpy
using UNIFAC are shown in Figure 5.82 together with the experimental data. It
can be seen that the predicted excess enthulpies are not in agreement with the
experimental values. This means that un extrapolation to high or low temperatures
will produce incorrect results. The same is true for all other alkane-ketone systems,
as shown in Figure 5.86.

All these weaknesses are not surprising, since with the VLE data used to fit the
required temperature-independent group interaction parameters no information

299



Y1

Y1

300

1.0

- 0.5

0.0F

0.5

0.0

0.5

0.0

5 Phase Equilibria in Fluid Sy.tems
cegh W / R
36315K e | %% 323.15K o aagsk L0
/ . 34815 2 338.15 K
= » L = . o
.’ \ 3
| * “n-octane + yclohexane + | . ’ n-heptane + | n-hexane +
* / cyclopentanone cyclohexanone |, 3-pentanone 4-pentanone
1 " e 1 s " 1 1 L 1 L
ve *
- PR NS 20.0 kPa 33315 K o o " ‘
ek L 101.3 kPa - (A
A 910 e «® T 313.15 K
L 383.15 | t > . | *
.‘ .
2-butanone + | 2-butanone + | # n-hexane + L cyclohexane +
n-octane cyclohexane 2-butanone cyclopentanone
' | L 2 L | L n L L L !
i " - . .
101 3kPa » 31315 K il AT A e .t
. o> [ . I PR ¢ I 0 A
- .
. o e ) o 315K
. e’ / s 338.15 K
M .
K acetone + 5 acetone + | 2rethylbutane + | hexane +
cyclohexane n-hexane ‘ acetone 3-pentanone
L | L L t . L 1 " " L L
0.5 0.0 05 0.0 0.5 0.0 0.5 1.0
X4 X4 Xy X1

Figure 5.81 Experimental [3] and predicted VLE data fo.
alkane—ketone systems using UNIFAC.

about the temperature dependence (excess enthalpies), very asymmetric systems
and the very dilute region is used, since VLE data are usually only measured
between 5 and 95mol% for symmetric or slightly asymmetric systems. An extra-
polation to infinite dilution can be very dangerous. However, activity coefficients
at infinite dilution measured with special techniques (gas stripping or dilutor
technique, ebulliometry, gas-liquid chromatography) provide the required infor-
mation for the dilute composition range. At the same time systems investigated
by gas-liquid chromatography are very asymmetric, since the compounds involved
(stationary phase, solutes) show very different volatility. VLE data measured at
different temperatures (pressures) deliver an idea about the temperature depen-
dence, but measurements are time consuming. The most accurate information
about the temperature dependence i obtained from excess enthalpies measured
by isothermal flow calorimeiry.

5.9.3.1 Modified UNIFAC (Dortmund)
To reduce the weaknesses of UNIFAC, the modified UNIFAC method was devel-
oped [55]. The main differences compared to original UNIFAC are:

+ an empirically modified combinatorial part was introduced to improve the results
for asymmetric systems;
* temperature-dependent group interaction parameters are used;
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Figure 5.82 Experimental [3] and predicted excess
enthalpies using UNIFAC of the system 2-butanone
(1)-n-hexane (2) at 25 C.
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+ additional main groups, for example, for cyclic alkanes, formic acid, and so on,

were added.

For fitting the temperature-dependent group interaction parameters of modified
UNIFAC, in contrast to original UNIFAC, besides VLE data the following data are

also used:

« activity coefficients at infinite dilution,

* excess enthalpy data,

« excess heat capacity data,

» LLE data,

SLE data of simple eutectic systems, and
azeotropic data.

The various thermodynamic properties deliver different important information
for fitting reliable temperature-depondent parameters. The contributions can he

summarized as follows:

* VLE (azeotropic data) provide the information about the activity coefficients for a

wide composition range (5-95mol%);

« the required data for the dilute range are delivered by the activity coefficients at

infinite dilution;

+ at the same time, y*°-values measured by gas—liquid chromatography provide

reliable information about the real behavior of asymmetric systems.
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excess enthalpies (excess heat capacities) deliver the required information about
the temperature dependence;

* hE-values at high temperature (often at 140 °C) together with SLE data of simple
eutectic systems at low temperature are important supporting data for fitting
reliable temperature-dependent group interaction parameters.

For fitting the parameters simultaneously to the different types of data, weighting
factors are used for the different contributions to the objective function:

F = wyg Z AVLE 4+ w,~ Z Ay™ + wye Z AR+ W z AC;JE
+wiie ) ALLE + wsig ) ASLE + wazp ) AAZD (5.96)

The modifications of modified UNIFAC compared to original UNIFAC are sum-
marized below. The combinatorial part is calculated using the following slightly
modified empirical equation:

¢ . ) Vi Vi
lnyi:]—Vi-f-an,-—Sqi ]—F+IHE (597)
for which besides V; the following volume/mole fraction ratio V;’ is used:
3/4
vie (5.98)
P 3/4 .
2
J

To describe the temperature dependence, linear or quadratic temperature-
dependent parameters were introduced in Eq. (5.95):

Aum + b T + Cy T?
T

While linear temperature-dependent group interaction parameters are already
required to describe the VLE behavior and excess enthalpies simultaneously,
quadratic temperature-dependent parameters are used when the system shows a
strong temperature dependence of the excess enthalpies.

Most important for the application of group contribution methods for the
synthesis and design of separation processes is a comprehensive and reliable
parameter matrix with reliable parameters. The present status of modified UNIFAC
is shown in Figure 5.84. Today parameters are available for 91 main groups. In
the recent years new main groups were introduced for the different types of
amides, isocyanates, epoxides, anhydrides, peroxides, carbonates, various sulfur
compounds, and so on. In the last year the range of applicability was even extended
to systems with ionic liquids [56].

Because of the importance of modified UNIFAC for process development
the range of applicability is continuously extended by filling the gaps in the
parameter table and revising some of the existing parameters with the help of
systematically measured data and by using new experimental data published
and stored in the Dortmund Data Bank [3]. For fitting temperature-dependent
parameters, in particular excess enthalpy data covering a wide temperature range
are desirable. These data can be measured using for example isothermal flow

W, = exp (- (5.99)
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Figure 5.83 Available excess enthalpy data as a function of temperature.

calorimetry. But unfortunately most of the published datawere measured near room
temperature (see Figure 5.83). To complete the data base and in particular to get the
required supporting data at high temperature for fitting the temperature-dependent
group interaction parameters of modified UNIFAC, nearly 1200 data sets were
systematically measured by isothermal flow calorimetry. Additionally, a large
number of VLE data, SLE of eutectic systems, and activity coefficients at infinite
dilution were measured systematically in our laboratory.

Since 1996, further extension (i.e., revision of the existing parameters, filling of
gaps in the parameter matrix or the introduction of new main groups) was carried
out within the UNIFAC consortium. The current status of the complete parameter
matrix is always available via internet [57]. A great part of the modified UNIFAC
parameters was published by Gmehling et al. [58]. The published van der Waals
properties and modified UNIFAC group interaction parameters are given in the
internet (see Appendix I). But a great part of the group interaction parameters were
revised using a larger database to fit the parameters. The revised and the new fitted
parameters are only available for the sponsors of the company consortium [57).

Modified UNIFAC is an ideal thermodynamic model for process development.
With the help of this predictive model easily various process alternatives can be
compared, suitable solvents for separation processes like azeotropic distillation,
extractive distillation, extraction can be selected, the influence of solvents on
chemical equilibrium conversion can be predicted, and so on.

Modified UNIFAC can also be applied to provide artificial data for fitting the
missing binary parameters of the parameter matrix of a gt-model. 3ut if the key
components of a separation step are considcred, for the final design an experimental
examination of the results is recommended.

The progress achieved when going froin UNIFAC to modified UNIFAC can be
recognized from a comparison of the results for 2200 consistent binary VLE data
sets. Using the UNIQUAC equation for the correlation of the 2200 VLE data sets
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Figure 5.84 Present status of the modified UNIFAC method.

amean absolute deviation of 0.0058 for the vapor phase mole fraction is obtained.
While for original UNIFAC method a mean deviation of 0.0141 results, a mean
deviation of 0.0088 of the vapor phase mole fractions is achieved with modified
UNIFAC (see Figure 5.85). This means that the deviation with UNIFAC compared
to a correlation of the VLE data using the UNIQUAC model was improved by
nearly a factor of 3 from 0.0083 (0.0141-0.0058) to 0.0030 (0.0088-0.0058). As can
be seen from Figure 5.85, similar improvements are also obtained for the predicted
temperatures and pressures.

Not only the results for VLE, but also for SLE, LLE, excess enthalpies, excess heat
capacities, activity coefficients at infinite dilution were distinctly improved when
going from UNIFAC to modified UNIFAC. For excess enthalpies this is shown
in Figure 5.86. It can be seen that in all cases the predicted results are in good
agreement with the experimental findings in the case of modified UNIFAC, while
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Figure 5.85 Mean absolute deviation in vapor phase mole
fraction, temperature, and pressure for the correlation,
respectively, prediction of 2200 binary consistent VLE data.
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Figure 5.86 Experirnental [3] and predicted excess en-
thalpies for different binary alkane — ketone systems:
— — — original UNIFAC; — modified UNIFAC.

the results of original UNIFAC show stiong deviations as already discussed in
Section 5.9.3.

Typical results for VLE, excess enthalpies, SLE, activity coefficicnts at infinite
dilution, excess heat capacities, and azeotropic data for systems of alkanes with
ketones are shown in Figures 5.87 and 5.88. While in Figure 5.87 results are
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Figure 5.87 Experimental and predicted results for the sys-
tem acetone (1) — hexane (2) — modified UNIFAC; A o B
experimental [3].

presented for the system acetone—n-hexane, in Figure 5.88 a comparison of the
predicted and experimental results for VLE, hE, SLE, azeotropic data, LLE and
y™ for different ketones with various alkanes is presented. In the case of SLE,
additionally the curvature assuming ideal behavior is shown by the dashed lines.
The improvements obtained when taking into account the real behavior is obvious.
Of course, the same group interaction parameters are applied for all the predictions.
As can be seen in all cases, good agreement is obtained for the different phase
equilibria and excess properties, although a wide temperature range (—100 tc
160 "C) is covered. The correct description of the temperature dependence is
achieved by the reliable prediction of the excess enthalpies in the temperature
range covered.

In the meantime the range of applicability of modified UNIFAC was even
extended to systems with ionic liquids [56]. In Figure 5.89 the experimental
and predicted activity coefficients at infinite dilution of various n-alkanes in
different alkyl-methyl-imidazolium bistrifluoromethylsulfonylimides are shown as
a function of temperature. It can be seenthatnotonlythe temperature dependence,
but ulso the dependence of the activity coefficients from the number of C-atoms of
the alkanes and the alkyl rests is properly described.

Besides the prediction of phase equilibria the group contribution methods
UNIFAC or modified UNIFAC can be applied for other applications of grcat
practical interest, for example, the calculation of octanol—water partition coefficients
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of persistent chemicals [59] to decide about their fate in the environment, or the
flash points of flammable liquid mixtures [60].

5.9.3.2 Weaknesses of the Group Contribution Methods UNIFAC and Modified
UNIFAC

As shown before the group contribution method modified UNIFAC is a powerful
and reliable predictive gt-model. It was continuously further developed in the last 20
years so that the method provides reliable results and a large range of applicability.
But in spite of the great advantages compared to original UNIFAC (better results
for excess enthalpies, activity coefficients at infinite dilution, asymmetric systems)
it shows the typical weaknesses of a group contribution approach. Hence, for
example

+ Isomer effects cannot be predicted. This means the same activity coefficients
are obtained, for example, for o-/m-/p-xylene or phenanthrene/anthracene with
the different solvents. But at least in the case of VLE or SLE calculation this
is not a great problem, since the required standard fugacities, that is, vapor
pressure, melting point, and heat of fusion are of much greater importance
than small differences of the activity coefficients. Similar problems are also
observed for other predictive models, for example, the quantum chemical ap-
proach.

Unreliable results are obtained for group contribution methods in the case, if a

large number of functional groups have to be taken into account, as in the case

of pharmaceuticals or when the molecule shows groups such as, —C(Cl)(F)(Br)
as for example, in refrigerants. But also in these cases similar problems are
observed for other approaches, for example, the quantum-chemical methods.

« Furthermore, poor results are obtained for the solubilities and activity coefficients
at infinite dilution of alkanes or naphthenes in water. This was accepted by the
developers of modified UNIFAC to achieve reliable VLE results, for example, for
alcohol /water systems. The reason was that starting from experimental y*-values
of approx. 250000 for n-hexane in water at room temperature it was not possible
to fit alcohol-water parameters which deliver y®-values for hexanol in water
of 800 and at the same time describe the azeotropic composition of ethanol
and higher alcohols with water properly and obtain homogeneous behavior for
alcohol-water systems up to Cs-alcohols and heterogeneous behavior starting
from C,-alcohols. To allow for a prediction of hydrocarbon solubilities in water
an empirical relation was developed [61, 62], which allows the estimation of
the solubilities of hydrocarbons in water and of water in hydrocarbons (see
below).

+ For the system tert-butanol—water a miscibility gap is predicted, although tertiary
butanolin contrast to 1-butanol, 2-butanol, and isobutanol forms a homogeneous
mixture with water.

As mentioned before, unsatisfying results of modified UNIFAC are obtained for
the activity coefhicients at infinite dilution and the solubilities of hydrocarbons in
water. Typical results are given in Table 5.17. From the listed solubilities it can be
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Table 5.17  Experimental [3] and predicted solubilities of
n-hexane and cyclohexane in water at 25 °C using modified

UNIFAC.

Hydrocarbon Solubility in water xeyp Solubility in water xc,ic
n-Hexane 2.5-1076 1.5-107*
Cyclohexane 1.3-107° 1.7-1073

Table 5.18 Parameters for the empirical estimation of hydrocarbon
solubilities in water.

Hydrocarbon A B C
Alkanes [62) 1.104 0.0042 —2.817
Naphthenes 1.3326 0.006427 —3.676
Alkenes 1.523 0.00603 —3.0418

seen that the solubilities and therewith the activity coefficients at infinite dilution
are approximately a factor 100 off.

To obtain satisfying results for the solubility of alkanes the following empirical
relation was suggested by Banerjee [61] for the temperature range 273-373 K:

[ s 55.56
log hydrocarbon:rllw ter _ A. 10g< - ) +B.T+C
mol | yhydrocarbon in water at 298.15K*
*predicted using modified UNIFAC (5.100)

275 300 325 350
Temperature (k)

Figure 5.90 Experimental [3] and predicted solubilities c
(mol/l) of alkanes in water as a function of temperature us-
ing Eq. (5.100) [62]: # n-pentane; A n-hexane; M n-heptane;
® n-octane.
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Table 5.19  Parameters for the empirical estimation of water
solubilities in hydrocarbons.

Hydrocarbon A B C

Alkanes 2.3171 0.01796 -3.672
Naphthenes 0.1806 0.01532 -7.172
Alkenes -1.1104 0.011 —8.332

For the different hydrocarbons the parameters A, B, and C were fitted to solubility
data stored in the Dortmund Data Bank and are given in Table 5.18. For the
calculation of the hydrocarbon solubilities only the activity coefficient of the
hydrocarbon in water at 25 “C predicted using modified UNIFAC is required.

Typical results for different alkanes are shown in Figure 5.90. It can be seen that
the predicted results are in good agreement with the experimental findings.

For the calculation of the solubility of water in alkanes a similar equation can
be applied. Also in this case the required parameters A, B, and C were fitted to
solubility data stored in the Dortmund Data Bank:

1
Iog Xwater in hydrocarbon = A log ( 5 ) +B- T+ C
Ywater in hydrocarbon at 298.15 K*
*predicted using modified UNIFAC (5.101)

The parameters A, B and C for Eq. (5.101) are given in Table 5.19

Example 5.23

Calculate the solubilities of n-hexane in water and water in n-hexane at 298.15 K
with the help of the empirical relations given above.

Solution

First the activity coefficients at infinite dilution of n-hexane in water and water in
n-hexane at 25°C have to be calculated. Using the modified UNIFAC parameters
given in Appendix I an activity coefficient at infinite dilution of 6618 for n-hexane
in water and a value of 135.9 for water in n-hexane is obtained. With these values
directly the solubilities can be calculated:

Cn-hexane in water 55.56 )
log—————= =1.104-log | —— | + 0.0042 - 298.15 — 2.817
B ol B ( 6618

—3.8566

Cn-hexane in water = 1.39 - 1074 mOl/l

Xn-hexane in water ~ 2.53 - 10_6

in
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1
log %water in n-hexane = 2.3171 - log <m) +0.01796 - 298.15 — 3.672

= —3.260

Xwater in n-hexane = 0.000549

Experimentally n-hexane solubilities between 9.44 - 107> and 1.55 - 10~* mol/l are
reported (see Figure 5.90). As well the water solubility is in very good agreement
with the experimental values.

594
Predictive Soave—Redlich—Kwong (PSRK) Equation of State

As can be recognized from the results shown before, modified UNIFAC is a very
powerful predictive model for the development and design of chemical processes,
in particular separation processes. However, modified UNIFAC is a g¥-model. This
means that it cannot handle supercritical compounds. For supercritical compounds
either Henry constants have to be introduced or Approach A has to be used. In
the latter case, an equation of state is required, which is able to describe the PvT
behavior of both the vapor (gas) and the liquid phase.

As mentioned in Section 2.5 the first equation of state which was able to describe
the PvT behavior of the liquid and the vapor phase was developed by van der Waals.
With only two parameters a and b, the van der Waals equation of state is able to
describe the different observed phenomena, such as condensation, evaporation,
the two phase region and the critical behavior. But the calculated densities, vapor

2.0

325°C 250°C

300 °C

log P (bar)

X1

Figure 5.91 Experimental and predicted VLE data using
PSRK for the systems ethanol (1)--water (2) (left hand side)
and acetone (1)-water (2) (right hand side) at subcritical
and supercritical conditions.
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pressures, etc. using the van der Waals equation of state were only in qualitative
agreement with the experimental findings.

Therefore today improved cubic equations of state like the SRK [63] or the
PR equation [64] are used. But up to 1979 the application of the equations of
state approach was limited to nonpolar or slightly polar compounds in particular
because of the empirical quadratic mixing rules used. Huron and Vidal [35]
combined the advantages of gf-models and equations of state by introducing more
sophisticated so-called gE-mixing rules (see Section 4.9.2). With the application
of original UNIFAC for the prediction of the required gf-values in the mixing
rule predictive group contribution equations of state were developed [43]. While
in the approach of Huron and Vidal infinite pressure is taken as reference state,
in the group contribution equation of state PSRK (predictive SRK) atmospheric
pressure is used. The great advantage of this approach is that in the PSRK method
the already available UNIFAC parameters can directly be used. But now the
UNIFAC parameters can be applied at supercritical conditions. For the systems

Original UNIFAC parameters

|
[0 Published PSRK parameters
[l Parameters only for consortium members

Ly ~ No parameters fitted

He Bra |
Ne HCN |
Kr  NO, |‘
Xe CFy4

H O3 |
HCI CINO,

o
IIT

A XX
(TN S SHCECHCHC:H:E-SE.E SoEE
1hea so Wome HEMI

Figure 5.92 Current parameter matrix of the group contribution equation of state PSRK
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CO, (1) + n-Propane (2) CO;, (1) + n-Butane (2)
] g
Q a
200.
150.
5 =
S S 100.
Q a
50.
0.0
0.0

1Y

Figure 593 Experimental and predicted VLE data using
PSRK for various CO,-alkane systems at subcritical and
supercritical conditions.

Y
A Azeotropic data f
7. P 298.15K /
m O Critical data
I 293.15K ¥
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[ 3
288.15K \|
5.l
44 283.15K %
<
4.
<
1 A
3 1 l 1
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Figure 5.94 Experimental and predicted VLE, azeotropic
and critical data of the system CO, (1) -ethane (2) using
PSRK as a function of temperature.
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Figure 5.95 Experimental [65] and predicted K-factors for a
12-component system using PSRK at a temperature of 322K
as a function of pressure and the required parameter matrix
for the group contribution equation of state PSRK.

ethanol-water and acetone-water this is shown in Figure 5.91. It can be seen that
the results are very satisfying.

To use PSRK for process synthesis and design a large matrix with reliable
parameters is desirable. The possibility to handle systems at supercritical conditions
all of a sudden allowed including also gases like CO,, CH4, H,S, H,, and so on,
as new functional groups in the parameter matrix. In total, 30 different gases were
added as new main groups. The required parameters for the gases were fitted to
VLE data of low boiling substances and gas solubilities stored in the Dortmund
Data Bank [3]. The current PSRK parameter matrix is given in Figure 5.92.

Typical VLE results for different CO,~alkane systems are shown in Figures 5.93
and 5.94. While in Figure 5.93 only VLE data for four different CO,-alkane (propane,
butanc. hexane, decane) are shown, for the system ethane?’—CO, additionally the
experimental and predicted azeotropic and critical data are shown. As can be seen,
excellent results are obtained for all systems considered. This means that the
group contribution concept can also be applied for the gases included in the PSRK
matrix.

Predicted results using PSRK for a 12 component system at 322 K are shown
in Figure 5.95 in the form of the K-factors (K; = yi/x;) as a function of pressure.
Using classical mixing rules 66 binary parameters would be required. In the case
of a group contribution equation of state the number of required parameters in
this case goes down to 6, since all alkanes are described with the same group
interaction parameters. This is a great advantage of group contribution equations
of state in comparison to the typical equation of state approach, in particular for
processes such as the gas-to-liquid process, where a large number of alkanes,
alkenes, alcohols besides a few gases have to be handled.

21) In PSRK, ethane is built up by two methyl
groups.
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PSRK was even extended to systems with strong electrolytes by using the
electrolyte model LIFAC [66] instead of the original UNIFAC method for calculating
the excess Gibbs energy. The LIFAC method takes into account the middle range
and long range interactions of the electrolytes by the Debye—Hiickel and a modified
Pitzer term (see Section 7.3.5). The PSRK model in combination with the LIFAC
model allows the prediction of salting in and salting out effect of strong electrolytes
on VLE and gas solubilities. In Figure 5.96 the influence of sodium nitrate on the
solubility of carbon dioxide in water for different salt concentrations at 40 °C and
100 °C is shown. As can be seen not only the salt effect but also the temperature
dependence for this ternary system is described with the required accuracy.

5.9.5
VTPR Group Contribution Equation of State

The PSRK model [43] provides reliable predictions of VLE and gas solubilities.
Therefore, PSRK was implemented in most process simulators and is well accepted
as a predictive thermodynamic model for the synthesis and design of the different
processes in chemical, gas processing, and petroleum industry. But also PSRK
shows all the weaknesses of UNIFAC and the SRK equation of state. Since the SRK
equation of state is used in the group contribution equation of state PSRK, poor
results are obtained for liquid densities of the pure compounds and the mixtures.
Furthermore, poor results are obtained for activity coefficients at infinite dilution,
heats of mixing and very asymmetric systems because of the use of original
UNIFAC. Ahlers and Gmehling {44] developed a generalized group contribution

Table 520 Main differences between the new group contri-
bution equation of state VTPR and the PSRK model.

Module PSRK VTPR

Volume-translated
Peng-Robinson

Equation of state ~ Soave—Redlich—Kwong

a-Function Generalized Mathias—Copeman Generalized Twu
a aii
BT = 2SR a o g"*
- e xXi— + 22—
Mixing rule for + 1 (i 4 xln—b-) b z" ' b, A
the parameter a A\ RT b A = —0.53087
A = —0.64663

B/t = (v 1)) 2

b= Zi Zix.'ij,j

Mixing rule for
the parameter b

b= Xx;b,

g® information

(a) original UNIFAC
(b) temp-depend. PSRK parameters

Temp-depend. VIPR
parameters

Database

VLE, GLE

VLE, GLE, hE, SLE, y*
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equation of state called VTPR, where most of the weaknesses of PSRK were
removed (see also Sections 2.5.5 and 4.9.2). The main differences between PSRK
and VTPR are summarized in Table 5.20.

A better description of liquid densities is achieved, by using the volume translated
PR (Peneloux et al. [33]) instead of the SRK equation of state, which is used in the
PSRK model. Based on the ideas of Chen et al. [67] an improved gE-mixing-rule
is used. The prediction of asymmetric systems is improved by using a quadratic
b mixing-rule with a modified combination rule [67]. The improvements obtained
when going from the group contribution equation of state PSRK to VTPR can
be recognized from the predicted results using these models for symmetric
alkane-alkane systems shown in Figure 5.97 and asymmetric alkane—alkane

(1) propane (1) 2-methylpentane
(2) n-butane (2) n-octane
5. 1.0
i 328K |
0.8 313K
293 K
T —~ 0.6
a @
S = q
a % 04
0.2 {
L A -
0. 1 | 1 0.0 i
0.0 0.5 1.0 0.0 0.5 1.0
X1, Y1 X Y1

Figure 5.97 Experimental and predicted VLE data for sym-
metric alkane—alkane systems - PSRK — VTPR.

(1) ethane (1) ethane
5 (2) n-dodecane o (2) n-octacosane
* 7 i -\
© 373K L 573K / A
10. |~ . Do p ! 1A
BRTEH AN ok /
- 15 | ; L
313K 348 K / / \
8. 273K L K S
E E ! i
S 6 S 10. e /
Q a | ) 7
4. /! L
5.+ // /,!
2. ” _€
o // /(44
7 J
0. 0. ! | .
0.0 0.5 1.0 0.0 05 1.0
X1, Y1 X1 ¥

Figure 5.98 Experimental and predicted VLE data for asym-
metric alkane-alkane systems ---- PSRK — VTPR.
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systems shown in Figure 5.98. For the prediction of alkane-alkane systems no
interaction parameters are required for both models. This means that the results
mainly depend on the mixing rules used. As can be seen from the Pxy-diagrams
much better results are predicted using VTPR instead of PSRK in the case of
the asymmetric systems ethane—dodecane and ethane—octacosane, while nearly
the same results are obtained for the symmetric systems propane-butane and
2-methylpentane—n-octane.

In the case of the group contribution equation of state VTPR, instead of
temperature-independent group interaction parameters from original UNIFAC,
temperature-dependent group interaction parameters as in modified UNIFAC
are used. As for modified UNIFAC, the required temperature-dependent group
interaction parameters of VTPR are fitted simultaneously to a comprehensive data
base. Besides VLE data for systems with sub and supercritical compounds, gas
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P (bar)

P (bar)
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X1, Y1

Figure 5.100 Experimental and predicted VLE data,

azeotropic points and critical data for the system

CO; (1)-ethane (2) using VTPR.
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Figure 5.101 Experimental and pre-
dicted excess enthalpy data for the system

CO;(1)-ethane (2).

Figure 5.102 Experimental and predicted
SLE data for the system ethane (1)-CO,
(2) ® experimental [3, 68] —- group contri-
bution equation of state VTPR.
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125
Methane
e B <
L. /
/ \ / \ Q . .
5\ /\ / < 4 "
) c = 120 i '
V' as W Al W s s i
\ N\ /N /\ /\ 115 T
/ \ / . / \ / \ / \ .
Nitrogen 0.5 Ethane
X4
r /\
.v ’ ’\ ;\’_‘ = Asiso - / / ‘
AN . /\
Nitrogen Ethane

Figure 5.104 Experimental and predicted LLE data using
VTPR for the ternary system nitrogen—ethane—methane at
122K and the binary system ethane—nitrogen [3].

solubilities, SLE of eutectic systems, activity coefficients at infinite dilution and
excess enthalpies covering a large temperature and pressure range are used.

The results obtained for the different pure component properties and various
phase equilibria of the new group contribution equation of state are very promising
[44]. In Figure 5.99 the predicted VLE results for different alkane—CO,-systems
using PSRK and the group contribution equation of state VIPR are presented.
While both methods show similar results for the slightly asymmetric system
CO;-propane and CO,-n-hexane, again much better results are achieved for the
strongly asymmetric system CO,—eicosane and CO,—octacosane with the group
contribution equation of state VTPR because of the improved mixing rules.

Using the same parameters, VLE, azeotropic data, critical data and excess
enthalpies for the system CO;-ethane were predicted. A comparison of the
predicted and experimental results is shown in Figures 5.100 and 5.101. It can be
seen that as in the case of PSRK (see Figure 5.94) excellent agreement between the
predicted results and the experimental findings is obtained. In Figure 5.101 the
experimental and predicted excess enthalpies for the systems CO,—ethane using
the group contribution equation of state VIPR are shown. It can be seen that
nearly a perfect description of the VLE, azeotropic, and the critical line is obtained.
Furthermore, not only the temperature, but also the pressure dependence of the
excess enthalpies is described correctly with the group contribution equation of
state VTPR. Perhaps it has to be mentioned again that for all the predictions (VLE,
azeotropic data, critical line, hE) shown in Figures 5.99-5.101 the same parameters
were used to describe the interactions between CO; and alkanes.

Using the same group interaction parameters, other phase equilibria can be
predicted as well. The predicted SLE behavior of the binary system ethane-CO,
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900 Figure 5.106 Experimental and cal-
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using VTPR is shown in Figure 5.102 together with the experimental data. It can
be seen that the parameters fitted to a comprehensive data base can be successfully
applied also at very low temperatures.

The next example (see Figure 5.103) shows the results of the group contribution
equation of state VTPR in comparison to the results of modified UNIFAC for
different VLE, excess enthalpies, SLE, azeotropic data, activity coefficients at
infinite dilution for various alkane—ketone systems. It can be seen that with the
group contribution equation of state VIPR similarly good results are obtained
for the different phase equilibria and excess enthalpies as obtained with modified
UNIFAC. But, besides the prediction of the different phase equilibria of subcritical
compounds, the method can directly be applied for systems with supercritical
compounds, for example, it can directly be applied for the calculation of gas
solubilities. At the same time various other thermophysical properties (densities,
enthalpies, for example, enthalpies of vaporization, heat capacities, Joule-Thomson
coefficients, etc.) for pure compounds and mixtures for the liquid or gas phase
can be predicted for the given condition (temperature, pressure, composition). The
main disadvantage is that the available parameter matrix of the group contribution
equation of state is still limited. But work is in progress to extend it.
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Figure 5.108 Correlation results of the equation of

state VTPR for the system acetone(1)—water(2) using
temperature dependent UNIQUAC parameters aj; =
472.46 K, an = —585.54 K, by = —0.40712, by = 2.5101,
€12 =3.607-107* K71, cn =1.595 10 ° K.

At the same time the group contribution equation of state VTPR in contrast to
modified UNIFAC can be applied for the prediction of phase equilibria including
compounds not covered by modified UNIFAC, for example, the various gases.
The predicted LLE results for the ternary system nitrogen—CO,—methane at 122K
and the binary system nitrogen—CO; as a function of temperature are shown in
Figure 5.104 together with the experimental data.

A group contribution equation of state shows in particular great advantages
compared to the usual equation of state approach in the case of multicomponent
mixtures, when the multicomponent mixture consists of gases and various alkanes,
alcohols, alkenes, and so on. The reason is that the same parameters can be used
for all alkanes, alcohols, alkenes, so that the size of the parameter matrix is small
in comparison to the typical cquation of state approach. The results of VIPR for
a 12 component system consisting of nitrogen—methane—CO;—alkanes are shown
in Figure 5.105. As can be seen, excellent results are obtained with the six required
parameters (66 binary parameters would be required for the classical equation of
state approach).

325



326

5 Phase Equilibria in Fluid Systems

As mentioned already several times, using equations of state besides phase
equilibria also other properties, such as densities, heat capacities, enthalpies,
Joule—~Thomson coefficients, and so on, for pure compounds and mixtures can be
calculated. In Figure 5.106 the improvements in liquid densities for a four compo-
nent system are shown, when instead of the PSRK the VTPR group contribution
equation of state is used. The main reason for the improvements using VTPR
comes from the fact, that the pure component densities are already much better
described by the VTPR equation of state. In Figure 5.107 the predicted densities of
the PSRK and the VTPR group contribution equation of state are shown together
with the experimental densities. The improvement when going from PSRK to
VTPR is significant.

VTPR can also be applied to correlate experimental data. Then instead of the
group contribution method a gE-model, for example, the UNIQUAC, Wilson, or
NRTL equation can be applied. This is of great interest when reliable experimental
data are available. For the system acetone—water the correlation results are shown
in Figure 5.108. It can be seen that nearly perfect results are obtained for VLE,
excess enthalpies and the azeotropic composition. Similarly good results can be
obtained with the help of a gF-model (see Figure 5.34). But as can be seen
from the VLE data, now the model can be applied at supercritical conditions.
At the same time other properties, for example. densities, and so on, can be
calculated.

An overview about the development of group contribution methods and group
contribution equations of state for the prediction of phase equilibria and other
thermophysical properties can be found in [69].

Additional Problems

P5.1 Calculate the pressure and the vapor phase mole fraction for the system
ethanol (1)-water (2) at 70°C with the help of the different gf-models
(Wilson, NRTL, UNIQUAC) for an ethanol mole fraction of x; =0.252 using
the interaction parameters, auxiliary parameters, and Antoine constants
given in Figure 5.30 and assuming ideal vapor phase behavior. Besides total
and partial pressures and vapor phase composition, calculate also K-factors
and separation factors. Repeat the calculation using the quantities defined
in Eq. (5.15) ¢1 = 0.9958 and ¢, = 1.0070.

P5.2 Regress the binary interaction parameters of the UNIQUAC model to the
isobaric VLE data of the system ethanol (1) - water (2) measured by Kojima
et al. at 1 atm and listed below. As objective function, use:

a. relative quadratic deviation in the activity coefficients

b. quadratic deviation in boiling temperatures

c. relative quadratic deviation in vapor phase compositions
d. relative deviation in separation factors.



Additional Problems

Adjust the vapor pressure curves using a constant factor to exactly match
the author’s pure component vapor pressures.

x A T(K) X n T (K)

0.0000 0.0000 373.15 0.5500 0.6765 352,57
0.0500 0.3372 363.15 0.6000 0.6986 352.28
0.1000 0.4521 359.08 0.6500 0.7250 352.00
0.1500 0.5056 357.12 0.7000 0.7550 351.75
0.2000 0.5359 356.05 0.7500 0.7840 351.57
0.2500 0.5589 355.29 0.8000 0.8167 351.45
0.3000 0.5794 354.67 0.8500 0.8591 351.37
0.3500 0.5987 354.14 0.9000 0.8959 351.35
0.4000 0.6177 353.67 0.9500 0.9474 351.39
0.4500 0.6371 353.25 1.0000 1.0000 351.48
0.5000 0.6558 352.90 - - -

Reference: Kojima, K., Tochigi. K.. Seki, H., Watase, K.. and Kagaku, Kogaku (1968) 32, 149-153.

P5.3

P5.4

P5.5

P5.6

Compare the experimental data for the system ethanol-water measured at
70 °C (see Figure 5.30 resp. Table 5.2) with the results of the group contri-
bution method modified UNIFAC and the group contribution equation of
state VTPR.

Calculate the Pxy-diagram at 70 “C for the system ethanol(1)-benzene(2)
assuming ideal vapor phase behavior using the Wilson equation. The
binary Wilson parameters Aj; and A should be derived from the activity
coefficients at infinite dilution (see Table 5.6). Experimentally the following
activity coefficients atinfinite dilution were determined at this temperature:

Y =744y =475

Determine the azeotropic composition of the following homogeneous
binary systems

a. acetone—water

b. ethanol-1,4-dioxane

c. acetone—methanol.

at 50, 100, and 150 °C using the group contribution method modified
UNIFAC.

In the manual of a home glass distillery (s. Figure P5.1) the following
recommendation is given: “After some time liquid will drip out of the
cooler. You are kindly requested to collect the first small quantity and
not to use it, as first a methanol enrichment takes place.” Does this
recommendation make sense? The purpose of the glass distillery is to
enrich ethanol. Consider the wine to be distilled as a mixture of ethanol
(10wt%), methanol (200wt ppm), and water. The one stage distillation
takes place at atmospheric pressure.
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P5.7

P5.8

Figure P5.1 Home glass distillery

Calculate the percentages of methanol and ethanol removed from 200g
fced, when 10g of the distillate is withdrawn. For the calculation the
modified UNIFAC method should be applied. The constants for the Antoine
equation for ethanol and water can directly be taken from Figure 5.30. For
methanol the vapor pressure constants and the molar mass are given in
Appendix A. For the calculation ideal vapor phase behavior should be
assumed.
Calculate the VLE behavior, ht data, azeotropic data, and activity coefficients
at infinite dilution for the system n-pentane—acetone at 373 K, 398 K, and
423K using modified UNIFAC. The results are shown graphically in
Figure 5.103.
The vapor pressure constants are given in Appendix A. Experimental data
can be downloaded from the textbook material page on www.ddbst.com. For
the calculation by modified UNIFAC ideal vapor phase behavior should be
assurned.
Using the free Explorer Version of DDB/DDBSP, search for mixture data
for the system acetone-n-hexane.
a. Plot the experimental pressure as function of liquid and vapor phase
composition together with the predictions using UNIFAC, modified
UNIFAC, and PSRK for the data sets at 318 K and 338 K.



P5.9

P5.10

P5.11

P5.12

P5.13

Additional Problems

b. How large are the differences in the azeotropic composition as shown
in the plot of separation factor vs. composition?

c. Plot the experimental heats of mixing data as function of liquid phase
composition together with the predictions of UNIFAC, modified UNI-
FAC, and PSRK for the data sets at 243K, 253K, and 298K. I[nterpret
the linear part in some of the calculated heat of mixing curves.

d. Plotthe experimental LLE data together with the results of UNIFAC and
modified UNIFAC. Whatled tothe improved results in case of modified
UNIFAC?

Using the free Explorer Version of DDB/DDBSP, search for mixture data

for the systems CO;-n-hexane and CO,-hexadecane. Plot the experimental

high pressure VLE data (HPV) together with the predictions using PSRK.

Compare the results to those of VIPR (Figure 5.99d) and examine the

results for SLE in the binary mixture CO,-n-hexane.

Calculate the activity coefficients in the system methanol (1)-toluene (2)

from the data measured by Ocon et al. [71] at atmospheric pressure as-

suming ideal vapor phase behavior. Try to fit the untypical behavior of
the activity coefficients of methanol as function of composition using tem-
perature independent gf-model parameters (Wilson, NRTL, UNIQUAC).

Explain why the activity coefficients of methanol show a maximum at high

toluene concentration.

The vapor pressure constants are given in Appendix A. Experimental data

as well as molar volumes, r and q values can be downloaded from the

textbook page on www.ddbst.com. For the calculation, ideal vapor phase
behavior should be assumed.

Predict the Henry constants of methane, carbon dioxide, and hydrogen

sulfide in methanol in the temperature range —50 to 200 °C with the help

of the group contribution methods PSRK and VTPR.

Compare the predicted Henry constants with experimental values from the

textbook page on www.ddbst.com.

Predict the solubility of methane, carbon dioxide, and hydrogen sulfide in

methanol at a temperature of —30°C for partial pressures of 5 bar, 10 bar,

and 20 bar using the PSRK and VTPR group contribution equations of
state. Compare the results with the solubilities obtained using Henry’s law
and the Henry constants predicted in problem P5.11.

In the free DDBSP Explorer Version, search for data for all subsystems of

the system methanol-methane-carbon dioxide.

a. Compare the available gas solubility data with the results of the PSRK
method via the data prediction option in DDBSP.

b. Plot the available high pressure VLE data (HPV) for the system
methanol-carbon dioxide together with the predicted curve using the
PSRK method. Examine and familiarize yourself with the different
graphical representations.

329



330| 5 Phase Equilibria in Fluid Systems

c. Regress the dataset 2256 using the Soave-Redlich-Kwong equation of
state with the quadratic mixing rule and a gt mixing rule with activity
coefhicient calculation via the UNIQUAC model. Explain the differences.

P5.14 In the free DDBSP Explorer Version, search for all mixture data for the
system benzene-water. Calculate the solubility of benzene in water from
the experimental activity coefficients at infinite dilution and compare the
results to the experimental LLE data.

P5.15 Examine with the help of the regular solution theory, UNIFAC and
modified UNIFAC if the Dbinary systems benzene-cyclohexane and
benzene-n-hexane show an azeotropic point at 80°C. In case of the
regular solution theory, calculate the solubility parameter from the
saturated liquid density and the heat of vaporization using Eq. (5.70). All
required data are given in Appendices A, H, and I.
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