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Equations of State
An equation of state (EOS) is an analytical expression relating the
pressure p to the temperature T and the volume V. A proper description
of this PVT relationship for real hydrocarbon fluids is essential in deter-
mining the volumetric and phase behavior of petroleum reservoir fluids
and in predicting the performance of surface separation facilities.

The best known and the simplest example of an equation of state is
the ideal gas equation, expressed mathematically by the expression

p ¼ RT

V
(7-1)

where V ¼ gas volume in cubic feet per 1 mol of gas. This PVT relation-

ship is used to describe the volumetric behavior of real hydrocarbon
gases only at pressures close to the atmospheric pressure for which it
was experimentally derived.

The extreme limitations of the applicability of Equation 7-1 prompted
numerous attempts to develop an equation of state suitable for describing
the behavior of real fluids at extended ranges of pressures and temperatures.

The main objective of this chapter is to review developments and
advances in the field of empirical cubic equations of state and demon-
strate their applications in petroleum engineering.
7.1 THE VAN DER WAALS EQUATION OF STATE

In developing the ideal gas EOS (Equation 7-1), two assumptions
were made:

• First assumption. The volume of the gas molecules is insignificant
compared to the volume of the container and the distance between the
molecules.
All rights reserved. 59



60 7. EQUATIONS OF STATE
• Second assumption. There are no attractive or repulsive forces
between the molecules or the walls of the container.

van der Waals (1873) [61] attempted to eliminate these two assumptions
by developing an empirical equation of state for real gases. In his
attempt to eliminate the first assumption, van der Waals pointed out that
the gas molecules occupy a significant fraction of the volume at higher
pressures and proposed that the volume of the molecules, as denoted
by the parameter b, be subtracted from the actual molar volume V in
Equation 7-1, to give

p ¼ RT

V� b

where the parameter b is known as the covolume and is considered to

reflect the volume of molecules. The variable V represents the actual vol-
ume in cubic feet per 1 mol of gas.

To eliminate the second assumption, van der Waals subtracted a cor-
rective term, denoted by a/V2, from the preceding equation to account
for the attractive forces between molecules. In a mathematical form,
van der Waals proposed the following expression:

p ¼ RT

V� b
� a

V2
(7-2)
where p ¼ system pressure, psia
T ¼ system temperature, �R
R ¼ gas constant, 10.73 psi-ft3/lb-mol ¼ �R
V ¼ volume, ft3/mol

The two parameters a and b are constants characterizing the molecular
properties of the individual components. The symbol a is considered a
measure of the intermolecular attractive forces between the molecules.
Equation 7-2 shows the following important characteristics:

1. At low pressures, the volume of the gas phase is large in comparison

with the volume of the molecules. The parameter b becomes
negligible in comparison with V and the attractive forces term a/V2

becomes insignificant; therefore, the van der Waals equation reduces
to the ideal gas equation (Equation 7-1).

2. At high pressure, i.e., p ! 1, volume V becomes very small and

approaches the value b, which is the actual molecular volume.

The van der Waals or any other equation of state can be expressed in a
more generalized form as follows:

p ¼ prepulsive � pattractive
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where the repulsive pressure term prepulsive is represented by the term
RT/(V – b) and the attractive pressure term pattractive is described by a/V2.

In determining the values of the two constants a and b for any pure
substance, van der Waals observed that the critical isotherm has a hori-
zontal slope and an inflection point at the critical point, as shown in
Figure 7-1. This observation can be expressed mathematically as follows:

@p

@V

� �
TC;pC

¼ 0;
@2p

@V2

� �
TC;pC

¼ 0 (7-3)

Differentiating Equation 7-2 with respect to the volume at the critical

point results in

@p

@V

� �
TC;pC

¼ �RTC

ðVC � bÞ3 þ
2a

V3
C

¼ 0 (7-4)

@2p

@V2

� �
TC;pC

¼ 2RTC

ðVC � bÞ3 þ
6a

V4
C

¼ 0 (7-5)

Solving Equations 7-4 and 7-5 simultaneously for the parameters a and b

gives

b ¼ 1

3

� �
VC (7-6)

a ¼ 8

9

� �
RTCVC (7-7)

Equation 7-6 suggests that the volume of the molecules b is approxi-

mately 0.333 of the critical volume VC of the substance. Experimental
studies reveal that the covolume b is in the range of 0.24 to 0.28 of the
critical volume and pure component.
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FIGURE 7-1 An idealized pres-
sure–volume relationship for a pure
compound.
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By applying Equation 7-2 to the critical point (i.e., by setting T ¼ Tc,
p ¼ pc, and V ¼ Vc) and combining with Equations 7-6 and 7-7, we get

pCVC ¼ ð0:375ÞRTC (7-8)

Equation 7-8 shows that regardless of the type of substance, the van der

Waals EOS produces a universal critical gas compressibility factor Zc of
0.375. Experimental studies show that Zc values for substances range
between 0.23 and 0.31.

Equation 7-8 can be combined with Equations 7-6 and 7-7 to give a
more convenient and traditional expression for calculating the para-
meters a and b to yield

a ¼ Oa
R2T2

c

pc

(7-9)

b ¼ Ob
RTc

pc

(7-10)
where R ¼ gas constant, 10.73 psia-ft3/lb-mol-�R
pc ¼ critical pressure, psia
Tc ¼ critical temperature, �R
Oa ¼ 0.421875
Ob ¼ 0.125

Equation 7-2 can also be expressed in a cubic form in terms of the vol-
ume V as follows:

V3 � bþ RT

p

� �
V2 þ a

p

� �
V� ab

p

� �
¼ 0 (7-11)

Equation 7-11 is usually referred to as the van der Waals two-parameter

cubic equation of state. The term two-parameter refers to the parameters a
and b. The term cubic equation of state implies an equation that, if
expanded, would contain volume terms to the first, second, and third
power.

Perhaps the most significant feature of Equation 7-11 is its ability to
describe the liquid-condensation phenomenon and the passage from
the gas to the liquid phase as the gas is compressed. This important
feature of the van der Waals EOS is discussed in conjunction with
Figure 7-2.

Consider a pure substance with a p-V behavior as shown in Figure 7-2.
Assume that the substance is kept at a constant temperature T below its
critical temperature. At this temperature, Equation 7-11 has three real
roots (volumes) for each specified pressure p. A typical solution of Equa-
tion 7-11 at constant temperature T is shown graphically by the dashed
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isotherm: the constant temperature curve DWEZB in Figure 7-2. The
three values of V are the intersections B, E, and D on the horizontal line,
corresponding to a fixed value of the pressure. This dashed calculated
line (DWEZB) then appears to give a continuous transition from the gas-
eous phase to the liquid phase, but in reality the transition is abrupt and
discontinuous, with both liquid and vapor existing along the straight
horizontal line DB. Examining the graphical solution of Equation 7-11
shows that the largest root (volume), as indicated by point D, corre-
sponds to the volume of the saturated vapor, while the smallest positive
volume, as indicated by point B, corresponds to the volume of the
saturated liquid. The third root, point E, has no physical meaning. Note
that these values become identical as the temperature approaches the
critical temperature Tc of the substance.

Equation 7-11 can be expressed in a more practical form in terms of
the compressibility factor Z. Replacing the molar volume V in Equation
7-11 with ZRT/p gives

Z3 � ð1þ BÞZ2 þAZ�AB ¼ 0 (7-12)

where
A ¼ ap

R2T2
(7-13)

B ¼ bp

RT
(7-14)

Z ¼ compressibility factor
p ¼ system pressure, psia
T ¼ system temperature, �R
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Equation 7-12 yields one real root1 in the one-phase region and three
real roots in the two-phase region (where the system pressure equals the
vapor pressure of the substance). In the latter case, the largest root corre-
sponds to the compressibility factor of the vapor phase ZV, while the
smallest positive root corresponds to that of the liquid ZL.

An important practical application of Equation 7-12 is calculating den-
sity, as illustrated in the following example.
Example 7-1

A pure propane is held in a closed container at 100�F. Both gas and
liquid are present. Calculate, using the van der Waals EOS, the density
of the gas and liquid phases.
Solution

Step 1. Determine the vapor pressure pv of the propane from the Cox
chart (Figure 1-1). This is the only pressure at which two phases
can exist at the specified temperature:

pv ¼ 185 psi

Step 2. Calculate parameters a and b from Equations 7-9 and 7-10,

respectively:

a ¼ Oa
R2T2

c

pc

a ¼ 0:421875
ð10:73Þ2ð666Þ2

616:3
¼ 34;957:4

and
b ¼ Ob
RTc

pc

b ¼ 0:125
10:73ð666Þ

616:3
¼ 1:4494
1In some supercritical regions, Equation 7-12 can yield three real roots for Z.

From the three real roots, the largest root is the value of the compressibility with

physical meaning.
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Step 3. Compute coefficients A and B by applying Equations 7-13 and 7-
14, respectively.

A ¼ ap

R2T2

A ¼ ð34; 957:4Þð185Þ
ð10:73Þ2ð560Þ2 ¼ 0:179122

B ¼ bp

RT

B ¼ ð1:4494Þð185Þ
ð10:73Þð560Þ ¼ 0:044625

Step 4. Substitute the values of A and B into Equation 7-12 to give
Z3 � ð1þ BÞZ2 þAZ�AB ¼ 0

Z3 � 1:044625Z2 þ 0:179122Z� 0:007993 ¼ 0

Step 5. Solve the preceding third-degree polynomial by extracting the

largest and smallest roots of the polynomial using the
appropriate direct or iterative method to give

Zv ¼ 0:72365
ZL ¼ 0:07534

Step 6. Solve for the density of the gas and liquid phases:
rg ¼
pM

ZvRT

rg ¼
ð185Þð44:0Þ

ð0:72365Þð10:73Þð560Þ ¼ 1:87 lb=ft3

and
rL ¼ pM

ZLRT

rL ¼ ð185Þð44Þ
ð0:7534Þð10:73Þð560Þ ¼ 17:98 lb=ft3
The van der Waals equation of state, despite its simplicity, provides a
correct description, at least qualitatively, of the PVT behavior of sub-
stances in the liquid and gaseous states. Yet it is not accurate enough
to be suitable for design purposes.
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With the rapid development of computers, the EOS approach for the
calculation of physical properties and phase equilibria proved to be a
powerful tool, and much energy was devoted to the development of
new and accurate equations of state. These equations, many of them a
modification of the van der Waals equation of state, range in complex-
ity from simple expressions containing 2 or 3 parameters to compli-
cated forms containing more than 50 parameters. Although the
complexity of any equation of state presents no computational prob-
lem, most authors prefer to retain the simplicity found in the van
der Waals cubic equation while improving its accuracy through
modifications.

All equations of state are generally developed for pure fluids first,
then extended to mixtures through the use of mixing rules. These mixing
rules are simply means of calculating mixture parameters equivalent to
those of pure substances.
7.2 REDLICH-KWONG EQUATION OF STATE

Redlich and Kwong (1949) [45] demonstrated that, by a simple adjust-
ment, the van der Waals attractive pressure term a/V2 could consider-
ably improve the prediction of the volumetric and physical properties
of the vapor phase. The authors replaced the attractive pressure term
with a generalized temperature dependence term. Their equation has
the following form:

p ¼ RT

V� b
� a

VðVþ bÞ ffiffiffi
T

p (7-15)

where T is the system temperature in �R.

Redlich and Kwong, in their development of the equation, noted that,

as the system pressure becomes very large, i.e., p ! 1, the molar vol-
ume V of the substance shrinks to about 26% of its critical volume
regardless of the system temperature. Accordingly, they constructed
Equation 7-15 to satisfy the following condition:

b ¼ 0:26 Vc (7-16)

Imposing the critical point conditions (as expressed by Equation 7-3) on

Equation 7-15 and solving the resulting equations simultaneously gives

a ¼ Oa
R2T2:5

c

pc

(7-17)

b ¼ Ob
RTc

pc

(7-18)
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where Oa ¼ 0.42747 and Ob ¼ 0.08664. Equating Equation 7-18 with 7-16
gives

pcVc ¼ 0:333RTc (7-19)

Equation 7-19 shows that the Redlich-Kwong EOS produces a universal

critical compressibility factor (Zc) of 0.333 for all substances. As indi-
cated earlier, the critical gas compressibility ranges from 0.23 to 0.31
for most of the substances.

Replacing the molar volume V in Equation 7-15 with ZRT/p gives

Z3 � Z2 þ ðA� B� B2ÞZ�AB ¼ 0 (7-20)

where
A ¼ ap

R2T2:5
(7-21)

B ¼ bp

RT
(7-22)

As in the van der Waals EOS, Equation 7-20 yields one real root in the

one-phase region (gas-phase region or liquid-phase region) and three
real roots in the two-phase region. In the latter case, the largest root cor-
responds to the compressibility factor of the gas phase Zv while the smal-
lest positive root corresponds to that of the liquid ZL.

Example 7-2

Rework Example 7-1 by using the Redlich-Kwong equation of state.
Solution

Step 1. Calculate the parameters a, b, A, and B:

a ¼ 0:42747
ð10:73Þ2ð666Þ2:5

616:3
¼ 914;110:1

b ¼ 0:08664
ð10:73Þð666Þ

616:3
¼ 1:0046

A ¼ ð914; 110:1Þð185Þ
ð10:73Þ2ð560Þ2:5 ¼ 0:197925

B ¼ ð1:0046Þð185Þ
ð10:73Þð560Þ ¼ 0:03093

Step 2. Substitute parameters A and B into Equation 7-20, and extract the

largest and smallest root, to give
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Z3 � Z2 þ 0:1660384Z� 0:0061218 ¼ 0
Largest root Zv ¼ 0:802641

Smallest root ZL ¼ 0:0527377
Step 3. Solve for the density of the liquid phase and the gas phase:

r ¼ pM

ZRT

rL ¼ ð185Þð44Þ
ð0:0527377Þð10:73Þð560Þ ¼ 25:7 lb=ft3

rv ¼ ð185Þð44Þ
ð0:802641Þð10:73Þð560Þ ¼ 1:688 lb=ft3
Redlich and Kwong extended the application of their equation to
hydrocarbon liquid or gas mixtures by employing the following mixing
rules:

am ¼
Xn
i¼1

xi
ffiffiffiffi
ai

p
" #2

(7-23)

bm ¼
Xn
i¼1

½xibi� (7-24)
where n ¼ number of components in mixture
ai ¼ Redlich-Kwong a parameter for the ith component as given

by Equation 7-17
bi ¼ Redlich-Kwong b parameter for the ith component as given

by Equation 7-18
am ¼ parameter a for mixture
bm ¼ parameter b for mixture
xi ¼ mole fraction of component i in the liquid phase

To calculate am and bm for a hydrocarbon gas mixture with a compo-
sition of yi, use Equations 7-23 and 7-24 and replace xi with yi:

am ¼
Xn
i¼1

yi
ffiffiffiffi
ai

p
" #2

bm ¼
Xn
i¼1

½yibi�
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Equation 7-20 gives the compressibility factor of the gas phase or the liq-
uid phase with the coefficients A and B as defined by Equations 7-21 and
7-22. The application of the Redlich-Kwong equation of state for hydro-
carbon mixtures can be best illustrated through the following two
examples.
Example 7-3

Calculate the density of a crude oil with the following composition at
4000 psia and 160�F. Use the Redlich-Kwong EOS.
Component
 xi
 M
 pc
 Tc
C1
 0.45
 16.043
 666.4
 343.33

C2
 0.05
 30.070
 706.5
 549.92

C3
 0.05
 44.097
 616.0
 666.06

n – C4
 0.03
 58.123
 527.9
 765.62

n – C5
 0.01
 72.150
 488.6
 845.8

C6
 0.01
 84.00
 453
 923

C7þ
 0.40
 215
 285
 1287
Solution

Step 1. Determine the parameters ai and bi for each component using
Equations 7-17 and 7-18:
Component
 ai
 bi
C1
 161,044.3
 0.4780514

C2
 493,582.7
 0.7225732

C3
 914,314.8
 1.004725

C4
 1,449,929
 1.292629

C5
 2,095,431
 1.609242

C6
 2,845,191
 1.945712

C7þ
 1.022348E7
 4.191958
Step 2. Calculate the mixture parameters am and bm from Equations 7-23
and 7-24 to give

am ¼
Xn
i¼1

xi
ffiffiffiffi
ai

p
" #2

¼ 2;591;967

and
bm ¼
Xn
i¼1

½xibi� ¼ 2:0526
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Step 3. Compute the coefficients A and B using Equations 7-21 and 7-22
to produce

A ¼ amp

R2T2:5
¼ 2;591;967ð4000Þ

10:732ð620Þ2:5 ¼ 9:406539

B ¼ bmp

RT
¼ 2:0526ð4000Þ

10:73ð620Þ ¼ 1:234049

Step 4. Solve Equation 7-20 for the largest positive root to yield
Z3 � Z2 þ 6:93845Z� 11:60813 ¼ 0
ZL ¼ 1:548126

Step 5. Calculate the apparent molecular weight of the crude oil:
Ma ¼
P

xiMi

Ma ¼ 100:2547

Step 6. Solve for the density of the crude oil:
rL ¼ pMa

ZLRT

rL ¼ ð4000Þð100:2547Þ
ð10:73Þð620Þð1:548120Þ ¼ 38:93 lb=ft3

Notice that liquid density, as calculated by Standing’s correlation, gives

a value of 46.23 lb/ft3.

Example 7-4

Calculate the density of a gas phase with the following composition at
4000 psia and 160�F. Use the Redlich-Kwong EOS.
Component
 yi
 M
 pc
 Tc
C1
 0.86
 16.043
 666.4
 343.33

C2
 0.05
 30.070
 706.5
 549.92

C3
 0.05
 44.097
 616.0
 666.06

C4
 0.02
 58.123
 527.9
 765.62

C5
 0.01
 72.150
 488.6
 845.8

C6
 0.005
 84.00
 453
 923

C7þ
 0.005
 215
 285
 1287
Solution

Step 1. Calculate am and bm using Equations 7-23 and 7-24 to give
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am ¼
Xn
i¼1

yi
ffiffiffiffi
ai

p
" #2

am ¼ 241;118

bm ¼Pbixi

bm ¼ 0:5701225
Step 2. Calculate the coefficients A and B by applying Equations 7-21
and 7-22 to yield

A ¼ amp

R2T2:5
¼ 241;118ð4000Þ

10:732ð620Þ2:5 ¼ 0:8750

B ¼ bmp

RT
¼ 0:5701225ð4000Þ

10:73ð620Þ ¼ 0:3428
Step 3. Solve Equation 7-20 for ZV to give

Z3 � Z2 þ 0:414688Z� 0:29995 ¼ 0
ZV ¼ 0:907
Step 4. Calculate the apparent density of the gas mixture:

Ma ¼
P

yiMi ¼ 20:89

rv ¼ pMa

ZvRT

rv ¼ ð4000Þð20:89Þ
ð10:73Þð620Þð0:907Þ ¼ 13:85 lb=ft3
7.3 SOAVE-REDLICH-KWONG EQUATION OF STATE
AND ITS MODIFICATIONS

One of the most significant milestones in the development of cubic
equations of state was the publication by Soave (1972) [54] of a modifica-
tion to the evaluation of parameter a in the attractive pressure term of
the Redlich-Kwong equation of state (Equation 7-15). Soave replaced
the term a/T0.5 in Equation 7-15 with a more generalized temperature-
dependent term, as denoted by (aa), to give
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p ¼ RT

V� b
� aa
VðVþ bÞ (7-25)

where a is a dimensionless factor that becomes unity at T ¼ Tc. At tem-

peratures other than critical temperature, the parameter a is defined by
the following expression:

a ¼ 1þm 1�
ffiffiffiffiffi
Tr

p� �h i2
(7-26)

The parameter m is correlated with the acentric factor to give
m ¼ 0:480þ 1:574o� 0:176o2 (7-27)
where Tr ¼ reduced temperature T/Tc

o ¼ acentric factor of the substance
T ¼ system temperature, �R

For any pure component, the constants a and b in Equation 7-25 are
found by imposing the classical van der Waals critical point constraints
(Equation 7-3) on Equation 7-25 and solving the resulting equations
to give

a ¼ Oa
R2T2

c

pc

(7-28)

b ¼ Ob
RTc

pc

(7-29)

where Oa and Ob are the Soave-Redlich-Kwong (SRK) dimensionless

pure component parameters and have the following values:

Oa ¼ 0:42747 and Ob ¼ 0:08664

Edmister and Lee (1986) [13] showed that the two parameters a and b

can be determined more conveniently by considering the critical
isotherm:

ðV� VcÞ3 ¼ V3 � ½3Vc�V2 þ ½3V2
c �V� V3

c ¼ 0 (7-30)

Equation 4-11 can also be put into a cubic form to give
V3 � RT

p

� �
V2 þ aa

p
� bRT

p
� b2

� �
V� ðaaÞb

p

� �
¼ 0 (7-31)

At the critical point, the coefficient a ¼ 1 and the preceding two expres-

sions are essentially identical. Equating the like terms gives

3Vc ¼ RTc

pc

(7-32)
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3V2
c ¼

a

pc

� bRTc

pc

� b2 (7-33)

and
V3
c ¼

ab

pc

(7-34)

Solving these equations for parameters a and b yields expressions for the

parameters as given by Equations 7-28 and 7-29.

Equation 7-32 indicates that the SRK equation of state gives a univer-
sal critical gas compressibility factor of 0.333. Combining Equation 6-3
with 7-29 gives

b ¼ 0:26Vc

Introducing the compressibility factor Z into Equation 6-2 by repla-

cing the molar volume V in the equation with (ZRT/p) and rearranging
gives

Z3 � Z2 þ ðA� B� B2ÞZ�AB ¼ 0 (7-35)

with
A ¼ ðaaÞp
ðRTÞ2 (7-36)

B ¼ bp

RT
(7-37)
where p ¼ system pressure, psia
T ¼ system temperature, �R
R ¼ 10.730 psia ft3/lb-mol-�R
Example 7-5

Rework Example 7-1 and solve for the density of the two phases by
using the SRK EOS.
Solution

Step 1. Determine the critical pressure, critical temperature, and acentric
factor to give

Tc ¼ 666:01�R
pc ¼ 616:3 psia
o ¼ 0:1524
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Step 2. Calculate the reduced temperature:

Tr ¼ 560=666:01 ¼ 0:8408

Step 3. Calculate the parameter m by applying Equation 7-27 to yield
m ¼ 0:480þ 1:574o� 0:176o2

m ¼ 0:480þ 1:574ð0:1524Þ � 0:176ð1:524Þ2 ¼ 0:7051

Step 4. Solve for the parameter a by using Equation 7-26 to give
a ¼ mþ 1�
ffiffiffiffiffi
Tr

p� �h i2
¼ 1:120518

Step 5. Compute the coefficients a and b by applying Equations 7-28 and

7-29 to yield

a ¼ 0:42747
10:732ð666:01Þ2

616:3
¼ 35;427:6

b ¼ 0:08664
10:73ð666:01Þ

616:3
¼ 1:00471

Step 6. Calculate the coefficients A and B from Equations 7-36 and 7-37

to produce

A ¼ ðaaÞp
R2T2

A ¼ ð35;427:6Þð1:120518Þ185
10:732ð560Þ2 ¼ 0:203365

B ¼ bp

RT

B ¼ ð1:00471Þð185Þ
ð10:73Þð560Þ ¼ 0:034658

Step 7. Solve Equation 7-35 for ZL and Zv:
Z3 � Z2 þ ðA� B� B2ÞZþAB ¼ 0
Z3 � Z2 þ ð0:203365� 0:034658� 0:0346582ÞZ

þð0:203365Þð0:034658Þ ¼ 0

Solving the above third-degree polynomial gives
ZL ¼ 0:06729

ZV ¼ 0:80212
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Step 8. Calculate the gas and liquid density to give

r ¼ pM

ZRT

rv ¼ ð185Þð44:0Þ
ð0:802121Þð10:73Þð560Þ ¼ 1:6887 lb=ft3

rL ¼ ð185Þð44:0Þ
ð0:06729Þð10:73Þð560Þ ¼ 20:13 lb=ft3

To use Equation 7-35 with mixtures, mixing rules are required to

determine the terms (aa) and b for the mixtures. Soave adopted the fol-
lowing mixing rules:

ðaaÞm ¼
X
i

X
j

xixj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p ð1� kijÞ
h i

(7-38)

bm ¼
X
i

xibi½ � (7-39)

with
A ¼ ðaaÞmp
ðRTÞ2 (7-40)

and
B ¼ bmp

RT
(7-41)

The parameter kij is an empirically determined correction factor (called the

binary interaction coefficient) that is designed to characterize any binary sys-
tem formed by component i and component j in the hydrocarbon mixture.

These binary interaction coefficients are used to model the intermolec-
ular interaction through empirical adjustment of the (aa)m term as repre-
sented mathematically by Equation 7-38. They are dependent on the
difference in molecular size of components in a binary system, and they
are characterized by the following properties:

• The interaction between hydrocarbon components increases as the
relative difference between their molecular weights increases:

ki;jþ1 > ki;j

• Hydrocarbon components with the same molecular weight have a

binary interaction coefficient of 0:

ki;i ¼ 0
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• The binary interaction coefficient matrix is symmetric:

kj;i ¼ ki;j

Slot-Peterson (1987) [53] and Vidal and Daubert (1978) [62] presented

a theoretical background to the meaning of the interaction coefficient
and techniques for determining their values. Grabowski and Daubert
(1978) [17] and Soave (1972) [54] suggested that no binary interaction
coefficients are required for hydrocarbon systems. However, with
nonhydrocarbons present, binary interaction parameters can greatly
improve the volumetric and phase behavior predictions of the mixture
by the SRK EOS.

In solving Equation 7-30 for the compressibility factor of the liquid
phase, the composition of the liquid xi is used to calculate the coefficients
A and B of Equations 7-40 and 7-41 through the use of the mixing rules
as described by Equations 7-38 and 7-39. For determining the compress-
ibility factor of the gas phase Zv, the previously outlined procedure is
used with composition of the gas phase yi replacing xi.

Example 7-6

A two-phase hydrocarbon system exists in equilibrium at 4000 psia
and 160�F. The system has the following composition:
Component
 xi
 yi
C1
 0.45
 0.86

C2
 0.05
 0.05

C3
 0.05
 0.05

C4
 0.03
 0.02

C5
 0.01
 0.01

C6
 0.01
 0.005

C7þ
 0.40
 0.005
The heptanes-plus fraction has the following properties:

M ¼ 215
pc ¼ 285 psia
Tc ¼ 700�F
o ¼ 0:52

Assuming kij ¼ 0, calculate the density of each phase using the SRK EOS.
Solution

Step 1. Calculate the parameters a, a, and b by applying Equations 7-21,
7-28, and 7-29:
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Component
 ai
 ai
 bi
C1
 0.6869
 8,689.3
 0.4780

C2
 0.9248
 21,040.8
 0.7725

C3
 1.0502
 35,422.1
 1.0046

C4
 1.1616
 52,390.3
 1.2925

C5
 1.2639
 72,041.7
 1.6091

C6
 1.3547
 94,108.4
 1.9455

C7þ
 1.7859
 232,367.9
 3.7838
Step 2. Calculate the mixture parameters (aa)m and bm for the gas phase
and liquid phase by applying Equations 7-38 and 7-39 to give

• For the gas phase using yi.

ðaaÞm ¼
X
i

X
j

yiyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p
1� kij
	 
h i

¼ 9219:3

bm ¼
X
i

½yibi� ¼ 0:5680

• For the liquid phase using xi.
ðaaÞm ¼
X
i

X
j

xixj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p
1� kij
	 
h i

¼ 104;362:9

bm ¼
X
i

½xibi� ¼ 0:1:8893

Step 3. Calculate the coefficients A and B for each phase by applying

Equations 7-40 and 7-41 to yield

• For the gas phase.

A ¼ ðaaÞmp
R2T2

¼ ð9219:3Þð4000Þ
ð10:73Þ2ð620Þ2 ¼ 0:8332

B ¼ bmp

RT
¼ ð0:5680Þð4000Þ

ð10:73Þð620Þ ¼ 0:3415

• For the liquid phase.
A ¼ ðaaÞmp
R2T2

¼ ð104;362:9Þð4000Þ
ð10:73Þ2ð620Þ2 ¼ 9:4324

B ¼ bmp

RT
¼ ð1:8893Þð4000Þ

ð10:73Þð620Þ ¼ 1:136

Step 4. Solve Equation 7-35 for the compressibility factor of the gas

phase to produce
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Z3 � Z2 þ ðA� B� B2ÞZþAB ¼ 0
Z3 � Z2 þ ð0:8332� 0:3415� 0:34152ÞZþ ð0:8332Þð0:3415Þ ¼ 0

Solving this polynomial for the largest root gives
Zv ¼ 0:9267

Step 5. Solve Equation 7-35 for the compressibility factor of the liquid

phase to produce

Z3 � Z2 þ ðA� B� B2ÞZþAB ¼ 0
Z3 � Z2 þ ð9:4324� 1:136� 1:1362ÞZþ ð9:4324Þð1:136Þ ¼ 0

Solving this polynomial for the smallest root gives
ZL ¼ 1:4121

Step 6. Calculate the apparent molecular weight of the gas phase and

liquid phase from their composition to yield

• For the gas phase.

Ma ¼
X

yiMi ¼ 20:89

• For the liquid phase.
Ma ¼
X

xiMi ¼ 100:25

Step 7. Calculate the density of each phase:
r ¼ pMa

RTZ

• For the gas phase.

rv ¼ ð4000Þð20:89Þ
ð10:73Þð620Þð0:9267Þ ¼ 13:556 lb=ft3
• For the liquid phase.

rL ¼ ð4000Þð100:25Þ
ð10:73Þð620Þð1:4121Þ ¼ 42:68 lb=ft3
It is appropriate at this time to introduce and define the concept of the
fugacity and the fugacity coefficient of the component. The fugacity f is a
measure of the molar Gibbs energy of a real gas. It is evident from the
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definition that the fugacity has the units of pressure; in fact, the fugacity
may be looked on as a vapor pressure modified to correctly represent the
escaping tendency of the molecules from one phase into the other. In
mathematical form, the fugacity of a pure component is defined by the
following expression:

f ¼ p exp

Z p

o

Z� 1

p

� �
dp

� �
(7-42)

where f ¼ fugacity, psia

p ¼ pressure, psia
Z ¼ compressibility factor

The ratio of the fugacity to the pressure, i.e., f/p, is called the fugacity
coefficient F and is calculated from Equation 7-42 as

f

p
¼ F ¼ exp

Z p

o

Z� 1

p

� �
dp

� �

Soave applied this generalized thermodynamic relationship to Equation

7-25 to determine the fugacity coefficient of a pure component:

ln
f

p

� �
¼ lnðFÞ ¼ Z� 1� lnðZ� BÞ �A

B
ln

Zþ B

Z

� �
(7-43)

In practical petroleum engineering applications, we are concerned

with the phase behavior of the hydrocarbon liquid mixture, which, at a
specified pressure and temperature, is in equilibrium with a hydrocar-
bon gas mixture at the same pressure and temperature.

The component fugacity in each phase is introduced to develop a
criterion for thermodynamic equilibrium. Physically, the fugacity of
a component i in one phase with respect to the fugacity of the compo-
nent in a second phase is a measure of the potential for transfer of the
component between phases. The phase with a lower component
fugacity accepts the component from the phase with a higher compo-
nent fugacity. Equal fugacities of a component in the two phases
result in a zero net transfer. A zero transfer for all components implies
a hydrocarbon system that is in thermodynamic equilibrium. There-
fore, the condition of the thermodynamic equilibrium can be
expressed mathematically by

fvi ¼ fLi 1 � i � n (7-44)

where fv¼ fugacity of component i in the gas phase, psi
i

fLi ¼ fugacity of component i in the liquid phase, psi
n ¼ number of components in the system
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The fugacity coefficient of component i in a hydrocarbon liquid mix-
ture or hydrocarbon gas mixture is a function of

• System pressure.
• Mole fraction of the component.
• Fugacity of the component.

For a component i in the gas phase, the fugacity coefficient is defined as

Fv
i ¼ f vi

yip
(7-45)

For a component i in the liquid phase, the fugacity coefficient is
FL
i ¼ fLi

xip
(7-46)

where Fv ¼ fugacity coefficient of component i in the vapor phase
i

FL
i ¼ fugacity coefficient of component i in the liquid phase

It is clear that, at equilibrium fLi ¼ f vi , the equilibrium ratio Ki as previ-
ously defined by Equation 1-1, i.e., Ki ¼ yi/xi, can be redefined in terms
of the fugacity of components as

Ki ¼
h
fLi =ðxipÞ

i
h
fvi =ðyipÞ

i ¼ FL
i

Fv
i

(7-47)

Reid et al. (1977) [46] defined the fugacity coefficient of component i in

a hydrocarbon mixture by the following generalized thermodynamic
relationship:

lnðFiÞ ¼ 1

RT

� � Z 1

v

@p

@ni
� RT

V

� �
dV

� �
� lnðZÞ (7-48)
where V ¼ total volume of n models of the mixture
ni ¼ number of moles of component i
Z ¼ compressibility factor of the hydrocarbon mixture

By combining this thermodynamic definition of the fugacity with the
SRK EOS (Equation 7-25), Soave proposed the following expression for
the fugacity coefficient of component i in the liquid phase:

ln FL
i

	 
 ¼ biðZL � 1Þ
bm

� ln ZL � B
	 
� A

B

� �
2Ci

ðaaÞm
� bi
bm

� �
ln 1þ B

ZL

� �
(7-49)

where Xh i

Ci ¼

j

xj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p
1� kij
	 


(7-50)
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ðaaÞm ¼
X
i

X
j

xixj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p
1� kij
	 
h i

(7-51)

Equation 7-49 is also used to determine the fugacity coefficient of

component i in the gas phase Fv

i by using the composition of the gas
phase yi in calculating A, B, Zv, and other composition-dependent terms,
or

ln Fv
i

	 
 ¼ biðZv � 1Þ
bm

� lnðZv � BÞ � A

B

� �
2Ci

ðaaÞm
� bi
bm

� �
ln 1þ B

Zv

� �

where
Ci ¼
P

j yj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p
1� kij
	 
h i

ðaaÞm ¼Pi

P
j yiyj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p
1� kij
	 
h i

7.4 MODIFICATIONS OF THE SRK EQUATION OF STATE

To improve the pure component vapor pressure predictions by the
SRK equation of state, Grabowski and Daubert (1978) [17] proposed a
new expression for calculating parameter m of Equation 7-27. The pro-
posed relationship originated from analyses of extensive experimental
data for pure hydrocarbons. The relationship has the following form:

m ¼ 0:48508þ 1:55171o� 0:15613o2 (7-52)

Sim and Daubert (1980) [52] pointed out that, because the coefficients

of Equation 7-52 were determined by analyzing vapor pressure data of
low-molecular-weight hydrocarbons, it is unlikely that Equation 7-52
will suffice for high-molecular-weight petroleum fractions. Realizing
that the acentric factors for the heavy petroleum fractions are calculated
from an equation such as the Edmister correlation or the Lee and Kessler
(1975) correlation, the authors proposed the following expressions for
determining the parameter m:

• If the acentric factor is determined using the Edmister correlation,
then

m ¼ 0:431þ 1:57oi � 0:161o2
i (7-53)
• If the acentric factor is determined using the Lee and Kessler
correction, then

m ¼ 0:315þ 1:60oi � 0:166o2
i (7-54)

Elliot and Daubert (1985) [14] stated that the optimal binary interac-

tion coefficient kij would minimize the error in the representation of all
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thermodynamic properties of a mixture. Properties of particular interest
in phase equilibrium calculations include bubble-point pressure, dew-
point pressure, and equilibrium ratios. The authors proposed a set of rela-
tionships for determining interaction coefficients for asymmetric mixtures2

that contain methane, N2, CO2, and H2S. Referring to the principal compo-
nent as i and the other fraction as j, Elliot and Daubert proposed the fol-
lowing expressions:

• For N2 systems.

kij ¼ 0:107089þ 2:9776k1ij (7-55)

• For CO systems.
2

kij ¼ 0:08058� 0:77215k1ij � 1:8404 k1ij
� �2

(7-56)

• For H S systems.
2

kij ¼ 0:07654 þ 0:017921k1ij (7-57)

• For methane systems with compounds of 10 carbons or more.
kij ¼ 0:17985� 2:6958k1ij � 10:853ðk1ij Þ2 (7-58)

where
k1ij ¼ �ðei � ejÞ2
2eiej

(7-59)

and
ei ¼ 0:480453
ffiffiffiffi
ai

p
bi

(7-60)
The two parameters ai and bi in Equation 7-60 were previously
defined by Equations 7-28 and 7-29.

The major drawback in the SRK EOS is that the critical compressibility
factor takes on the unrealistic universal critical compressibility of 0.333
for all substances. Consequently, the molar volumes are typically over-
estimated and, hence, densities are underestimated.
2An asymmetric mixture is defined as one in which two of the components are

considerably different in their chemical behavior. Mixtures of methane with

hydrocarbons of 10 or more carbon atoms can be considered asymmetric. Mixtures

containing gases such as nitrogen or hydrogen are asymmetric.
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Peneloux et al. (1982) [40] developed a procedure for improving the
volumetric predictions of the SRK EOS by introducing a volume correc-
tion parameter ci into the equation. This third parameter does not change
the vapor-liquid equilibrium conditions determined by the unmodified
SRK equation, i.e., the equilibrium ratio Ki, but it modifies the liquid
and gas volumes. The proposed methodology, known as the volume
translation method, uses the following expressions:

VL
corr ¼ VL �

X
i

ðxiciÞ (7-61)

Vv
corr ¼ Vv �

X
i

ðyiciÞ (7-62)
where VL ¼ uncorrected liquid molar volume, i.e., VL ¼ ZLRT/p,
ft3/mol

Vv ¼ uncorrected gas molar volume Vv ¼ ZvRT/p, ft3/mol
VL

corr ¼ corrected liquid molar volume, ft3/mol
Vv

corr ¼ corrected gas molar volume, ft3/mol
xi ¼ mole fraction of component i in the liquid phase
yi ¼ mole fraction of component i in the gas phase

The authors proposed six schemes for calculating the correction factor
ci for each component. For petroleum fluids and heavy hydrocarbons,
Peneloux and coworkers suggested that the best correlating parameter
for the correction factor ci is the Rackett compressibility factor ZRA.
The correction factor is then defined mathematically by the following
relationship:

ci ¼ 4:43797878ð0:29441 � ZRAÞTci=pci (7-63)
where ci ¼ correction factor for component i, ft3/lb-mol
Tci ¼ critical temperature of component i, �R
pci ¼ critical pressure of component i, psia

The parameter ZRA is a unique constant for each compound. The
values of ZRA are in general not much different from those of the critical
compressibility factors Zc. If their values are not available, Peneloux
et al. (1982) [40] proposed the following correlation for calculating ci:

ci ¼ ð0:0115831168þ 0:411844152oÞ Tci

pci

� �
(7-64)

where oi ¼ acentric factor of component i.
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Example 7-7

Rework Example 7-6 by incorporating the Peneloux volume correc-
tion approach in the solution. Key information from Example 7-6
includes

• For gas: Zv ¼ 0.9267, Ma ¼ 20.89.
• For liquid: ZL ¼ 1.4121, Ma ¼ 100.25.
• T ¼ 160�F, p ¼ 4000 psi.
Solution

Step 1. Calculate the correction factor ci using Equation 7-63:
Component
 ci
 xi
 cixi
 yi
 ciyi
C1
 0.00839
 0.45
 0.003776
 0.86
 0.00722

C2
 0.03807
 0.05
 0.001903
 0.05
 0.00190

C3
 0.07729
 0.05
 0.003861
 0.05
 0.00386

C4
 0.1265
 0.03
 0.00379
 0.02
 0.00253

C5
 0.19897
 0.01
 0.001989
 0.01
 0.00198

C6
 0.2791
 0.01
 0.00279
 0.005
 0.00139

C7þ
 0.91881
 0.40
 0.36752
 0.005
 0.00459
sum
 0.38564
 0.02349
Step 2. Calculate the uncorrected volume of the gas and liquid phase
using the compressibility factors as calculated in Example 7-6:

Vv ¼ ð10:73Þð620Þð0:9267Þ
4000

¼ 1:54119 ft3=mol

VL ¼ ð10:73Þð620Þð1:4121Þ
4000

¼ 2:3485 ft3=mol

Step 3. Calculate the corrected gas and liquid volumes by applying

Equations 7-61 and 7-62:

VL
corr ¼ VL�

X
i

ðxiciÞ ¼ 2:3485� 0:38564 ¼ 1:962927 ft3=mol

Vv
corr ¼ Vv �

X
i

ðyiciÞ ¼ 1:54119� 0:02349 ¼ 1:5177 ft3=mol

Step 4. Calculate the corrected compressibility factors:
Zv
corr ¼

ð4000Þð1:5177Þ
ð10:73Þð620Þ ¼ 0:91254

ZL
corr ¼

ð4000Þð1:962927Þ
ð10:73Þð620Þ ¼ 1:18025
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Step 5. Determine the corrected densities of both phases:

r ¼ pMa

RTZ

rv ¼ ð4000Þð20:89Þ
ð10:73Þð620Þð0:91254Þ ¼ 13:767 lb=ft3

rL ¼ ð4000Þð100:25Þ
ð10:73Þð620Þð1:18025Þ ¼ 51:07 lb=ft3
7.5 PENG-ROBINSON EQUATION OF STATE AND ITS
MODIFICATIONS

Peng and Robinson (1976a) [41] conducted a comprehensive study to
evaluate the use of the SRK equation of state for predicting the behavior
of naturally occurring hydrocarbon systems. They illustrated the need
for an improvement in the ability of the equation of state to predict liq-
uid densities and other fluid properties, particularly in the vicinity of
the critical region. As a basis for creating an improved model, Peng
and Robinson proposed the following expression:

p ¼ RT

V� b
� aa

ðVþ bÞ2 � cb2

where a, b, and a have the same significance as they have in the SRK

model, and the parameter c is a whole number optimized by analyzing
the values of the two terms Zc and b/Vc as obtained from the equation.
It is generally accepted that Zc should be close to 0.28 and that b/Vc

should be approximately 0.26. An optimized value of c ¼ 2 gave Zc ¼
0.307 and (b/Vc) ¼ 0.253. Based on this value of c, Peng and Robinson
proposed the following equation of state:

p ¼ RT

V� b
� aa
VðVþ bÞ þ bðV� bÞ (7-65)

Imposing the classical critical point conditions (Equation 7-3) on Equa-

tion 7-65 and solving for parameters a and b yields

a ¼ Oa
R2T2

c

pc

(7-66)

b ¼ Ob
RTc

pc

(7-67)

where Oa ¼ 0.45724 and Ob ¼ 0.07780. This equation predicts a universal

critical gas compressibility factor Zc of 0.307 compared to 0.333 for the
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SRK model. Peng and Robinson also adopted Soave’s approach for cal-
culating the temperature-dependent parameter a:

a ¼ 1þm 1�
ffiffiffiffiffi
Tr

p� �h i2
(7-68)

where
m ¼ 0:3796þ 1:54226o� 0:2699o2
Peng and Robinson (1978) proposed the following modified expression
for m that is recommended for heavier components with acentric values
o > 0.49:

m ¼ 0:379642þ 1:48503o� 0:1644o2 þ 0:016667o3 (7-69)

Rearranging Equation 7-65 into the compressibility factor form gives
Z3 þ ðB� 1ÞZ2 þ ðA� 3B2 � 2BÞZ� ðAB� B2 � B3Þ ¼ 0 (7-70)

where A and B are given by Equations 7-36 and 7-37 for pure compo-

nents and by Equations 7-40 and 7-41 for mixtures.
Example 7-8

Using the composition given in Example 7-6, calculate the density of
the gas phase and liquid phase using the Peng-Robinson EOS. Assume
kij ¼ 0.
Solution

Step 1. Calculate the mixture parameters (aa)m and bm for the gas and
liquid phase, to give

• For the gas phase.

ðaaÞm ¼
X
i

X
j

yiyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p
1� kij
	 
h i

¼ 10;423:54

bm ¼
X
i

ðyibiÞ ¼ 0:862528

• For the liquid phase.
ðaaÞm ¼
X
i

X
j

xixj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiajaiaj

p
1� kij
	 
h i

¼ 107;325:4

bm ¼
X

ðyibiÞ ¼ 1:69543
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Step 2. Calculate the coefficients A and B, to give

• For the gas phase.

A ¼ ðaaÞmp
R2T2

¼ ð10;423:54Þð4000Þ
ð10:73Þ2ð620Þ2 ¼ 0:94209

B ¼ bmp

RT
¼ ð0:862528Þð4000Þ

ð10:73Þð620Þ ¼ 0:30669

• For the liquid phase.
A ¼ ðaaÞmp
R2T2

¼ ð107;325:4Þð4000Þ
ð10:73Þ2ð620Þ2 ¼ 9:700183

B ¼ bmp

RT
¼ ð1:636543Þð4000Þ

ð10:73Þð620Þ ¼ 1:020078

Step 3. Solve Equation 7-70 for the compressibility factor of the gas

phase and the liquid phase to give

Z3 þ ðB� 1ÞZ2 þ ðA� 3B2 � 2BÞZ� ðAB� B2 � B3Þ ¼ 0

• For the gas phase. Substituting for A ¼ 0.94209 and B ¼ 0.30669 in
the above equation gives

Zv ¼ 0:8625

• For the liquid phase. Substituting for A ¼ 9.700183 and

B ¼ 1.020078 in the above equation gives

ZL ¼ 1:2645

Step 4. Calculate the density of both phases:
rv ¼ ð4;000Þð20:89Þ
ð10:73Þð620Þð0:8625Þ ¼ 14:566 lb=ft3

rL ¼ ð4;000Þð100:25Þ
ð10:73Þð620Þð1:2645Þ ¼ 47:67 lb=ft3

Applying the thermodynamic relationship, as given by Equation 7-43,

to Equation 7-66 yields the following expression for the fugacity of a
pure component:
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ln
f

p

� �
¼ lnðFÞ ¼ Z� 1� lnðZ� BÞ � A

2
ffiffiffi
2

p
B

� �
ln

Zþ 1þ ffiffiffi
2

p	 

B

Zþ 1� ffiffiffi
2

p	 

B

" #

(7-71)

The fugacity coefficient of component i in a hydrocarbon liquid mixture

is calculated from the following expression:

ln
fL

xip

0
@

1
A ¼ ln FL

i

	 
 ¼ biðZL � 1Þ
bm

� ln ZL � B
	 


� A

2
ffiffiffi
2

p
B

2
4

3
5 2Ci

ðaaÞm
� bi
bm

2
4

3
5 ln

ZL þ 1þ ffiffiffi
2

p	 

B

ZL � 1� ffiffiffi
2

p	 

B

2
4

3
5

(7-72)

where the mixture parameters bm, B, A, Ci, and (aa)m are as defined

previously.

Equation 7-72 is also used to determine the fugacity coefficient of any
component in the gas phase by replacing the composition of the liquid
phase xi with the composition of the gas phase yi in calculating the com-
position-dependent terms of the equation, or

ln
fv

yip

0
@

1
A ¼ ln Fv

i

	 
 ¼ biðZv � 1Þ
bm

� lnðZv � BÞ

� A

2
ffiffiffi
2

p
B

2
4

3
5 2Ci

ðaaÞm
� bi
bm

2
4

3
5 ln

Zv þ 1þ ffiffiffi
2

p	 

B

Zv � 1� ffiffiffi
2

p	 

B

2
4

3
5

The set of binary interaction coefficients kij in Table 7-1 is traditionally

used when predicting the volumetric behavior of a hydrocarbon mixture
with the Peng and Robinson (PR) equation of state.

To improve the predictive capability of the PR EOS when describ-
ing mixtures containing N2, CO2, and CH4, Nikos et al. (1986) [37]
proposed a generalized correlation for generating the binary interac-
tion coefficient kij. The authors correlated these coefficients with sys-
tem pressure, temperature, and the acentric factor. These generalized
correlations were originated with all the binary experimental data
available in the literature. The authors proposed the following
generalized form for kij:

kij ¼ d2T2
rj þ d1Trj þ d0 (7-73)

where i refers to the principal components N2, CO2, or CH4 and j refers

to the other hydrocarbon components of the binary. The acentric factor-
dependent coefficients d0, d1, and d2 are determined for each set of bin-
aries by applying the following expressions:



TABLE 7-1 Binary Interaction Coefficients* kij for the peng and Robinson EOS

CO2 N2 H2S C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10

CO2 0 0 0.135 0.105 0.130 0.125 0.120 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115

N2 0 0.130 0.025 0.010 0.090 0.095 0.095 0.100 0.100 0.110 0.115 0.120 0.120 0.125

H2S 0 0.070 0.085 0.080 0.075 0.075 0.070 0.070 0.070 0.060 0.060 0.060 0.055

C1 0 0.005 0.010 0.035 0.025 0.050 0.030 0.030 0.035 0.040 0.040 0.045

C2 0 0.005 0.005 0.010 0.020 0.020 0.020 0.020 0.020 0.020 0.020

C3 0 0.000 0.000 0.015 0.015 0.010 0.005 0.005 0.005 0.005

i – C4 0 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

n – C4 0 0.005 0.005 0.005 0.005 0.005 0.005 0.005

i – C5 0 0.000 0.000 0.000 0.000 0.000 0.000

n – C5 0 0.000 0.000 0.000 0.000 0.000

C6 0 0.000 0.000 0.000 0.000

C7 0 0.000 0.000 0.000

C8 0 0.000 0.000

C9 0 0.000

C10 0

*Notice that kij ¼ kji.
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• For nitrogen-hydrocarbons.

d0 ¼ 0:1751787� 0:7043 logðojÞ � 0:862066 logðoiÞ
� �2

(7-74)

d1 ¼ �0:584474þ 1:328 logðojÞ þ 2:035767 logðoiÞ
� �2

(7-75)

and
d2 ¼ 2:257079þ 7:869765 logðojÞ þ 13:50466 logðoiÞ
� �2

þ 8:3864 logðoÞ� �3 (7-76)
They also suggested the following pressure correction:

kij ¼ kijð1:04� 4:2� 10�5pÞ (7-77)
where p is the pressure in pounds per square inch.
• For methane-hydrocarbons.

d0 ¼ �0:01664� 0:37283 logðojÞ þ 1:31757 logðoiÞ
� �2

(7-78)

d1 ¼ 0:48147þ 3:35342 logðojÞ � 1:0783 logðoiÞ
� �2

(7-79)

and
d2 ¼ �0:4114� 3:5072 logðojÞ � 1:0783 logðoiÞ
� �2

(7-80)
• For CO2-hydrocarbons.

d0 ¼ 0:4025636þ 0:1748927 logðojÞ (7-81)

d1 ¼ �0:94812� 0:6009864 logðojÞ (7-82)

and
d2 ¼ 0:741843368þ 0:441775 logðojÞ (7-83)
For the CO2 interaction parameters, the following pressure correction
is suggested:

k
0
ij ¼ kijð1:044269 � 4:375� 10�5pÞ (7-84)

Stryjek and Vera (1986) [59] proposed an improvement in the repro-

duction of vapor pressures of pure components by the PR EOS in the
reduced temperature range from 0.7 to 1.0 by replacing the m term in
Equation 7-72 with the following expression:

m0 ¼ 0:378893 þ 1:4897153� 0:17131848o2 þ 0:0196554o3 (7-85)



917.5 PENG-ROBINSON EQUATION OF STATE AND ITS MODIFICATIONS
To reproduce vapor pressures at reduced temperatures below 0.7, Stry-
jek and Vera further modified the m parameter in the PR equation by
introducing an adjustable parameter m1 characteristic of each compound
to Equation 7-72. They proposed the following generalized relationship
for the parameter m:

m ¼ m0 þ m1 1þ
ffiffiffiffiffi
Tr

p� �
ð0:7� TrÞ

h i
(7-86)
where Tr ¼ reduced temperature of the pure component
m0 ¼ defined by Equation 7-84
m1 ¼ adjustable parameter

For all components with a reduced temperature above 0.7, Stryjek and
Vera recommended setting m1 ¼ 0. For components with a reduced tem-
perature greater than 0.7, the optimum values of m1 for compounds of
industrial interest follow:

Parameter m1 of Pure Compounds
Compound
 m1
 Compound
 m1
Nitrogen
 0.01996
 Nonane
 0.04104

Carbon dioxide
 0.04285
 Decane
 0.04510

Water
 �0.06635
 Undecane
 0.02919

Methane
 �0.00159
 Dodecane
 0.05426

Ethane
 0.02669
 Tridecane
 0.04157

Propane
 0.03136
 Tetradecane
 0.02686

Butane
 0.03443
 Pentadecane
 0.01892

Pentane
 0.03946
 Hexadecane
 0.02665

Hexane
 0.05104
 Heptadecane
 0.04048

Heptane
 0.04648
 Octadecane
 0.08291

Octane
 0.04464
Due to the totally empirical nature of the parameter m1, Stryjek and
Vera could not find a generalized correlation for m1 in terms of pure
component parameters. They pointed out that the values of m1 just given
should be used without changes.

Jhaveri and Youngren (1984) [23] pointed out that, when applying the
Peng-Robinson equation of state to reservoir fluids, the error associatedwith
the equation in thepredictionof gas-phaseZ factors ranged from3 to 5%, and
theerror in the liquiddensitypredictions ranged from6to12%.Following the
procedure proposed by Peneloux and coworkers (see the SRK EOS), Jhaveri
and Youngren introduced the volume correction parameter ci to the PR
EOS. This third parameter has the same units as the second parameter bi of
the unmodified PR equation and is defined by the following relationship:

ci ¼ Sibi (7-87)
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where Si ¼ dimensionless parameter, called the shift parameter
bi ¼ Peng-Robinson covolume as given by Equation 7-67

The volume correction parameter ci does not change the vapor-liquid
equilibrium conditions, i.e., equilibrium ratio Ki. The corrected hydrocar-
bon phase volumes are given by the following expressions:

VL
corr ¼ VL �

X
i¼1

ðxi ciÞ

Vv
corr ¼ Vv �

X
i¼1

ðyi ciÞ

where VL, Vv ¼ volumes of the liquid phase and gas phase as calculated

by the unmodified PR EOS, ft3/mol

VL
corr, V

v
corr ¼ corrected volumes of the liquid and gas phase

Whitson and Brule (2000) [64] point out that the volume translation
(correction) concept can be applied to any two-constant cubic equation,
thereby eliminating the volumetric deficiency associated with applica-
tion of EOS. Whitson and Brule extended the work of Jhaveri and
Youngren (1984) and proposed the following shift parameters for
selected pure components:
Shift Parameters for the PR EOS and SRK EOS
Compound
 PR EOS
 SRK EOS
N2
 �0.1927
 �0.0079

CO2
 �0.0817
 0.0833

H2S
 �0.1288
 0.0466

C1
 �0.1595
 0.0234

C2
 �0.1134
 0.0605

C3
 �0.0863
 0.0825

i – C4
 �0.0844
 0.0830

n – C4
 �0.0675
 0.0975

i – C5
 �0.0608
 0.1022

n – C5
 �0.0390
 0.1209

n – C6
 �0.0080
 0.1467

n – C7
 0.0033
 0.1554

n – C8
 0.0314
 0.1794

n – C9
 0.0408
 0.1868

n – C10
 0.0655
 0.2080
Jhaveri and Youngren (1984) proposed the following expression for
calculating the shift parameter for the C7þ:

S ¼ 1� d

ðMÞe

where M ¼ molecular weight of the heptanes-plus fraction

d, e ¼ positive correlation coefficients
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The authors proposed that, in the absence of the experimental infor-
mation needed for calculating e and d, the power coefficient e can be
set equal to 0.2051 and the coefficient d adjusted to match the C7þ den-
sity, with the values of d ranging from 2.2 to 3.2. In general, the follow-
ing values may be used for C7þ fractions:
Hydrocarbon Family
 d
 e
Paraffins
 2.258
 0.1823

Naphthenes
 3.044
 0.2324

Aromatics
 2.516
 0.2008
To use the Peng-Robinson equation of state to predict the phase and
volumetric behavior of mixtures, one must be able to provide the critical
pressure, the critical temperature, and the acentric factor for each com-
ponent in the mixture. For pure compounds, the required properties
are well defined and known. Nearly all naturally occurring petroleum
fluids contain a quantity of heavy fractions that are not well defined.
These heavy fractions are often lumped together as the heptanes-plus
fraction. The problem of how to adequately characterize the C7þ frac-
tions in terms of their critical properties and acentric factors has been
long recognized in the petroleum industry. Changing the characteriza-
tion of C7þ fractions present in even small amounts can have a profound
effect on the PVT properties and the phase equilibria of a hydrocarbon
system as predicted by the Peng-Robinson equation of state.

The usual approach for such situations is to “tune” the parameters in
the EOS in an attempt to improve the accuracy of prediction. During the
tuning process, the critical properties of the heptanes-plus fraction and
the binary interaction coefficients are adjusted to obtain a reasonable
match with experimental data available on the hydrocarbon mixture.

Recognizing that the inadequacy of the predictive capability of the PR
EOS lies with the improper procedure for calculating the parameters a,
b, and a of the equation for the C7þ fraction, Ahmed (1991) [1] devised
an approach for determining these parameters from the following two
readily measured physical properties of C7þ: molecular weight, M7þ,
and specific gravity, g7þ.

The approach is based on generating 49 density values for the C7þ by
applying the Riazi-Daubert correlation. These values were subsequently
subjected to 10 temperature and 10 pressure values in the range of 60 to
300�F and 14.7 to 7000 psia, respectively. The Peng-Robinson EOS was
then applied to match the 4900 generated density values by optimizing
the parameters a, b, and a using a nonlinear regression model. The
optimized parameters for the heptanes-plus fraction are given by the fol-
lowing expressions:
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For the parameter a of C7þ,

a ¼ 1þm 1�
ffiffiffiffiffiffiffiffi
520

T

r !" #2
(7-88)

with m defined by
m ¼ D

A0 þA1D
þA2M7þ þA3M

2
7þ þ A4

M7þ
þA5g7þ

þ A6g27þ þ A7

g7þ

(7-89)

with the parameter D defined by the ratio of the molecular weight to the

specific gravity of the heptanes-plus fraction, or

D ¼ M7þ
g7þ
where M7þ ¼ molecular weight of C7þ
g7þ ¼ specific gravity of C7þ

A0 – A7 ¼ coefficients as given in Table 7-2

For the parameters a and b of C7þ, the following generalized correla-
tion is proposed:

a or b ¼
X3
i¼0

AiD
i

	 
" #
þA4

D

X6
i¼5

Aigi�4
7þ

	 
" #
þ A7

g7þ
(7-90)

The coefficients A0 through A7 are included in Table 7-2.

To further improve the predictive capability of the Peng-Robinson

EOS, the author optimized coefficients a, b, and m for nitrogen, CO2,
and methane by matching 100 Z-factor values for each of these compo-
nents. Using a nonlinear regression model, the optimized values given
in Table 7.2 are recommended.

To provide the modified PR EOS with a consistent procedure for
determining the binary interaction coefficient kij, the following computa-
tional steps are proposed.

Step 1. Calculate the binary interaction coefficient between methane and
the heptanes-plus fraction from

kc1�c7þ ¼ 0:00189T � 1:167059
where the temperature T is in �R.



TABLE 7-2 Coefficients for Equations 7-89 and 7-90

Coefficient a b m

A0 �2.433525 � 107 �6.8453198 �36.91776

A1 8.3201587 � 103 1.730243 � 10�2 �5.2393763 � 10�2

A2 �0.18444102 � 102 �6.2055064 � 10�6 1.7316235 � 10�2

A3 3.6003101 � 10�2 9.0910383 � 10�9 �1.3743308 � 10�5

A4 3.4992796 � 107 13.378898 12.718844

A5 2.838756 � 107 7.9492922 10.246122

A6 �1.1325365 � 107 �3.1779077 �7.6697942

A7 6.418828 � 106 1.7190311 �2.6078099

Component a b m in Eq. 7-88

CO2 1.499914 � 104 0.41503575 �0.73605717

N2 4.5693589 � 103 0.4682582 �0.97962859

C1 7.709708 � 103 0.46749727 �0.549765

957.5 PENG-ROBINSON EQUATION OF STATE AND ITS MODIFICATIONS
Step 2. Set

kCO2�N2
¼ 0:12

kCO2�hydrocarbon ¼ 0:10
kN2�hydrocarbon ¼ 0:10
Step 3. Adopting the procedure recommended by Petersen (1989),
calculate the binary interaction coefficients between components
heavier than methane (e.g., C2, C3) and the heptanes-plus fraction
from

kCn�C7þ¼ 0:8kCðn�1Þ�C7þ

where n is the number of carbon atoms of component Cn; e.g., the binary

interaction coefficient between C2 and C7þ is

kC2�C7þ¼ 0:8kC1�C7þ
and the binary interaction coefficient between C3 and C7þ is

kC3�C7þ¼ 0:8kC2�C7þ
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Step 4. Determine the remaining kij from

kij ¼ ki�C7þ
ðMjÞ5 � ðMiÞ5

ðMC7þÞ5 � ðMiÞ5
" #

where M is the molecular weight of any specified component.

For example, the binary interaction coefficient between propane
C3 and butane C4 is

kC3�C4
¼ kC3�C7þ

ðMC4
Þ5 � ðMC3

Þ5
ðMC7þÞ5 � ðMC3

Þ5
" #
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