
Page 1

CS742 – Distributed & Parallel DBMS Page 5. 1 M. Tamer Özsu

Outline
n  Introduction & architectural issues
n Data distribution
n Distributed query processing
n Distributed query optimization
q Distributed transactions & concurrency control

q Transaction models and concepts
q Distributed concurrency control

q Distributed reliability
q Data replication
q Parallel database systems
q Database integration & querying
q Peer-to-Peer data management
q Stream data management
q MapReduce-based distributed data management

CS742 – Distributed & Parallel DBMS Page 5. 2 M. Tamer Özsu

Transaction

A transaction is a collection of actions that make consistent
transformations of system states while preserving system
consistency.

l  concurrency transparency
l  failure transparency

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

Page 2

CS742 – Distributed & Parallel DBMS Page 5. 3 M. Tamer Özsu

Transaction Example –
A Simple SQL Query

Transaction BUDGET_UPDATE

begin
EXEC SQL UPDATE PROJ

 SET BUDGET = BUDGET*1.1
 WHERE PNAME = “CAD/CAM”

end.

CS742 – Distributed & Parallel DBMS Page 5. 4 M. Tamer Özsu

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME,SPECIAL)

Page 3

CS742 – Distributed & Parallel DBMS Page 5. 5 M. Tamer Özsu

Example Transaction – SQL
Version

Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL UPDATE FLIGHT

 SET STSOLD = STSOLD + 1
 WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
 INTO FC(FNO, DATE, CNAME, SPECIAL);
 VALUES (flight_no, date, customer_name, null);

output(“reservation completed”)
end . {Reservation}

CS742 – Distributed & Parallel DBMS Page 5. 6 M. Tamer Özsu

Termination of Transactions
Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD,CAP

 INTO temp1,temp2
 FROM FLIGHT
 WHERE FNO = flight_no AND DATE = date;

if temp1 = temp2 then
output(“no free seats”);
Abort

else
EXEC SQL UPDATE FLIGHT

 SET STSOLD = STSOLD + 1
 WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
 INTO FC(FNO, DATE, CNAME, SPECIAL);
 VALUES (flight_no, date, customer_name, null);

 Commit
 output(“reservation completed”)

 endif
end . {Reservation}

Page 4

CS742 – Distributed & Parallel DBMS Page 5. 7 M. Tamer Özsu

Example Transaction –
Reads & Writes

Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
temp ← Read(flight_no(date).stsold);
if temp = flight(date).cap then
begin

output(“no free seats”);
Abort

end
else begin

Write(flight(date).stsold, temp + 1);
Write(flight(date).cname, customer_name);
Write(flight(date).special, null);
Commit;
output(“reservation completed”)

end
end. {Reservation}

CS742 – Distributed & Parallel DBMS Page 5. 8 M. Tamer Özsu

Characterization

n Read set (RS)
l The set of data items that are read by a transaction

n Write set (WS)
l The set of data items whose values are changed by this

transaction

n Base set (BS)
l RS ∪ WS

Page 5

CS742 – Distributed & Parallel DBMS Page 5. 9 M. Tamer Özsu

Principles of Transactions

ATOMICITY
l all or nothing

CONSISTENCY
l no violation of integrity constraints

ISOLATION
l  concurrent changes invisible ⇒ serializable

DURABILITY
l  committed updates persist

CS742 – Distributed & Parallel DBMS Page 5. 10 M. Tamer Özsu

Workflows

n  “A collection of tasks organized to accomplish some
business process.”

n Types
l Human-oriented workflows

u  Involve humans in performing the tasks.
u  System support for collaboration and coordination; but no

system-wide consistency definition
l  System-oriented workflows

u  Computation-intensive & specialized tasks that can be
executed by a computer

u  System support for concurrency control and recovery,
automatic task execution, notification, etc.

l  Transactional workflows
u  In between the previous two; may involve humans,

require access to heterogeneous, autonomous and/or
distributed systems, and support selective use of ACID
properties

Page 6

CS742 – Distributed & Parallel DBMS Page 5. 11 M. Tamer Özsu

Workflow Example

T1 T2

T3

T4

T5

Customer
Database

Customer
Database

Customer
Database

T1: Customer request obtained
T2: Airline reservation performed
T3: Hotel reservation performed
T4: Auto reservation performed
T5: Bill generated

CS742 – Distributed & Parallel DBMS Page 5. 12 M. Tamer Özsu

Transactions Provide…

n Atomic and reliable execution in the presence
of failures

n Correct execution in the presence of multiple
user accesses

n Correct management of replicas (if they
support it)

Page 7

CS742 – Distributed & Parallel DBMS Page 5. 13 M. Tamer Özsu

Transaction Processing
Issues

n Transaction structure (usually called
transaction model)
l Flat (simple), nested

n Internal database consistency
l Semantic data control (integrity enforcement) algorithms

n Reliability protocols
l Atomicity & Durability

l Local recovery protocols

l Global commit protocols

CS742 – Distributed & Parallel DBMS Page 5. 14 M. Tamer Özsu

Transaction Processing
Issues

n Concurrency control algorithms
l How to synchronize concurrent transaction executions

(correctness criterion)

l  Intra-transaction consistency, isolation

n Reliability protocols
l Atomicity & Durability

l Local recovery protocols

l Global commit protocols

n Replica control protocols
l How to control the mutual consistency of replicated data

l One copy equivalence and ROWA

Page 8

CS742 – Distributed & Parallel DBMS Page 5. 15 M. Tamer Özsu

Architecture Revisited

Scheduling/
Descheduling
Requests

Transaction Manager
 (TM)

Distributed
Execution Monitor

With other
SCs

With other
TMs

Begin_transaction,
Read, Write,

Commit, Abort

To data
processor

Results

Scheduler
 (SC)

CS742 – Distributed & Parallel DBMS Page 5. 16 M. Tamer Özsu

Centralized Transaction Execution

Begin_Transaction,
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write,
Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

Page 9

CS742 – Distributed & Parallel DBMS Page 5. 17 M. Tamer Özsu

Distributed Transaction
Execution

Begin_transaction,
Read, Write, EOT,
Abort

User application

Results &
User notifications

Read, Write,
EOT, Abort

TM

SC

RM

SC

RM

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

CS742 – Distributed & Parallel DBMS Page 5. 18 M. Tamer Özsu

Concurrency Control

n The problem of synchronizing concurrent
transactions such that the consistency of the
database is maintained while, at the same
time, maximum degree of concurrency is
achieved.

n Anomalies:
l Lost updates

u The effects of some transactions are not reflected on
the database.

l  Inconsistent retrievals
u A transaction, if it reads the same data item more than

once, should always read the same value.

Page 10

CS742 – Distributed & Parallel DBMS Page 5. 19 M. Tamer Özsu

Isolation Example

n Consider the following two transactions:
T1: Read(x) T2: Read(x)

 x ←x+1 x ← x+1
 Write(x) Write(x)
 Commit Commit

T1: Read(x) T1: Read(x)
T1: x ← x+1 T1: x ← x+1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T2: x ← x+1
T2: x ← x+1 T2: Write(x)
T2: Write(x) T1: Commit
T2: Commit T2: Commit

n Possible execution sequences:

CS742 – Distributed & Parallel DBMS Page 5. 20 M. Tamer Özsu

Execution History (or
Schedule)

n An order in which the operations of a set of
transactions are executed.

n A history (schedule) can be defined as a partial
order over the operations of a set of
transactions.

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)
 Write(x) Write(y) Read(y)
 Commit Read(z) Read(z)
 Commit Commit

Page 11

CS742 – Distributed & Parallel DBMS Page 5. 21 M. Tamer Özsu

Serial History

n All the actions of a transaction occur
consecutively.

n No interleaving of transaction operations.
n If each transaction is consistent (obeys

integrity rules), then the database is
guaranteed to be consistent at the end of
executing a serial history.
T1: Read(x) T2: Write(x) T3: Read(x)

 Write(x) Write(y) Read(y)
 Commit Read(z) Read(z)

 Commit Commit

CS742 – Distributed & Parallel DBMS Page 5. 22 M. Tamer Özsu

Serializable History

n Transactions execute concurrently, but the net
effect of the resulting history upon the database is
equivalent to some serial history.

n Equivalent with respect to what?
l Conflict equivalence: the relative order of execution of the

conflicting operations belonging to unaborted transactions in
two histories are the same.

l Conflicting operations: two incompatible operations (e.g.,
Read and Write) conflict if they both access the same data
item.

u  Incompatible operations of each transaction is assumed to
conflict; do not change their execution orders.

u  If two operations from two different transactions conflict,
the corresponding transactions are also said to conflict.

Page 12

CS742 – Distributed & Parallel DBMS Page 5. 23 M. Tamer Özsu

Serializable History

The following are not conflict equivalent

 Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

 H1={W2(x),R1(x), R3(x),W1(x),W2(y),R3(y),R2(z),R3(z)}

The following are conflict equivalent; therefore H2 is serializable.

 Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

 H2={W2(x),R1(x),W1(x),R3(x),W2(y),R3(y),R2(z),R3(z)}

T1: Read(x) T2: Write(x) T3: Read(x)
 Write(x) Write(y) Read(y)
 Commit Read(z) Read(z)
 Commit Commit

CS742 – Distributed & Parallel DBMS Page 5. 24 M. Tamer Özsu

Serializability in Distributed
DBMS

n Somewhat more involved. Two histories have
to be considered:
l  local histories

l global history

n For global transactions (i.e., global history) to
be serializable, two conditions are necessary:
l Each local history should be serializable.

l Two conflicting operations should be in the same relative
order in all of the local histories where they appear
together.

Page 13

CS742 – Distributed & Parallel DBMS Page 5. 25 M. Tamer Özsu

Global Non-serializability

n x stored at Site 1, y stored at Site 2
n LH1, LH2 are individually serializable (in fact serial), but

the two transactions are not globally serializable.

T1: Read(x) T2: Read(x)
 x ←x-100 Read(y)
 Write(x) Commit
 Read(y)
 y ←y+100
 Write(y)
 Commit

LH1={R1(x),W1(x), R2(x)}

LH2={R2(y), R1(y),W1(y)}

CS742 – Distributed & Parallel DBMS Page 5. 26 M. Tamer Özsu

Concurrency Control
Algorithms

n Pessimistic
l Two-Phase Locking-based (2PL)

u Centralized (primary site) 2PL
u Primary copy 2PL
u Distributed 2PL

l Timestamp Ordering (TO)
u Basic TO
u Multiversion TO
u Conservative TO

l Hybrid

n Optimistic
l Locking-based
l Timestamp ordering-based

Page 14

CS742 – Distributed & Parallel DBMS Page 5. 27 M. Tamer Özsu

Locking-Based Algorithms
n Transactions indicate their intentions by

requesting locks from the scheduler (called lock
manager).

n Locks are either read lock (rl) [also called
shared lock] or write lock (wl) [also called
exclusive lock]

n Read locks and write locks conflict (because
Read and Write operations are incompatible
 rl wl
 rl yes no
 wl no no

n Locking works nicely to allow concurrent
processing of transactions.

CS742 – Distributed & Parallel DBMS Page 5. 28 M. Tamer Özsu

Two-Phase Locking (2PL)
�  A Transaction locks an object before using it.
�  When an object is locked by another transaction,

the requesting transaction must wait.
�  When a transaction releases a lock, it may not

request another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o.

 o
f l

oc
ks

Page 15

CS742 – Distributed & Parallel DBMS Page 5. 29 M. Tamer Özsu

Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction
duration

period of
data item
use

N
o.

 o
f l

oc
ks

CS742 – Distributed & Parallel DBMS Page 5. 30 M. Tamer Özsu

Centralized 2PL
n There is only one 2PL scheduler in the distributed

system.
n Lock requests are issued to the central scheduler.

Data Processors at
 participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks

Page 16

CS742 – Distributed & Parallel DBMS Page 5. 31 M. Tamer Özsu

Distributed 2PL

n 2PL schedulers are placed at each site. Each
scheduler handles lock requests for data at
that site.

n A transaction may read any of the replicated
copies of item x, by obtaining a read lock on one
of the copies of x. Writing into x requires
obtaining write locks for all copies of x.

CS742 – Distributed & Parallel DBMS Page 5. 32 M. Tamer Özsu

Distributed 2PL Execution

Coordinating TM Participating LMs Participating DPs

Lock Request
Operation

End of Operation

Release Locks

Page 17

CS742 – Distributed & Parallel DBMS Page 5. 33 M. Tamer Özsu

Timestamp Ordering
� Transaction (Ti) is assigned a globally unique timestamp ts(Ti).
� Transaction manager attaches the timestamp to all operations

issued by the transaction.
� Each data item is assigned a write timestamp (wts) and a read

timestamp (rts):
l rts(x) = largest timestamp of any read on x
l wts(x) = largest timestamp of any read on x

� Conflicting operations are resolved by timestamp order.

 Basic T/O:
 for Ri(x) for Wi(x)
 if ts(Ti) < wts(x) if ts(Ti) < rts(x) and ts(Ti) < wts(x)
 then reject Ri(x) then reject Wi(x)
 else accept Ri(x) else accept Wi(x)
 rts(x) ← ts(Ti) wts(x) ← ts(Ti)

CS742 – Distributed & Parallel DBMS Page 5. 34 M. Tamer Özsu

Conservative Timestamp
Ordering

n Basic timestamp ordering tries to execute an
operation as soon as it receives it
l progressive
l  too many restarts since there is no delaying

n Conservative timestamping delays each
operation until there is an assurance that it
will not be restarted

n Assurance?
l No other operation with a smaller timestamp can arrive at

the scheduler
l Note that the delay may result in the formation of

deadlocks

Page 18

CS742 – Distributed & Parallel DBMS Page 5. 35 M. Tamer Özsu

Multiversion Timestamp
Ordering

n Do not modify the values in the database,
create new values.

n A Ri(x) is translated into a read on one version
of x.
l Find a version of x (say xv) such that ts(xv) is the largest

timestamp less than ts(Ti).

n A Wi(x) is translated into Wi(xw) and accepted if
the scheduler has not yet processed any Rj(xr)
such that

ts(Ti) < ts(xr) < ts(Tj)

CS742 – Distributed & Parallel DBMS Page 5. 36 M. Tamer Özsu

Optimistic Concurrency
Control Algorithms

Pessimistic execution

Optimistic execution

Validate Read Compute Write

Validate Read Compute Write

Page 19

CS742 – Distributed & Parallel DBMS Page 5. 37 M. Tamer Özsu

Optimistic Concurrency
Control Algorithms

n Transaction execution model: divide into
subtransactions each of which execute at a site
l Tij: transaction Ti that executes at site j

n Transactions run independently at each site
until they reach the end of their read phases

n All subtransactions are assigned a timestamp
at the end of their read phase

n Validation test performed during validation
phase. If one fails, all rejected.

CS742 – Distributed & Parallel DBMS Page 5. 38 M. Tamer Özsu

Optimistic CC Validation
Test

�  If all transactions Tk where ts(Tk) < ts(Tij)
have completed their write phase before Tij
has started its read phase, then validation
succeeds

l  Transaction executions in serial order

Tk
R V W

R V W Tij

Page 20

CS742 – Distributed & Parallel DBMS Page 5. 39 M. Tamer Özsu

Optimistic CC Validation
Test

�  If there is any transaction Tk such that
ts(Tk)<ts(Tij) and which completes its write
phase while Tij is in its read phase, then
validation succeeds if WS(Tk) ∩ RS(Tij)
= Ø

l  Read and write phases overlap, but Tij does not read
data items written by Tk

R V W Tk
R V W Tij

CS742 – Distributed & Parallel DBMS Page 5. 40 M. Tamer Özsu

Optimistic CC Validation
Test

�  If there is any transaction Tk such that ts(Tk)<
ts(Tij) and which completes its read phase
before Tij completes its read phase, then
validation succeeds if WS(Tk) ∩ RS(Tij) = Ø and
WS(Tk) ∩ WS(Tij) = Ø
l They overlap, but don't access any common data items.

R V W Tk
R V W Tij

Page 21

CS742 – Distributed & Parallel DBMS Page 5. 41 M. Tamer Özsu

Deadlock

n A transaction is deadlocked if it is blocked and will
remain blocked until there is intervention.

n Locking-based CC algorithms may cause deadlocks.
n TO-based algorithms that involve waiting may

cause deadlocks.
n Wait-for graph

l  If transaction Ti waits for another transaction Tj to release a lock
on an entity, then Ti → Tj in WFG.

Ti
Tj

CS742 – Distributed & Parallel DBMS Page 5. 42 M. Tamer Özsu

Local versus Global WFG
Assume T1 and T2 run at site 1, T3 and T4 run at site 2.
Also assume T3 waits for a lock held by T4 which waits for
a lock held by T1 which waits for a lock held by T2 which,
in turn, waits for a lock held by T3.

Local WFG

Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3

Page 22

CS742 – Distributed & Parallel DBMS Page 5. 43 M. Tamer Özsu

Deadlock Management

n Prevention
l Guaranteeing that deadlocks can never occur in the first

place. Check transaction when it is initiated. Requires no
run time support.

n Avoidance
l Detecting potential deadlocks in advance and taking action

to insure that deadlock will not occur. Requires run time
support.

n Detection and Recovery
l Allowing deadlocks to form and then finding and breaking

them. As in the avoidance scheme, this requires run time
support.

CS742 – Distributed & Parallel DBMS Page 5. 44 M. Tamer Özsu

Deadlock Prevention

n All resources which may be needed by a
transaction must be predeclared.

l The system must guarantee that none of the resources will
be needed by an ongoing transaction.

l Resources must only be reserved, but not necessarily
allocated a priori

l Unsuitability of the scheme in database environment
l Suitable for systems that have no provisions for undoing

processes.

n Evaluation:
–  Reduced concurrency due to preallocation
–  Evaluating whether an allocation is safe leads to added

overhead.
–  Difficult to determine (partial order)
+  No transaction rollback or restart is involved.

Page 23

CS742 – Distributed & Parallel DBMS Page 5. 45 M. Tamer Özsu

Deadlock Avoidance
n Transactions are not required to request resources

a priori.

n Transactions are allowed to proceed unless a
requested resource is unavailable.

n In case of conflict, transactions may be allowed to
wait for a fixed time interval.

n Order either the data items or the sites and always
request locks in that order.

n More attractive than prevention in a database
environment.

n Wait-Die/Wound-Wait algorithms

CS742 – Distributed & Parallel DBMS Page 5. 46 M. Tamer Özsu

Deadlock Detection

n Transactions are allowed to wait freely.

n Wait-for graphs and cycles.

n Topologies for deadlock detection algorithms
l Centralized

l Distributed

l Hierarchical

