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Transaction 

A transaction is a collection of actions that make consistent 
transformations of system states while preserving system 
consistency. 

l  concurrency transparency 
l  failure transparency 

Database in a 
consistent 
state 

Database may be 
temporarily in an 
inconsistent state 
during execution 

Begin 
Transaction 

End 
Transaction 

Execution of 
Transaction 

Database in a 
consistent 
state 
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Transaction Example –  
A Simple SQL Query 

Transaction   BUDGET_UPDATE 

begin 
EXEC SQL  UPDATE  PROJ 

  SET  BUDGET = BUDGET*1.1 
  WHERE  PNAME = “CAD/CAM” 

end. 
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Example Database 

Consider an airline reservation example with the 
relations: 
 

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP) 
CUST(CNAME, ADDR, BAL) 
FC(FNO, DATE, CNAME,SPECIAL) 
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Example Transaction – SQL 
Version 

Begin_transaction Reservation 
begin 

input(flight_no, date, customer_name); 
EXEC SQL  UPDATE  FLIGHT 

   SET  STSOLD = STSOLD + 1 
   WHERE  FNO = flight_no AND DATE = date; 

EXEC SQL  INSERT 
   INTO  FC(FNO, DATE, CNAME, SPECIAL); 
   VALUES  (flight_no, date, customer_name, null); 

output(“reservation completed”) 
end . {Reservation} 
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Termination of Transactions 
Begin_transaction Reservation 
begin 

input(flight_no, date, customer_name); 
EXEC SQL  SELECT  STSOLD,CAP 

  INTO  temp1,temp2 
  FROM  FLIGHT 
  WHERE  FNO = flight_no AND DATE =  date; 

if temp1 = temp2 then 
output(“no free seats”); 
Abort 

else  
EXEC SQL  UPDATE FLIGHT 

   SET  STSOLD = STSOLD + 1 
   WHERE  FNO = flight_no AND DATE = date; 

EXEC SQL  INSERT 
   INTO  FC(FNO, DATE, CNAME, SPECIAL); 
   VALUES (flight_no, date, customer_name, null); 

 Commit 
 output(“reservation completed”) 

 endif 
end . {Reservation} 
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Example Transaction –  
Reads & Writes 

Begin_transaction Reservation 
begin 

input(flight_no, date, customer_name); 
temp ← Read(flight_no(date).stsold); 
if temp = flight(date).cap then 
begin 

output(“no free seats”); 
Abort 

end 
else begin 

Write(flight(date).stsold, temp + 1); 
Write(flight(date).cname, customer_name); 
Write(flight(date).special, null); 
Commit; 
output(“reservation completed”) 

end 
end. {Reservation} 
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Characterization 

n Read set (RS) 
l The set of data items that are read by a transaction 

n Write set (WS) 
l The set of data items whose values are changed by this 

transaction 

n Base set (BS) 
l RS ∪ WS 
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Principles of Transactions 

ATOMICITY 
l all or nothing 

CONSISTENCY 
l no violation of integrity constraints 

ISOLATION 
l  concurrent changes invisible  ⇒ serializable 

DURABILITY 
l  committed updates persist 
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Workflows 

n  “A collection of tasks organized to accomplish some 
business process.”  

n Types 
l Human-oriented workflows 

u  Involve humans in performing the tasks. 
u  System support for collaboration and coordination; but no 

system-wide consistency definition 
l  System-oriented workflows 

u  Computation-intensive & specialized tasks that can be 
executed by a computer 

u  System support for concurrency control and recovery, 
automatic task execution, notification, etc. 

l  Transactional workflows 
u  In between the previous two; may involve humans, 

require access to heterogeneous, autonomous and/or 
distributed systems, and support selective use of ACID 
properties 
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Workflow Example 

T1 T2 

T3 

T4 

T5 

Customer 
Database 

Customer 
Database 

Customer 
Database 

T1: Customer request obtained 
T2: Airline reservation performed 
T3: Hotel reservation performed 
T4: Auto reservation performed 
T5: Bill generated 
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Transactions Provide… 

n Atomic and reliable execution in the presence 
of  failures 

n Correct execution in the presence of multiple 
user accesses  

n Correct management of replicas (if they 
support it)  
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Transaction Processing 
Issues 

n Transaction structure (usually called 
transaction model) 
l Flat (simple), nested 

n Internal database consistency 
l Semantic data control (integrity enforcement) algorithms 

n Reliability protocols  
l Atomicity & Durability 

l Local recovery protocols 

l Global commit protocols 
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Transaction Processing 
Issues 

n Concurrency control algorithms 
l How to synchronize concurrent transaction executions 

(correctness criterion) 

l  Intra-transaction consistency, isolation 

n Reliability protocols  
l Atomicity & Durability 

l Local recovery protocols 

l Global commit protocols 

n Replica control protocols 
l How to control the mutual consistency of replicated data 

l One copy equivalence and ROWA 
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Architecture Revisited 

Scheduling/ 
Descheduling 
Requests 

Transaction Manager 
 (TM) 

Distributed  
Execution Monitor 

With other  
SCs 

With other  
TMs 

Begin_transaction, 
Read, Write,  

Commit, Abort 

To data  
processor 

Results 

Scheduler 
 (SC) 
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Centralized Transaction Execution 

Begin_Transaction,  
Read, Write, Abort, EOT 

Results & 
User Notifications 

Scheduled 
Operations Results 

Results 

… 

Read, Write,  
Abort, EOT 

User 
Application  

User 
Application  

Transaction 
Manager 

(TM) 

Scheduler 
(SC) 

Recovery 
Manager 

(RM) 
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Distributed Transaction 
Execution 

Begin_transaction, 
Read, Write, EOT, 
Abort 

User application 

Results & 
User notifications 

Read, Write, 
EOT, Abort 

TM 

SC 

RM 

SC 

RM 

TM 

Local 
Recovery 
Protocol 

Distributed 
Concurrency Control 

Protocol 

Replica Control 
Protocol 

Distributed 
Transaction Execution 

Model 
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Concurrency Control 

n The problem of synchronizing concurrent 
transactions such that the consistency of the 
database is maintained while, at the same 
time, maximum degree of concurrency is 
achieved. 

n Anomalies: 
l Lost updates 

u The effects of some transactions are not reflected on 
the database. 

l  Inconsistent retrievals 
u A transaction, if it reads the same data item more than 

once, should always read the same value. 
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Isolation Example 

n Consider the following two transactions: 
T1:  Read(x)  T2:  Read(x) 

 x ←x+1   x ← x+1 
 Write(x)   Write(x) 
 Commit   Commit 

T1:  Read(x)  T1:  Read(x) 
T1:  x ← x+1  T1:  x ← x+1 
T1:  Write(x)  T2:  Read(x) 
T1:  Commit  T1:  Write(x) 
T2:  Read(x)  T2:  x ← x+1 
T2:  x ← x+1  T2:  Write(x) 
T2:  Write(x)  T1:  Commit 
T2:  Commit  T2:  Commit 

n Possible execution sequences: 
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Execution History (or 
Schedule) 

n An order in which the operations of a set of 
transactions are executed. 

n A history (schedule) can be defined as a partial 
order over the operations of a set of 
transactions. 

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3} 

T1:  Read(x)  T2:  Write(x)  T3:  Read(x) 
 Write(x)   Write(y)   Read(y) 
 Commit   Read(z)   Read(z) 
   Commit   Commit 
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Serial History 

n All the actions of a transaction occur 
consecutively. 

n No interleaving of transaction operations. 
n If each transaction is consistent (obeys 

integrity rules), then the database is 
guaranteed to be consistent at the end of 
executing a serial history. 
T1:  Read(x)  T2:  Write(x)  T3:  Read(x) 

 Write(x)   Write(y)   Read(y) 
 Commit   Read(z)   Read(z) 

             Commit   Commit 
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Serializable History 

n Transactions execute concurrently, but the net 
effect of the resulting history upon the database is 
equivalent to some serial history. 

n Equivalent with respect to what? 
l Conflict equivalence: the relative order of execution of the 

conflicting operations belonging to unaborted transactions in 
two histories are the same. 

l Conflicting operations: two incompatible operations (e.g., 
Read and Write) conflict if they both access the same data 
item. 

u  Incompatible operations of each transaction is assumed to 
conflict; do not change their execution orders. 

u  If two operations from two different transactions conflict, 
the corresponding transactions are also said to conflict. 
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Serializable History 

The following are not conflict equivalent 

 Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)} 

 H1={W2(x),R1(x), R3(x),W1(x),W2(y),R3(y),R2(z),R3(z)} 

The following are conflict equivalent; therefore H2 is serializable. 

 Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)} 

 H2={W2(x),R1(x),W1(x),R3(x),W2(y),R3(y),R2(z),R3(z)} 

T1:  Read(x)  T2:  Write(x)  T3:  Read(x) 
 Write(x)   Write(y)   Read(y) 
 Commit   Read(z)   Read(z) 
   Commit   Commit 
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Serializability in Distributed 
DBMS 

n Somewhat more involved. Two histories have 
to be considered: 
l  local histories  

l global history 

n For global transactions (i.e., global history)  to 
be serializable, two conditions are necessary: 
l Each local history should be serializable. 

l Two conflicting operations should be in the same relative 
order in all of the local histories where they appear 
together. 
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Global Non-serializability  

n x stored at Site 1, y stored at Site 2 
n LH1, LH2 are individually serializable (in fact serial), but 

the two transactions are not globally serializable. 

T1:  Read(x)  T2:  Read(x) 
 x ←x-100   Read(y) 
 Write(x)   Commit 
 Read(y) 
 y ←y+100 
 Write(y)    
 Commit 

LH1={R1(x),W1(x), R2(x)} 

LH2={R2(y), R1(y),W1(y)} 
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Concurrency Control 
Algorithms 

n Pessimistic 
l Two-Phase Locking-based (2PL) 

u Centralized (primary site) 2PL 
u Primary copy 2PL 
u Distributed 2PL 

l Timestamp Ordering (TO) 
u Basic TO 
u Multiversion TO 
u Conservative TO 

l Hybrid 

n Optimistic 
l Locking-based 
l Timestamp ordering-based 
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Locking-Based Algorithms 
n Transactions indicate their intentions by 

requesting locks from the scheduler (called lock 
manager). 

n Locks are either read lock (rl) [also called 
shared lock] or write lock (wl) [also called 
exclusive lock] 

n Read locks and write locks conflict (because 
Read and Write operations are incompatible 
      rl   wl 
  rl   yes  no 
  wl   no  no 

n Locking works nicely to allow concurrent 
processing of transactions. 
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Two-Phase Locking (2PL) 
�  A Transaction locks an object before using it. 
�  When an object is locked by another transaction, 

the requesting transaction must wait. 
�  When a transaction releases a lock, it may not 

request another lock. 

Obtain lock 

Release lock 

Lock point 

Phase 1 Phase 2 

BEGIN END 

N
o.

 o
f l

oc
ks
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Strict 2PL 

Hold locks until the end. 

Obtain lock 

Release lock 

BEGIN END 
Transaction 
duration 

period of 
data item 
use 

N
o.

 o
f l

oc
ks
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Centralized 2PL 
n There is only one 2PL scheduler in the distributed 

system. 
n Lock requests are issued to the central scheduler. 

Data Processors at  
  participating sites  Coordinating TM Central Site LM 

Lock Request 

Lock Granted 

Operation 

End of Operation 

Release Locks 
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Distributed 2PL 

n 2PL schedulers are placed at each site. Each 
scheduler handles lock requests for data at 
that site. 

n A transaction may read any of the replicated 
copies of item x, by obtaining a read lock on one 
of the copies of x. Writing into x requires 
obtaining write locks for all copies of x. 

CS742 – Distributed & Parallel DBMS Page 5. 32 M. Tamer Özsu 

Distributed 2PL Execution 

Coordinating TM Participating LMs Participating DPs 

Lock Request 
Operation 

End of Operation 

Release Locks 
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Timestamp Ordering 
� Transaction (Ti) is assigned a globally unique timestamp ts(Ti). 
� Transaction manager attaches the timestamp to all operations 

issued by the transaction. 
� Each data item is assigned a write timestamp (wts) and a read 

timestamp (rts): 
l rts(x) = largest timestamp of any read on x 
l wts(x) = largest timestamp of any read on x 

� Conflicting operations are resolved by timestamp order. 
 

 Basic T/O: 
 for Ri(x)  for Wi(x) 
 if ts(Ti) < wts(x)  if ts(Ti) < rts(x) and ts(Ti) < wts(x)  
 then reject Ri(x)  then reject Wi(x) 
 else accept Ri(x)  else accept Wi(x) 
 rts(x) ← ts(Ti)  wts(x) ← ts(Ti)  
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Conservative Timestamp 
Ordering 

n Basic timestamp ordering tries to execute an 
operation as soon as it receives it 
l progressive 
l  too many restarts since there is no delaying 

n Conservative timestamping delays each 
operation until there is an assurance that it 
will not be restarted 

n Assurance? 
l No other operation with a smaller timestamp can arrive at 

the scheduler 
l Note that the delay may result in the formation of 

deadlocks 
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Multiversion Timestamp 
Ordering 

n Do not modify the values in the database, 
create new values. 

n A Ri(x) is translated into a read on one version 
of x.  
l Find a version of x (say xv) such that ts(xv) is the largest 

timestamp less than ts(Ti). 

n A Wi(x) is translated into Wi(xw) and accepted if 
the scheduler has not yet processed any Rj(xr) 
such that 

ts(Ti) < ts(xr) < ts(Tj)  
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Optimistic Concurrency 
Control Algorithms 

Pessimistic execution 

Optimistic execution 

Validate Read Compute Write 

Validate Read Compute Write 
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Optimistic Concurrency 
Control Algorithms 

n Transaction execution model: divide into 
subtransactions each of which execute at a site 
l Tij: transaction Ti that executes at site j 

n Transactions run independently at each site 
until they reach the end of their read phases 

n All subtransactions are assigned a timestamp 
at the end of their read phase 

n Validation test  performed during validation 
phase. If one fails, all rejected. 
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Optimistic CC Validation 
Test 

�  If all transactions Tk where ts(Tk) < ts(Tij) 
have completed their write phase before Tij 
has started its read phase, then validation 
succeeds 

l  Transaction executions in serial order 

Tk 
R V W 

R V W Tij 
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Optimistic CC Validation 
Test 

�  If there is any transaction Tk such that 
ts(Tk)<ts(Tij) and which completes its write 
phase while Tij is in its read phase, then 
validation succeeds if             WS(Tk) ∩ RS(Tij) 
= Ø 

l  Read and write phases overlap, but Tij does not read 
data items written by Tk 

R V W Tk 
R V W Tij 
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Optimistic CC Validation 
Test 

�  If there is any transaction Tk such that ts(Tk)< 
ts(Tij) and which completes its read phase 
before Tij completes its read phase, then 
validation succeeds if WS(Tk) ∩ RS(Tij) = Ø and 
WS(Tk) ∩ WS(Tij) = Ø 
l They overlap, but don't access any common data items. 

R V W Tk 
R V W Tij 
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Deadlock 

n A transaction is deadlocked if it is blocked and will 
remain blocked until there is intervention. 

n Locking-based CC algorithms may cause deadlocks. 
n TO-based algorithms that involve waiting may 

cause deadlocks. 
n Wait-for graph 

l  If transaction Ti waits for another transaction Tj to release a lock 
on an entity, then Ti → Tj in WFG. 

Ti 
Tj 
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Local versus Global WFG 
Assume T1 and T2 run at site 1, T3 and T4 run at site 2. 
Also assume T3 waits for a lock held by T4 which waits for 
a lock held by T1 which waits for a lock held by T2 which, 
in turn,  waits for a lock held by T3. 
 
Local WFG 

Global WFG 

T1 

Site 1 Site 2 

T2 

T4 

T3 

T1 

T2 

T4 

T3 



Page 22 

CS742 – Distributed & Parallel DBMS Page 5. 43 M. Tamer Özsu 

Deadlock Management 

n Prevention 
l Guaranteeing that deadlocks can never occur in the first 

place. Check transaction when it is initiated. Requires no 
run time support. 

n Avoidance 
l Detecting potential deadlocks in advance and taking action 

to insure that deadlock will not occur. Requires run time 
support. 

n Detection and Recovery 
l Allowing deadlocks to form and then finding and breaking 

them. As in the avoidance scheme, this requires run time 
support. 
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Deadlock Prevention 

n All resources which may be needed by a 
transaction must be predeclared. 

l The system must guarantee that none of the resources will 
be needed by an ongoing transaction. 

l Resources must only be reserved, but not necessarily 
allocated a priori 

l Unsuitability of the scheme in database environment 
l Suitable for systems that have no provisions for undoing 

processes. 

n Evaluation: 
–  Reduced concurrency due to preallocation 
–  Evaluating whether an allocation is safe leads to added 

overhead. 
–  Difficult to determine (partial order) 
+  No transaction rollback or restart is involved. 
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Deadlock Avoidance 
n Transactions are not required to request resources 

a priori. 

n Transactions are allowed to proceed unless a 
requested resource is unavailable. 

n In case of conflict, transactions may be allowed to 
wait for a fixed time interval.  

n Order either the data items or the sites and always 
request locks in that order. 

n More attractive than prevention in a database 
environment. 

n Wait-Die/Wound-Wait algorithms 
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Deadlock Detection 

n Transactions are allowed to wait freely. 

n Wait-for graphs and cycles. 

n Topologies for deadlock detection algorithms 
l Centralized 

l Distributed 

l Hierarchical 


